URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [config/] [tilegx/] [tilegx.c] - Rev 709
Compare with Previous | Blame | View Log
/* Subroutines used for code generation on the Tilera TILE-Gx. Copyright (C) 2011, 2012 Free Software Foundation, Inc. Contributed by Walter Lee (walt@tilera.com) This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "regs.h" #include "insn-config.h" #include "output.h" #include "insn-attr.h" #include "recog.h" #include "expr.h" #include "langhooks.h" #include "optabs.h" #include "sched-int.h" #include "tm_p.h" #include "tm-constrs.h" #include "target.h" #include "target-def.h" #include "integrate.h" #include "dwarf2.h" #include "timevar.h" #include "gimple.h" #include "cfgloop.h" #include "tilegx-builtins.h" #include "tilegx-multiply.h" #include "diagnostic.h" /* SYMBOL_REF for GOT */ static GTY(()) rtx g_got_symbol = NULL; /* In case of a POST_INC or POST_DEC memory reference, we must report the mode of the memory reference from TARGET_PRINT_OPERAND to TARGET_PRINT_OPERAND_ADDRESS. */ static enum machine_mode output_memory_reference_mode; /* Report whether we're printing out the first address fragment of a POST_INC or POST_DEC memory reference, from TARGET_PRINT_OPERAND to TARGET_PRINT_OPERAND_ADDRESS. */ static bool output_memory_autoinc_first; /* Option handling */ /* Implement TARGET_OPTION_OVERRIDE. */ static void tilegx_option_override (void) { /* When modulo scheduling is enabled, we still rely on regular scheduler for bundling. */ if (flag_modulo_sched) flag_resched_modulo_sched = 1; } /* Implement TARGET_SCALAR_MODE_SUPPORTED_P. */ static bool tilegx_scalar_mode_supported_p (enum machine_mode mode) { switch (mode) { case QImode: case HImode: case SImode: case DImode: case TImode: return true; case SFmode: case DFmode: return true; default: return false; } } /* Implement TARGET_VECTOR_MODE_SUPPORTED_P. */ static bool tilegx_vector_mode_supported_p (enum machine_mode mode) { return mode == V8QImode || mode == V4HImode || mode == V2SImode; } /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */ static bool tilegx_cannot_force_const_mem (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x ATTRIBUTE_UNUSED) { return true; } /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL. */ static bool tilegx_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED) { return decl != NULL; } /* Implement TARGET_PASS_BY_REFERENCE. Variable sized types are passed by reference. */ static bool tilegx_pass_by_reference (cumulative_args_t cum ATTRIBUTE_UNUSED, enum machine_mode mode ATTRIBUTE_UNUSED, const_tree type, bool named ATTRIBUTE_UNUSED) { return (type && TYPE_SIZE (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST); } /* Implement TARGET_RETURN_IN_MEMORY. */ static bool tilegx_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED) { return !IN_RANGE (int_size_in_bytes (type), 0, TILEGX_NUM_RETURN_REGS * UNITS_PER_WORD); } /* TARGET_MODE_REP_EXTENDED. */ static int tilegx_mode_rep_extended (enum machine_mode mode, enum machine_mode mode_rep) { /* SImode register values are sign-extended to DImode. */ if (mode == SImode && mode_rep == DImode) return SIGN_EXTEND; return UNKNOWN; } /* Implement TARGET_FUNCTION_ARG_BOUNDARY. */ static unsigned int tilegx_function_arg_boundary (enum machine_mode mode, const_tree type) { unsigned int alignment; alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode); if (alignment < PARM_BOUNDARY) alignment = PARM_BOUNDARY; if (alignment > STACK_BOUNDARY) alignment = STACK_BOUNDARY; return alignment; } /* Implement TARGET_FUNCTION_ARG. */ static rtx tilegx_function_arg (cumulative_args_t cum_v, enum machine_mode mode, const_tree type, bool named ATTRIBUTE_UNUSED) { CUMULATIVE_ARGS cum = *get_cumulative_args (cum_v); int byte_size = ((mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode)); if (cum >= TILEGX_NUM_ARG_REGS) return NULL_RTX; /* The ABI does not allow parameters to be passed partially in reg and partially in stack. */ if ((cum + (byte_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD) > TILEGX_NUM_ARG_REGS) return NULL_RTX; return gen_rtx_REG (mode, cum); } /* Implement TARGET_FUNCTION_ARG_ADVANCE. */ static void tilegx_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode, const_tree type, bool named ATTRIBUTE_UNUSED) { CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); int byte_size = ((mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode)); int word_size = (byte_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD; /* If the current argument does not fit in the pretend_args space, skip over it. */ if (*cum < TILEGX_NUM_ARG_REGS && *cum + word_size > TILEGX_NUM_ARG_REGS) *cum = TILEGX_NUM_ARG_REGS; *cum += word_size; } /* Implement TARGET_FUNCTION_VALUE. */ static rtx tilegx_function_value (const_tree valtype, const_tree fn_decl_or_type, bool outgoing ATTRIBUTE_UNUSED) { enum machine_mode mode; int unsigned_p; mode = TYPE_MODE (valtype); unsigned_p = TYPE_UNSIGNED (valtype); mode = promote_function_mode (valtype, mode, &unsigned_p, fn_decl_or_type, 1); return gen_rtx_REG (mode, 0); } /* Implement TARGET_LIBCALL_VALUE. */ static rtx tilegx_libcall_value (enum machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED) { return gen_rtx_REG (mode, 0); } /* Implement FUNCTION_VALUE_REGNO_P. */ static bool tilegx_function_value_regno_p (const unsigned int regno) { return regno < TILEGX_NUM_RETURN_REGS; } /* Implement TARGET_BUILD_BUILTIN_VA_LIST. */ static tree tilegx_build_builtin_va_list (void) { tree f_args, f_skip, record, type_decl; bool owp; record = lang_hooks.types.make_type (RECORD_TYPE); type_decl = build_decl (BUILTINS_LOCATION, TYPE_DECL, get_identifier ("__va_list_tag"), record); f_args = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__args"), ptr_type_node); f_skip = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__skip"), ptr_type_node); DECL_FIELD_CONTEXT (f_args) = record; DECL_FIELD_CONTEXT (f_skip) = record; TREE_CHAIN (record) = type_decl; TYPE_NAME (record) = type_decl; TYPE_FIELDS (record) = f_args; TREE_CHAIN (f_args) = f_skip; /* We know this is being padded and we want it too. It is an internal type so hide the warnings from the user. */ owp = warn_padded; warn_padded = false; layout_type (record); warn_padded = owp; /* The correct type is an array type of one element. */ return record; } /* Implement TARGET_EXPAND_BUILTIN_VA_START. */ static void tilegx_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED) { tree f_args, f_skip; tree args, skip, t; f_args = TYPE_FIELDS (TREE_TYPE (valist)); f_skip = TREE_CHAIN (f_args); args = build3 (COMPONENT_REF, TREE_TYPE (f_args), valist, f_args, NULL_TREE); skip = build3 (COMPONENT_REF, TREE_TYPE (f_skip), valist, f_skip, NULL_TREE); /* Find the __args area. */ t = make_tree (TREE_TYPE (args), virtual_incoming_args_rtx); t = fold_build_pointer_plus_hwi (t, UNITS_PER_WORD * (crtl->args.info - TILEGX_NUM_ARG_REGS)); if (crtl->args.pretend_args_size > 0) t = fold_build_pointer_plus_hwi (t, -STACK_POINTER_OFFSET); t = build2 (MODIFY_EXPR, TREE_TYPE (args), args, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Find the __skip area. */ t = make_tree (TREE_TYPE (skip), virtual_incoming_args_rtx); t = fold_build_pointer_plus_hwi (t, -STACK_POINTER_OFFSET); t = build2 (MODIFY_EXPR, TREE_TYPE (skip), skip, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } /* Implement TARGET_SETUP_INCOMING_VARARGS. */ static void tilegx_setup_incoming_varargs (cumulative_args_t cum, enum machine_mode mode, tree type, int *pretend_args, int no_rtl) { CUMULATIVE_ARGS local_cum = *get_cumulative_args (cum); int first_reg; /* The caller has advanced CUM up to, but not beyond, the last named argument. Advance a local copy of CUM past the last "real" named argument, to find out how many registers are left over. */ targetm.calls.function_arg_advance (pack_cumulative_args (&local_cum), mode, type, true); first_reg = local_cum; if (local_cum < TILEGX_NUM_ARG_REGS) { *pretend_args = UNITS_PER_WORD * (TILEGX_NUM_ARG_REGS - first_reg); if (!no_rtl) { alias_set_type set = get_varargs_alias_set (); rtx tmp = gen_rtx_MEM (BLKmode, plus_constant (virtual_incoming_args_rtx, -STACK_POINTER_OFFSET - UNITS_PER_WORD * (TILEGX_NUM_ARG_REGS - first_reg))); MEM_NOTRAP_P (tmp) = 1; set_mem_alias_set (tmp, set); move_block_from_reg (first_reg, tmp, TILEGX_NUM_ARG_REGS - first_reg); } } else *pretend_args = 0; } /* Implement TARGET_GIMPLIFY_VA_ARG_EXPR. Gimplify va_arg by updating the va_list structure VALIST as required to retrieve an argument of type TYPE, and returning that argument. ret = va_arg(VALIST, TYPE); generates code equivalent to: paddedsize = (sizeof(TYPE) + 3) & -4; if ( (VALIST.__args + paddedsize > VALIST.__skip) & (VALIST.__args <= VALIST.__skip)) addr = VALIST.__skip + STACK_POINTER_OFFSET; else addr = VALIST.__args; VALIST.__args = addr + paddedsize; ret = *(TYPE *)addr; */ static tree tilegx_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p, gimple_seq *post_p ATTRIBUTE_UNUSED) { tree f_args, f_skip; tree args, skip; HOST_WIDE_INT size, rsize; tree addr, tmp; bool pass_by_reference_p; f_args = TYPE_FIELDS (va_list_type_node); f_skip = TREE_CHAIN (f_args); args = build3 (COMPONENT_REF, TREE_TYPE (f_args), valist, f_args, NULL_TREE); skip = build3 (COMPONENT_REF, TREE_TYPE (f_skip), valist, f_skip, NULL_TREE); addr = create_tmp_var (ptr_type_node, "va_arg"); /* if an object is dynamically sized, a pointer to it is passed instead of the object itself. */ pass_by_reference_p = pass_by_reference (NULL, TYPE_MODE (type), type, false); if (pass_by_reference_p) type = build_pointer_type (type); size = int_size_in_bytes (type); rsize = ((size + UNITS_PER_WORD - 1) / UNITS_PER_WORD) * UNITS_PER_WORD; /* Assert alignment assumption. */ gcc_assert (STACK_BOUNDARY == PARM_BOUNDARY); /* Build conditional expression to calculate addr. The expression will be gimplified later. */ tmp = fold_build_pointer_plus_hwi (unshare_expr (args), rsize); tmp = build2 (TRUTH_AND_EXPR, boolean_type_node, build2 (GT_EXPR, boolean_type_node, tmp, unshare_expr (skip)), build2 (LE_EXPR, boolean_type_node, unshare_expr (args), unshare_expr (skip))); tmp = build3 (COND_EXPR, ptr_type_node, tmp, build2 (POINTER_PLUS_EXPR, ptr_type_node, unshare_expr (skip), size_int (STACK_POINTER_OFFSET)), unshare_expr (args)); gimplify_assign (addr, tmp, pre_p); /* Update VALIST.__args. */ tmp = fold_build_pointer_plus_hwi (addr, rsize); gimplify_assign (unshare_expr (args), tmp, pre_p); addr = fold_convert (build_pointer_type (type), addr); if (pass_by_reference_p) addr = build_va_arg_indirect_ref (addr); return build_va_arg_indirect_ref (addr); } /* Implement TARGET_RTX_COSTS. */ static bool tilegx_rtx_costs (rtx x, int code, int outer_code, int opno, int *total, bool speed) { switch (code) { case CONST_INT: /* If this is an 8-bit constant, return zero since it can be used nearly anywhere with no cost. If it is a valid operand for an ADD or AND, likewise return 0 if we know it will be used in that context. Otherwise, return 2 since it might be used there later. All other constants take at least two insns. */ if (satisfies_constraint_I (x)) { *total = 0; return true; } else if (outer_code == PLUS && add_operand (x, VOIDmode)) { /* Slightly penalize large constants even though we can add them in one instruction, because it forces the use of 2-wide bundling mode. */ *total = 1; return true; } else if (move_operand (x, SImode)) { /* We can materialize in one move. */ *total = COSTS_N_INSNS (1); return true; } else { /* We can materialize in two moves. */ *total = COSTS_N_INSNS (2); return true; } return false; case CONST: case LABEL_REF: case SYMBOL_REF: *total = COSTS_N_INSNS (2); return true; case CONST_DOUBLE: *total = COSTS_N_INSNS (4); return true; case HIGH: *total = 0; return true; case MEM: /* If outer-code was a sign or zero extension, a cost of COSTS_N_INSNS (1) was already added in, so account for that. */ if (outer_code == ZERO_EXTEND || outer_code == SIGN_EXTEND) *total = COSTS_N_INSNS (1); else *total = COSTS_N_INSNS (2); return true; case PLUS: /* Convey that shl[123]add are efficient. */ if (GET_CODE (XEXP (x, 0)) == MULT && cint_248_operand (XEXP (XEXP (x, 0), 1), VOIDmode)) { *total = (rtx_cost (XEXP (XEXP (x, 0), 0), (enum rtx_code) outer_code, opno, speed) + rtx_cost (XEXP (x, 1), (enum rtx_code) outer_code, opno, speed) + COSTS_N_INSNS (1)); return true; } return false; case MULT: *total = COSTS_N_INSNS (2); return false; case DIV: case UDIV: case MOD: case UMOD: /* These are handled by software and are very expensive. */ *total = COSTS_N_INSNS (100); return false; case UNSPEC: case UNSPEC_VOLATILE: { int num = XINT (x, 1); if (num <= TILEGX_LAST_LATENCY_1_INSN) *total = COSTS_N_INSNS (1); else if (num <= TILEGX_LAST_LATENCY_2_INSN) *total = COSTS_N_INSNS (2); else if (num > TILEGX_LAST_LATENCY_INSN) { if (num == UNSPEC_NON_TEMPORAL) { /* These are basically loads. */ if (outer_code == ZERO_EXTEND || outer_code == SIGN_EXTEND) *total = COSTS_N_INSNS (1); else *total = COSTS_N_INSNS (2); } else { if (outer_code == PLUS) *total = 0; else *total = COSTS_N_INSNS (1); } } else { switch (num) { case UNSPEC_BLOCKAGE: case UNSPEC_NETWORK_BARRIER: case UNSPEC_ATOMIC: *total = 0; break; case UNSPEC_LNK_AND_LABEL: case UNSPEC_MF: case UNSPEC_MOV_PCREL_STEP3: case UNSPEC_NETWORK_RECEIVE: case UNSPEC_NETWORK_SEND: case UNSPEC_SPR_MOVE: case UNSPEC_TLS_GD_ADD: *total = COSTS_N_INSNS (1); break; case UNSPEC_TLS_IE_LOAD: case UNSPEC_XCHG: *total = COSTS_N_INSNS (2); break; case UNSPEC_SP_SET: *total = COSTS_N_INSNS (3); break; case UNSPEC_SP_TEST: *total = COSTS_N_INSNS (4); break; case UNSPEC_CMPXCHG: case UNSPEC_INSN_CMPEXCH: case UNSPEC_LATENCY_L2: *total = COSTS_N_INSNS (11); break; case UNSPEC_TLS_GD_CALL: *total = COSTS_N_INSNS (30); break; case UNSPEC_LATENCY_MISS: *total = COSTS_N_INSNS (80); break; default: *total = COSTS_N_INSNS (1); } } return true; } default: return false; } } /* Rtl lowering. */ /* Create a temporary variable to hold a partial result, to enable CSE. */ static rtx create_temp_reg_if_possible (enum machine_mode mode, rtx default_reg) { return can_create_pseudo_p ()? gen_reg_rtx (mode) : default_reg; } /* Functions to save and restore machine-specific function data. */ static struct machine_function * tilegx_init_machine_status (void) { return ggc_alloc_cleared_machine_function (); } /* Do anything needed before RTL is emitted for each function. */ void tilegx_init_expanders (void) { /* Arrange to initialize and mark the machine per-function status. */ init_machine_status = tilegx_init_machine_status; if (cfun && cfun->machine && flag_pic) { static int label_num = 0; char text_label_name[32]; struct machine_function *machine = cfun->machine; ASM_GENERATE_INTERNAL_LABEL (text_label_name, "L_PICLNK", label_num++); machine->text_label_symbol = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (text_label_name)); machine->text_label_rtx = gen_rtx_REG (Pmode, TILEGX_PIC_TEXT_LABEL_REGNUM); machine->got_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM); machine->calls_tls_get_addr = false; } } /* Implement TARGET_SHIFT_TRUNCATION_MASK. DImode shifts use the mode matching insns and therefore guarantee that the shift count is modulo 64. SImode shifts sometimes use the 64 bit version so do not hold such guarantee. */ static unsigned HOST_WIDE_INT tilegx_shift_truncation_mask (enum machine_mode mode) { return mode == DImode ? 63 : 0; } /* Implement TARGET_INIT_LIBFUNCS. */ static void tilegx_init_libfuncs (void) { /* We need to explicitly generate these libfunc's to support conversion of divide by constant to multiply (the divide stubs in tilegx.md exist also for this reason). Normally we'd expect gcc to lazily generate them when they are needed, but for some reason it's set up to only generate them if the mode is the word mode. */ set_optab_libfunc (sdiv_optab, SImode, "__divsi3"); set_optab_libfunc (udiv_optab, SImode, "__udivsi3"); set_optab_libfunc (smod_optab, SImode, "__modsi3"); set_optab_libfunc (umod_optab, SImode, "__umodsi3"); } /* Return true if X contains a thread-local symbol. */ static bool tilegx_tls_referenced_p (rtx x) { if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS) x = XEXP (XEXP (x, 0), 0); if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x)) return true; /* That's all we handle in tilegx_legitimize_tls_address for now. */ return false; } /* Return true if X requires a scratch register. It is given that flag_pic is on and that X satisfies CONSTANT_P. */ static int tilegx_pic_address_needs_scratch (rtx x) { if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF || GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF) && (CONST_INT_P (XEXP (XEXP (x, 0), 1)))) return true; return false; } /* Implement TARGET_LEGITIMATE_CONSTANT_P. This is all constants for which we are willing to load the value into a register via a move pattern. TLS cannot be treated as a constant because it can include a function call. */ static bool tilegx_legitimate_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x) { switch (GET_CODE (x)) { case CONST: case SYMBOL_REF: return !tilegx_tls_referenced_p (x); default: return true; } } /* Return true if the constant value X is a legitimate general operand when generating PIC code. It is given that flag_pic is on and that X satisfies CONSTANT_P. */ bool tilegx_legitimate_pic_operand_p (rtx x) { if (tilegx_pic_address_needs_scratch (x)) return false; if (tilegx_tls_referenced_p (x)) return false; return true; } /* Return true if the rtx X can be used as an address operand. */ static bool tilegx_legitimate_address_p (enum machine_mode ARG_UNUSED (mode), rtx x, bool strict) { if (GET_CODE (x) == SUBREG) x = SUBREG_REG (x); switch (GET_CODE (x)) { case POST_INC: case POST_DEC: if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD) return false; x = XEXP (x, 0); break; case POST_MODIFY: if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD) return false; if (GET_CODE (XEXP (x, 1)) != PLUS) return false; if (!rtx_equal_p (XEXP (x, 0), XEXP (XEXP (x, 1), 0))) return false; if (!satisfies_constraint_I (XEXP (XEXP (x, 1), 1))) return false; x = XEXP (x, 0); break; case REG: break; default: return false; } /* Check if x is a valid reg. */ if (!REG_P (x)) return false; if (strict) return REGNO_OK_FOR_BASE_P (REGNO (x)); else return true; } /* Return the rtx containing SYMBOL_REF to the text label. */ static rtx tilegx_text_label_symbol (void) { return cfun->machine->text_label_symbol; } /* Return the register storing the value of the text label. */ static rtx tilegx_text_label_rtx (void) { return cfun->machine->text_label_rtx; } /* Return the register storing the value of the global offset table. */ static rtx tilegx_got_rtx (void) { return cfun->machine->got_rtx; } /* Return the SYMBOL_REF for _GLOBAL_OFFSET_TABLE_. */ static rtx tilegx_got_symbol (void) { if (g_got_symbol == NULL) g_got_symbol = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); return g_got_symbol; } /* Return a reference to the got to be used by tls references. */ static rtx tilegx_tls_got (void) { rtx temp; if (flag_pic) { crtl->uses_pic_offset_table = 1; return tilegx_got_rtx (); } temp = gen_reg_rtx (Pmode); emit_move_insn (temp, tilegx_got_symbol ()); return temp; } /* ADDR contains a thread-local SYMBOL_REF. Generate code to compute this (thread-local) address. */ static rtx tilegx_legitimize_tls_address (rtx addr) { rtx ret; gcc_assert (can_create_pseudo_p ()); if (GET_CODE (addr) == SYMBOL_REF) switch (SYMBOL_REF_TLS_MODEL (addr)) { case TLS_MODEL_GLOBAL_DYNAMIC: case TLS_MODEL_LOCAL_DYNAMIC: { rtx r0, temp, temp2, temp3, got, last; ret = gen_reg_rtx (Pmode); r0 = gen_rtx_REG (Pmode, 0); temp = gen_reg_rtx (Pmode); temp2 = gen_reg_rtx (Pmode); temp3 = gen_reg_rtx (Pmode); got = tilegx_tls_got (); if (TARGET_32BIT) { emit_insn (gen_mov_tls_gd_step1_32bit (temp, addr)); emit_insn (gen_mov_tls_gd_step2_32bit (temp2, temp, addr)); emit_insn (gen_tls_add_32bit (temp2, got, temp2, addr)); } else { emit_insn (gen_mov_tls_gd_step1 (temp, addr)); emit_insn (gen_mov_tls_gd_step2 (temp2, temp, addr)); emit_insn (gen_tls_add (temp2, got, temp2, addr)); } emit_move_insn (r0, temp2); if (TARGET_32BIT) { emit_insn (gen_tls_gd_call_32bit (addr)); } else { emit_insn (gen_tls_gd_call (addr)); } emit_move_insn (temp3, r0); if (TARGET_32BIT) last = emit_insn (gen_tls_gd_add_32bit (ret, temp3, addr)); else last = emit_insn (gen_tls_gd_add (ret, temp3, addr)); set_unique_reg_note (last, REG_EQUAL, copy_rtx (addr)); break; } case TLS_MODEL_INITIAL_EXEC: { rtx temp, temp2, temp3, got, last; ret = gen_reg_rtx (Pmode); temp = gen_reg_rtx (Pmode); temp2 = gen_reg_rtx (Pmode); temp3 = gen_reg_rtx (Pmode); got = tilegx_tls_got (); if (TARGET_32BIT) { emit_insn (gen_mov_tls_ie_step1_32bit (temp, addr)); emit_insn (gen_mov_tls_ie_step2_32bit (temp2, temp, addr)); emit_insn (gen_tls_add_32bit (temp2, got, temp2, addr)); emit_insn (gen_tls_ie_load_32bit (temp3, temp2, addr)); } else { emit_insn (gen_mov_tls_ie_step1 (temp, addr)); emit_insn (gen_mov_tls_ie_step2 (temp2, temp, addr)); emit_insn (gen_tls_add (temp2, got, temp2, addr)); emit_insn (gen_tls_ie_load (temp3, temp2, addr)); } last = emit_move_insn(ret, gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, THREAD_POINTER_REGNUM), temp3)); set_unique_reg_note (last, REG_EQUAL, copy_rtx (addr)); break; } case TLS_MODEL_LOCAL_EXEC: { rtx temp, temp2, last; ret = gen_reg_rtx (Pmode); temp = gen_reg_rtx (Pmode); temp2 = gen_reg_rtx (Pmode); if (TARGET_32BIT) { emit_insn (gen_mov_tls_le_step1_32bit (temp, addr)); emit_insn (gen_mov_tls_le_step2_32bit (temp2, temp, addr)); } else { emit_insn (gen_mov_tls_le_step1 (temp, addr)); emit_insn (gen_mov_tls_le_step2 (temp2, temp, addr)); } last = emit_move_insn (ret, gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, THREAD_POINTER_REGNUM), temp2)); set_unique_reg_note (last, REG_EQUAL, copy_rtx (addr)); break; } default: gcc_unreachable (); } else if (GET_CODE (addr) == CONST) { rtx base, offset; gcc_assert (GET_CODE (XEXP (addr, 0)) == PLUS); base = tilegx_legitimize_tls_address (XEXP (XEXP (addr, 0), 0)); offset = XEXP (XEXP (addr, 0), 1); base = force_operand (base, NULL_RTX); ret = force_reg (Pmode, gen_rtx_PLUS (Pmode, base, offset)); } else gcc_unreachable (); return ret; } /* Returns a register that points to ADDR, a symbolic address, by computing its address relative to tilegx_text_label_symbol. */ static void compute_pcrel_address (rtx result, rtx addr) { rtx text_label_symbol = tilegx_text_label_symbol (); rtx text_label_rtx = tilegx_text_label_rtx (); rtx temp, temp2; temp = create_temp_reg_if_possible (Pmode, result); temp2 = create_temp_reg_if_possible (Pmode, result); if (TARGET_32BIT) { emit_insn (gen_mov_pcrel_step1_32bit (temp, addr, text_label_symbol)); emit_insn (gen_mov_pcrel_step2_32bit (temp2, temp, addr, text_label_symbol)); emit_insn (gen_mov_pcrel_step3_32bit (result, temp2, text_label_rtx, addr, text_label_symbol)); } else { emit_insn (gen_mov_pcrel_step1 (temp, addr, text_label_symbol)); emit_insn (gen_mov_pcrel_step2 (temp2, temp, addr, text_label_symbol)); emit_insn (gen_mov_pcrel_step3 (result, temp2, text_label_rtx, addr, text_label_symbol)); } } /* Legitimize PIC addresses. If the address is already position-independent, we return ORIG. Newly generated position-independent addresses go into a reg. This is REG if nonzero, otherwise we allocate register(s) as necessary. */ static rtx tilegx_legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED, rtx reg) { if (GET_CODE (orig) == SYMBOL_REF) { rtx address, pic_ref; if (reg == 0) { gcc_assert (can_create_pseudo_p ()); reg = gen_reg_rtx (Pmode); } if (SYMBOL_REF_LOCAL_P (orig)) { /* If not during reload, allocate another temp reg here for loading in the address, so that these instructions can be optimized properly. */ rtx temp_reg = create_temp_reg_if_possible (Pmode, reg); compute_pcrel_address (temp_reg, orig); /* Note: this is conservative. We use the text_label but we don't use the pic_offset_table. However, in some cases we may need the pic_offset_table (see tilegx_fixup_pcrel_references). */ crtl->uses_pic_offset_table = 1; address = temp_reg; emit_move_insn (reg, address); return reg; } else { /* If not during reload, allocate another temp reg here for loading in the address, so that these instructions can be optimized properly. */ rtx temp_reg = create_temp_reg_if_possible (Pmode, reg); gcc_assert (flag_pic); if (flag_pic == 1) { if (TARGET_32BIT) { emit_insn (gen_add_got16_32bit (temp_reg, tilegx_got_rtx (), orig)); } else { emit_insn (gen_add_got16 (temp_reg, tilegx_got_rtx (), orig)); } } else { rtx temp_reg2 = create_temp_reg_if_possible (Pmode, reg); rtx temp_reg3 = create_temp_reg_if_possible (Pmode, reg); if (TARGET_32BIT) { emit_insn (gen_mov_got32_step1_32bit (temp_reg3, orig)); emit_insn (gen_mov_got32_step2_32bit (temp_reg2, temp_reg3, orig)); } else { emit_insn (gen_mov_got32_step1 (temp_reg3, orig)); emit_insn (gen_mov_got32_step2 (temp_reg2, temp_reg3, orig)); } emit_move_insn (temp_reg, gen_rtx_PLUS (Pmode, tilegx_got_rtx (), temp_reg2)); } address = temp_reg; pic_ref = gen_const_mem (Pmode, address); crtl->uses_pic_offset_table = 1; emit_move_insn (reg, pic_ref); /* The following put a REG_EQUAL note on this insn, so that it can be optimized by loop. But it causes the label to be optimized away. */ /* set_unique_reg_note (insn, REG_EQUAL, orig); */ return reg; } } else if (GET_CODE (orig) == CONST) { rtx base, offset; if (GET_CODE (XEXP (orig, 0)) == PLUS && XEXP (XEXP (orig, 0), 0) == tilegx_got_rtx ()) return orig; if (reg == 0) { gcc_assert (can_create_pseudo_p ()); reg = gen_reg_rtx (Pmode); } gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS); base = tilegx_legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg); offset = tilegx_legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode, base == reg ? 0 : reg); if (CONST_INT_P (offset)) { if (can_create_pseudo_p ()) offset = force_reg (Pmode, offset); else /* If we reach here, then something is seriously wrong. */ gcc_unreachable (); } if (can_create_pseudo_p ()) return force_reg (Pmode, gen_rtx_PLUS (Pmode, base, offset)); else gcc_unreachable (); } else if (GET_CODE (orig) == LABEL_REF) { rtx address; rtx temp_reg; if (reg == 0) { gcc_assert (can_create_pseudo_p ()); reg = gen_reg_rtx (Pmode); } /* If not during reload, allocate another temp reg here for loading in the address, so that these instructions can be optimized properly. */ temp_reg = create_temp_reg_if_possible (Pmode, reg); compute_pcrel_address (temp_reg, orig); /* Note: this is conservative. We use the text_label but we don't use the pic_offset_table. */ crtl->uses_pic_offset_table = 1; address = temp_reg; emit_move_insn (reg, address); return reg; } return orig; } /* Implement TARGET_LEGITIMIZE_ADDRESS. */ static rtx tilegx_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED, enum machine_mode mode) { if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD && symbolic_operand (x, Pmode) && tilegx_tls_referenced_p (x)) { return tilegx_legitimize_tls_address (x); } else if (flag_pic) { return tilegx_legitimize_pic_address (x, mode, 0); } else return x; } /* Implement TARGET_DELEGITIMIZE_ADDRESS. */ static rtx tilegx_delegitimize_address (rtx x) { x = delegitimize_mem_from_attrs (x); if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == UNSPEC) { switch (XINT (XEXP (x, 0), 1)) { case UNSPEC_HW0: case UNSPEC_HW1: case UNSPEC_HW2: case UNSPEC_HW3: case UNSPEC_HW0_LAST: case UNSPEC_HW1_LAST: case UNSPEC_HW2_LAST: case UNSPEC_HW0_PCREL: case UNSPEC_HW1_LAST_PCREL: case UNSPEC_HW0_GOT: case UNSPEC_HW0_LAST_GOT: case UNSPEC_HW1_LAST_GOT: case UNSPEC_HW0_TLS_GD: case UNSPEC_HW1_LAST_TLS_GD: case UNSPEC_HW0_TLS_IE: case UNSPEC_HW1_LAST_TLS_IE: case UNSPEC_HW0_TLS_LE: case UNSPEC_HW1_LAST_TLS_LE: x = XVECEXP (XEXP (x, 0), 0, 0); break; } } return x; } /* Emit code to load the PIC register. */ static void load_pic_register (bool delay_pic_helper ATTRIBUTE_UNUSED) { int orig_flag_pic = flag_pic; rtx got_symbol = tilegx_got_symbol (); rtx text_label_symbol = tilegx_text_label_symbol (); rtx text_label_rtx = tilegx_text_label_rtx (); flag_pic = 0; if (TARGET_32BIT) { emit_insn (gen_insn_lnk_and_label_32bit (text_label_rtx, text_label_symbol)); } else { emit_insn (gen_insn_lnk_and_label (text_label_rtx, text_label_symbol)); } compute_pcrel_address (tilegx_got_rtx (), got_symbol); flag_pic = orig_flag_pic; /* Need to emit this whether or not we obey regdecls, since setjmp/longjmp can cause life info to screw up. ??? In the case where we don't obey regdecls, this is not sufficient since we may not fall out the bottom. */ emit_use (tilegx_got_rtx ()); } /* Return the simd variant of the constant NUM of mode MODE, by replicating it to fill an interger of mode DImode. NUM is first truncated to fit in MODE. */ rtx tilegx_simd_int (rtx num, enum machine_mode mode) { HOST_WIDE_INT n = 0; gcc_assert (CONST_INT_P (num)); n = INTVAL (num); switch (mode) { case QImode: n = 0x0101010101010101LL * (n & 0x000000FF); break; case HImode: n = 0x0001000100010001LL * (n & 0x0000FFFF); break; case SImode: n = 0x0000000100000001LL * (n & 0xFFFFFFFF); break; case DImode: break; default: gcc_unreachable (); } return GEN_INT (n); } /* Returns true iff VAL can be moved into a register in one instruction. And if it can, it emits the code to move the constant into DEST_REG. If THREE_WIDE_ONLY is true, this insists on an instruction that works in a bundle containing three instructions. */ static bool expand_set_cint64_one_inst (rtx dest_reg, HOST_WIDE_INT val, bool three_wide_only) { if (val == trunc_int_for_mode (val, QImode)) { /* Success! */ emit_move_insn (dest_reg, GEN_INT (val)); return true; } else if (!three_wide_only) { rtx imm_op = GEN_INT (val); if (satisfies_constraint_J (imm_op) || satisfies_constraint_K (imm_op) || satisfies_constraint_N (imm_op) || satisfies_constraint_P (imm_op)) { emit_move_insn (dest_reg, imm_op); return true; } } return false; } /* Implement DImode rotatert. */ static HOST_WIDE_INT rotate_right (HOST_WIDE_INT n, int count) { unsigned HOST_WIDE_INT x = n & 0xFFFFFFFFFFFFFFFFULL; if (count == 0) return x; return ((x >> count) | (x << (64 - count))) & 0xFFFFFFFFFFFFFFFFULL; } /* Return true iff n contains exactly one contiguous sequence of 1 bits, possibly wrapping around from high bits to low bits. */ bool tilegx_bitfield_operand_p (HOST_WIDE_INT n, int *first_bit, int *last_bit) { int i; if (n == 0) return false; for (i = 0; i < 64; i++) { unsigned HOST_WIDE_INT x = rotate_right (n, i); if (!(x & 1)) continue; /* See if x is a power of two minus one, i.e. only consecutive 1 bits starting from bit 0. */ if ((x & (x + 1)) == 0) { if (first_bit != NULL) *first_bit = i; if (last_bit != NULL) *last_bit = (i + exact_log2 (x ^ (x >> 1))) & 63; return true; } } return false; } /* Create code to move the CONST_INT value in src_val to dest_reg. */ static void expand_set_cint64 (rtx dest_reg, rtx src_val) { HOST_WIDE_INT val; int leading_zeroes, trailing_zeroes; int three_wide_only; int shift, ins_shift, zero_cluster_shift; rtx temp, subreg; gcc_assert (CONST_INT_P (src_val)); val = trunc_int_for_mode (INTVAL (src_val), GET_MODE (dest_reg)); /* See if we can generate the constant in one instruction. */ if (expand_set_cint64_one_inst (dest_reg, val, false)) return; /* Force the destination to DImode so we can use DImode instructions to create it. This both allows instructions like rotl, and certain efficient 3-wide instructions. */ subreg = simplify_gen_subreg (DImode, dest_reg, GET_MODE (dest_reg), 0); gcc_assert (subreg != NULL); dest_reg = subreg; temp = create_temp_reg_if_possible (DImode, dest_reg); leading_zeroes = 63 - floor_log2 (val & 0xFFFFFFFFFFFFFFFFULL); trailing_zeroes = exact_log2 (val & -val); /* First try all three-wide instructions that generate a constant (i.e. movei) followed by various shifts and rotates. If none of those work, try various two-wide ways of generating a constant followed by various shifts and rotates. */ for (three_wide_only = 1; three_wide_only >= 0; three_wide_only--) { int count; if (expand_set_cint64_one_inst (temp, val >> trailing_zeroes, three_wide_only)) { /* 0xFFFFFFFFFFFFA500 becomes: movei temp, 0xFFFFFFFFFFFFFFA5 shli dest, temp, 8 */ emit_move_insn (dest_reg, gen_rtx_ASHIFT (DImode, temp, GEN_INT (trailing_zeroes))); return; } if (expand_set_cint64_one_inst (temp, val << leading_zeroes, three_wide_only)) { /* 0x7FFFFFFFFFFFFFFF becomes: movei temp, -2 shrui dest, temp, 1 */ emit_move_insn (dest_reg, gen_rtx_LSHIFTRT (DImode, temp, GEN_INT (leading_zeroes))); return; } /* Try rotating a one-instruction immediate. */ for (count = 1; count < 64; count++) { HOST_WIDE_INT r = rotate_right (val, count); if (expand_set_cint64_one_inst (temp, r, three_wide_only)) { /* 0xFFFFFFFFFFA5FFFF becomes: movei temp, 0xFFFFFFFFFFFFFFA5 rotli dest, temp, 16 */ emit_move_insn (dest_reg, gen_rtx_ROTATE (DImode, temp, GEN_INT (count))); return; } } } /* There are two cases here to produce a large constant. In the most general case, we do this: moveli x, hw3(NUM) shl16insli x, x, hw2(NUM) shl16insli x, x, hw1(NUM) shl16insli x, x, hw0(NUM) However, we can sometimes do better. shl16insli is a poor way to insert 16 zero bits, because simply shifting left by 16 has more bundling freedom. So if we see any contiguous aligned sequence of 16 or more zero bits (below the highest set bit), it is always more efficient to materialize the bits above the zero bits, then left shift to put in the zeroes, then insert whatever bits remain. For example, we might end up with: movei x, NUM >> (37 + 16) shli x, x, 37 shl16insli x, x, hw0(NUM) */ zero_cluster_shift = -1; for (shift = 0; shift < 48 - leading_zeroes; shift += 16) { HOST_WIDE_INT x = val >> shift; /* Find the least significant group of 16 aligned zero bits. */ if ((x & 0xFFFF) == 0x0000) { /* Grab any following zero bits as well. */ zero_cluster_shift = exact_log2 (x & -x); shift += zero_cluster_shift; break; } } if (zero_cluster_shift >= 0) { unsigned HOST_WIDE_INT leftover; /* Recursively create the constant above the lowest 16 zero bits. */ expand_set_cint64 (temp, GEN_INT (val >> shift)); /* See if we can easily insert the remaining bits, or if we need to fall through to the more general case. */ leftover = val - ((val >> shift) << shift); if (leftover == 0) { /* A simple left shift is enough. */ emit_move_insn (dest_reg, gen_rtx_ASHIFT (DImode, temp, GEN_INT (shift))); return; } else if (leftover <= 32767) { /* Left shift into position then add in the leftover. */ rtx temp2 = create_temp_reg_if_possible (DImode, temp); emit_move_insn (temp2, gen_rtx_ASHIFT (DImode, temp, GEN_INT (shift))); emit_move_insn (dest_reg, gen_rtx_PLUS (DImode, temp2, GEN_INT (leftover))); return; } else { /* Shift in the batch of >= 16 zeroes we detected earlier. After this, shift will be aligned mod 16 so the final loop can use shl16insli. */ rtx temp2 = create_temp_reg_if_possible (DImode, temp); rtx shift_count_rtx = GEN_INT (zero_cluster_shift); emit_move_insn (temp2, gen_rtx_ASHIFT (DImode, temp, shift_count_rtx)); shift -= zero_cluster_shift; temp = temp2; } } else { /* Set as many high 16-bit blocks as we can with a single instruction. We'll insert the remaining 16-bit blocks below. */ for (shift = 16;; shift += 16) { gcc_assert (shift < 64); if (expand_set_cint64_one_inst (temp, val >> shift, false)) break; } } /* At this point, temp == val >> shift, shift % 16 == 0, and we still need to insert any bits of 'val' below 'shift'. Those bits are guaranteed to not have 16 contiguous zeroes. */ gcc_assert ((shift & 15) == 0); for (ins_shift = shift - 16; ins_shift >= 0; ins_shift -= 16) { rtx result; HOST_WIDE_INT bits = (val >> ins_shift) & 0xFFFF; gcc_assert (bits != 0); /* On the last iteration we need to store into dest_reg. */ if (ins_shift == 0) result = dest_reg; else result = create_temp_reg_if_possible (DImode, dest_reg); emit_insn (gen_insn_shl16insli (result, temp, GEN_INT (bits))); temp = result; } } /* Load OP1, a 64-bit constant, into OP0, a register. We know it can't be done in one insn when we get here, the move expander guarantees this. */ void tilegx_expand_set_const64 (rtx op0, rtx op1) { if (CONST_INT_P (op1)) { /* TODO: I don't know if we want to split large constants now, or wait until later (with a define_split). Does splitting early help CSE? Does it harm other optimizations that might fold loads? */ expand_set_cint64 (op0, op1); } else { rtx temp = create_temp_reg_if_possible (Pmode, op0); if (TARGET_32BIT) { /* Generate the 2-insn sequence to materialize a symbolic address. */ emit_insn (gen_mov_address_32bit_step1 (temp, op1)); emit_insn (gen_mov_address_32bit_step2 (op0, temp, op1)); } else { /* Generate the 3-insn sequence to materialize a symbolic address. Note that this assumes that virtual addresses fit in 48 signed bits, which is currently true. */ rtx temp2 = create_temp_reg_if_possible (Pmode, op0); emit_insn (gen_mov_address_step1 (temp, op1)); emit_insn (gen_mov_address_step2 (temp2, temp, op1)); emit_insn (gen_mov_address_step3 (op0, temp2, op1)); } } } /* Expand a move instruction. Return true if all work is done. */ bool tilegx_expand_mov (enum machine_mode mode, rtx *operands) { /* Handle sets of MEM first. */ if (MEM_P (operands[0])) { if (can_create_pseudo_p ()) operands[0] = validize_mem (operands[0]); if (reg_or_0_operand (operands[1], mode)) return false; if (!reload_in_progress) operands[1] = force_reg (mode, operands[1]); } /* Fixup TLS cases. */ if (CONSTANT_P (operands[1]) && tilegx_tls_referenced_p (operands[1])) { operands[1] = tilegx_legitimize_tls_address (operands[1]); return false; } /* Fixup PIC cases. */ if (flag_pic && CONSTANT_P (operands[1])) { if (tilegx_pic_address_needs_scratch (operands[1])) operands[1] = tilegx_legitimize_pic_address (operands[1], mode, 0); if (symbolic_operand (operands[1], mode)) { operands[1] = tilegx_legitimize_pic_address (operands[1], mode, (reload_in_progress ? operands[0] : NULL_RTX)); return false; } } /* Accept non-constants and valid constants unmodified. */ if (!CONSTANT_P (operands[1]) || move_operand (operands[1], mode)) return false; /* Split large integers. */ tilegx_expand_set_const64 (operands[0], operands[1]); return true; } /* Expand unaligned loads. */ void tilegx_expand_unaligned_load (rtx dest_reg, rtx mem, HOST_WIDE_INT bitsize, HOST_WIDE_INT bit_offset, bool sign) { enum machine_mode mode; rtx addr_lo, addr_hi; rtx mem_lo, mem_hi, hi; rtx mema, wide_result; int last_byte_offset; HOST_WIDE_INT byte_offset = bit_offset / BITS_PER_UNIT; mode = GET_MODE (dest_reg); hi = gen_reg_rtx (mode); if (bitsize == 2 * BITS_PER_UNIT && (bit_offset % BITS_PER_UNIT) == 0) { /* When just loading a two byte value, we can load the two bytes individually and combine them efficiently. */ mem_lo = adjust_address (mem, QImode, byte_offset); mem_hi = adjust_address (mem, QImode, byte_offset + 1); if (sign) { /* Do a signed load of the second byte and use bfins to set the high bits of the result. */ emit_insn (gen_zero_extendqidi2 (gen_lowpart (DImode, dest_reg), mem_lo)); emit_insn (gen_extendqidi2 (gen_lowpart (DImode, hi), mem_hi)); emit_insn (gen_insv (gen_lowpart (DImode, dest_reg), GEN_INT (64 - 8), GEN_INT (8), gen_lowpart (DImode, hi))); } else { /* Do two unsigned loads and use v1int_l to interleave them. */ rtx lo = gen_reg_rtx (mode); emit_insn (gen_zero_extendqidi2 (gen_lowpart (DImode, lo), mem_lo)); emit_insn (gen_zero_extendqidi2 (gen_lowpart (DImode, hi), mem_hi)); emit_insn (gen_insn_v1int_l (gen_lowpart (DImode, dest_reg), gen_lowpart (DImode, hi), gen_lowpart (DImode, lo))); } return; } mema = XEXP (mem, 0); /* AND addresses cannot be in any alias set, since they may implicitly alias surrounding code. Ideally we'd have some alias set that covered all types except those with alignment 8 or higher. */ addr_lo = force_reg (Pmode, plus_constant (mema, byte_offset)); mem_lo = change_address (mem, mode, gen_rtx_AND (GET_MODE (mema), addr_lo, GEN_INT (-8))); set_mem_alias_set (mem_lo, 0); /* Load the high word at an address that will not fault if the low address is aligned and at the very end of a page. */ last_byte_offset = (bit_offset + bitsize - 1) / BITS_PER_UNIT; addr_hi = force_reg (Pmode, plus_constant (mema, last_byte_offset)); mem_hi = change_address (mem, mode, gen_rtx_AND (GET_MODE (mema), addr_hi, GEN_INT (-8))); set_mem_alias_set (mem_hi, 0); if (bitsize == 64) { addr_lo = make_safe_from (addr_lo, dest_reg); wide_result = dest_reg; } else { wide_result = gen_reg_rtx (mode); } /* Load hi first in case dest_reg is used in mema. */ emit_move_insn (hi, mem_hi); emit_move_insn (wide_result, mem_lo); emit_insn (gen_insn_dblalign (gen_lowpart (DImode, wide_result), gen_lowpart (DImode, wide_result), gen_lowpart (DImode, hi), addr_lo)); if (bitsize != 64) { rtx extracted = extract_bit_field (gen_lowpart (DImode, wide_result), bitsize, bit_offset % BITS_PER_UNIT, !sign, false, gen_lowpart (DImode, dest_reg), DImode, DImode); if (extracted != dest_reg) emit_move_insn (dest_reg, gen_lowpart (DImode, extracted)); } } /* Expand unaligned stores. */ static void tilegx_expand_unaligned_store (rtx mem, rtx src, HOST_WIDE_INT bitsize, HOST_WIDE_INT bit_offset) { HOST_WIDE_INT byte_offset = bit_offset / BITS_PER_UNIT; HOST_WIDE_INT bytesize = bitsize / BITS_PER_UNIT; HOST_WIDE_INT shift_amt; HOST_WIDE_INT i; rtx mem_addr; rtx store_val; for (i = 0, shift_amt = 0; i < bytesize; i++, shift_amt += BITS_PER_UNIT) { mem_addr = adjust_address (mem, QImode, byte_offset + i); if (shift_amt) { store_val = expand_simple_binop (DImode, LSHIFTRT, gen_lowpart (DImode, src), GEN_INT (shift_amt), NULL, 1, OPTAB_LIB_WIDEN); store_val = gen_lowpart (QImode, store_val); } else { store_val = gen_lowpart (QImode, src); } emit_move_insn (mem_addr, store_val); } } /* Implement the movmisalign patterns. One of the operands is a memory that is not naturally aligned. Emit instructions to load it. */ void tilegx_expand_movmisalign (enum machine_mode mode, rtx *operands) { if (MEM_P (operands[1])) { rtx tmp; if (register_operand (operands[0], mode)) tmp = operands[0]; else tmp = gen_reg_rtx (mode); tilegx_expand_unaligned_load (tmp, operands[1], GET_MODE_BITSIZE (mode), 0, true); if (tmp != operands[0]) emit_move_insn (operands[0], tmp); } else if (MEM_P (operands[0])) { if (!reg_or_0_operand (operands[1], mode)) operands[1] = force_reg (mode, operands[1]); tilegx_expand_unaligned_store (operands[0], operands[1], GET_MODE_BITSIZE (mode), 0); } else gcc_unreachable (); } /* Implement the allocate_stack pattern (alloca). */ void tilegx_allocate_stack (rtx op0, rtx op1) { /* Technically the correct way to initialize chain_loc is with * gen_frame_mem() instead of gen_rtx_MEM(), but gen_frame_mem() * sets the alias_set to that of a frame reference. Some of our * tests rely on some unsafe assumption about when the chaining * update is done, we need to be conservative about reordering the * chaining instructions. */ rtx fp_addr = gen_reg_rtx (Pmode); rtx fp_value = gen_reg_rtx (Pmode); rtx fp_loc; emit_move_insn (fp_addr, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (UNITS_PER_WORD))); fp_loc = gen_frame_mem (Pmode, fp_addr); emit_move_insn (fp_value, fp_loc); op1 = force_reg (Pmode, op1); emit_move_insn (stack_pointer_rtx, gen_rtx_MINUS (Pmode, stack_pointer_rtx, op1)); emit_move_insn (fp_addr, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (UNITS_PER_WORD))); fp_loc = gen_frame_mem (Pmode, fp_addr); emit_move_insn (fp_loc, fp_value); emit_move_insn (op0, virtual_stack_dynamic_rtx); } /* Multiplies */ /* Returns the insn_code in ENTRY. */ static enum insn_code tilegx_multiply_get_opcode (const struct tilegx_multiply_insn_seq_entry *entry) { return tilegx_multiply_insn_seq_decode_opcode[entry->compressed_opcode]; } /* Returns the length of the 'op' array. */ static int tilegx_multiply_get_num_ops (const struct tilegx_multiply_insn_seq *seq) { /* The array either uses all of its allocated slots or is terminated by a bogus opcode. Either way, the array size is the index of the last valid opcode plus one. */ int i; for (i = tilegx_multiply_insn_seq_MAX_OPERATIONS - 1; i >= 0; i--) if (tilegx_multiply_get_opcode (&seq->op[i]) != CODE_FOR_nothing) return i + 1; /* An empty array is not allowed. */ gcc_unreachable (); } /* We precompute a number of expression trees for multiplying by constants. This generates code for such an expression tree by walking through the nodes in the tree (which are conveniently pre-linearized) and emitting an instruction for each one. */ static void tilegx_expand_constant_multiply_given_sequence (rtx result, rtx src, const struct tilegx_multiply_insn_seq *seq) { int i; int num_ops; /* Keep track of the subexpressions computed so far, so later instructions can refer to them. We seed the array with zero and the value being multiplied. */ int num_subexprs = 2; rtx subexprs[tilegx_multiply_insn_seq_MAX_OPERATIONS + 2]; subexprs[0] = const0_rtx; subexprs[1] = src; /* Determine how many instructions we are going to generate. */ num_ops = tilegx_multiply_get_num_ops (seq); gcc_assert (num_ops > 0 && num_ops <= tilegx_multiply_insn_seq_MAX_OPERATIONS); for (i = 0; i < num_ops; i++) { const struct tilegx_multiply_insn_seq_entry *entry = &seq->op[i]; /* Figure out where to store the output of this instruction. */ const bool is_last_op = (i + 1 == num_ops); rtx out = is_last_op ? result : gen_reg_rtx (DImode); enum insn_code opcode = tilegx_multiply_get_opcode (entry); if (opcode == CODE_FOR_ashldi3) { /* Handle shift by immediate. This is a special case because the meaning of the second operand is a constant shift count rather than an operand index. */ /* Make sure the shift count is in range. Zero should not happen. */ const int shift_count = entry->rhs; gcc_assert (shift_count > 0 && shift_count < 64); /* Emit the actual instruction. */ emit_insn (GEN_FCN (opcode) (out, subexprs[entry->lhs], gen_rtx_CONST_INT (DImode, shift_count))); } else { /* Handle a normal two-operand instruction, such as add or shl1add. */ /* Make sure we are referring to a previously computed subexpression. */ gcc_assert (entry->rhs < num_subexprs); /* Emit the actual instruction. */ emit_insn (GEN_FCN (opcode) (out, subexprs[entry->lhs], subexprs[entry->rhs])); } /* Record this subexpression for use by later expressions. */ subexprs[num_subexprs++] = out; } } /* bsearch helper function. */ static int tilegx_compare_multipliers (const void *key, const void *t) { long long delta = (*(const long long *) key - ((const struct tilegx_multiply_insn_seq *) t)->multiplier); return (delta < 0) ? -1 : (delta > 0); } /* Returns the tilegx_multiply_insn_seq for multiplier, or NULL if none exists. */ static const struct tilegx_multiply_insn_seq * tilegx_find_multiply_insn_seq_for_constant (long long multiplier) { return ((const struct tilegx_multiply_insn_seq *) bsearch (&multiplier, tilegx_multiply_insn_seq_table, tilegx_multiply_insn_seq_table_size, sizeof tilegx_multiply_insn_seq_table[0], tilegx_compare_multipliers)); } /* Try to a expand constant multiply in DImode by looking it up in a precompiled table. OP0 is the result operand, OP1 is the source operand, and MULTIPLIER is the value of the constant. Return true if it succeeds. */ static bool tilegx_expand_const_muldi (rtx op0, rtx op1, long long multiplier) { /* See if we have precomputed an efficient way to multiply by this constant. */ const struct tilegx_multiply_insn_seq *seq = tilegx_find_multiply_insn_seq_for_constant (multiplier); if (seq != NULL) { tilegx_expand_constant_multiply_given_sequence (op0, op1, seq); return true; } else return false; } /* Expand the muldi pattern. */ bool tilegx_expand_muldi (rtx op0, rtx op1, rtx op2) { if (CONST_INT_P (op2)) { HOST_WIDE_INT n = trunc_int_for_mode (INTVAL (op2), DImode); return tilegx_expand_const_muldi (op0, op1, n); } return false; } /* Expand a high multiply pattern in DImode. RESULT, OP1, OP2 are the operands, and SIGN is true if it's a signed multiply, and false if it's an unsigned multiply. */ static void tilegx_expand_high_multiply (rtx result, rtx op1, rtx op2, bool sign) { rtx tmp0 = gen_reg_rtx (DImode); rtx tmp1 = gen_reg_rtx (DImode); rtx tmp2 = gen_reg_rtx (DImode); rtx tmp3 = gen_reg_rtx (DImode); rtx tmp4 = gen_reg_rtx (DImode); rtx tmp5 = gen_reg_rtx (DImode); rtx tmp6 = gen_reg_rtx (DImode); rtx tmp7 = gen_reg_rtx (DImode); rtx tmp8 = gen_reg_rtx (DImode); rtx tmp9 = gen_reg_rtx (DImode); rtx tmp10 = gen_reg_rtx (DImode); rtx tmp11 = gen_reg_rtx (DImode); rtx tmp12 = gen_reg_rtx (DImode); rtx tmp13 = gen_reg_rtx (DImode); rtx result_lo = gen_reg_rtx (DImode); if (sign) { emit_insn (gen_insn_mul_hs_lu (tmp0, op1, op2)); emit_insn (gen_insn_mul_hs_lu (tmp1, op2, op1)); emit_insn (gen_insn_mul_lu_lu (tmp2, op1, op2)); emit_insn (gen_insn_mul_hs_hs (tmp3, op1, op2)); } else { emit_insn (gen_insn_mul_hu_lu (tmp0, op1, op2)); emit_insn (gen_insn_mul_hu_lu (tmp1, op2, op1)); emit_insn (gen_insn_mul_lu_lu (tmp2, op1, op2)); emit_insn (gen_insn_mul_hu_hu (tmp3, op1, op2)); } emit_move_insn (tmp4, (gen_rtx_ASHIFT (DImode, tmp0, GEN_INT (32)))); emit_move_insn (tmp5, (gen_rtx_ASHIFT (DImode, tmp1, GEN_INT (32)))); emit_move_insn (tmp6, (gen_rtx_PLUS (DImode, tmp4, tmp5))); emit_move_insn (result_lo, (gen_rtx_PLUS (DImode, tmp2, tmp6))); emit_move_insn (tmp7, gen_rtx_LTU (DImode, tmp6, tmp4)); emit_move_insn (tmp8, gen_rtx_LTU (DImode, result_lo, tmp2)); if (sign) { emit_move_insn (tmp9, (gen_rtx_ASHIFTRT (DImode, tmp0, GEN_INT (32)))); emit_move_insn (tmp10, (gen_rtx_ASHIFTRT (DImode, tmp1, GEN_INT (32)))); } else { emit_move_insn (tmp9, (gen_rtx_LSHIFTRT (DImode, tmp0, GEN_INT (32)))); emit_move_insn (tmp10, (gen_rtx_LSHIFTRT (DImode, tmp1, GEN_INT (32)))); } emit_move_insn (tmp11, (gen_rtx_PLUS (DImode, tmp3, tmp7))); emit_move_insn (tmp12, (gen_rtx_PLUS (DImode, tmp8, tmp9))); emit_move_insn (tmp13, (gen_rtx_PLUS (DImode, tmp11, tmp12))); emit_move_insn (result, (gen_rtx_PLUS (DImode, tmp13, tmp10))); } /* Implement smuldi3_highpart. */ void tilegx_expand_smuldi3_highpart (rtx op0, rtx op1, rtx op2) { tilegx_expand_high_multiply (op0, op1, op2, true); } /* Implement umuldi3_highpart. */ void tilegx_expand_umuldi3_highpart (rtx op0, rtx op1, rtx op2) { tilegx_expand_high_multiply (op0, op1, op2, false); } /* Compare and branches */ /* Produce the rtx yielding a bool for a floating point comparison. */ static bool tilegx_emit_fp_setcc (rtx res, enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1) { /* TODO: Certain compares again constants can be done using entirely integer operations. But you have to get the special cases right e.g. NaN, +0 == -0, etc. */ rtx flags; int flag_index; rtx a = force_reg (DImode, gen_lowpart (DImode, op0)); rtx b = force_reg (DImode, gen_lowpart (DImode, op1)); flags = gen_reg_rtx (DImode); if (mode == SFmode) { emit_insn (gen_insn_fsingle_add1 (flags, a, b)); } else { gcc_assert (mode == DFmode); emit_insn (gen_insn_fdouble_add_flags (flags, a, b)); } switch (code) { case EQ: flag_index = 30; break; case NE: flag_index = 31; break; case LE: flag_index = 27; break; case LT: flag_index = 26; break; case GE: flag_index = 29; break; case GT: flag_index = 28; break; default: gcc_unreachable (); } gcc_assert (GET_MODE (res) == DImode); emit_move_insn (res, gen_rtx_ZERO_EXTRACT (DImode, flags, GEN_INT (1), GEN_INT (flag_index))); return true; } /* Certain simplifications can be done to make invalid setcc operations valid. Return the final comparison, or NULL if we can't work. */ static bool tilegx_emit_setcc_internal (rtx res, enum rtx_code code, rtx op0, rtx op1, enum machine_mode cmp_mode) { rtx tmp; bool swap = false; if (cmp_mode == SFmode || cmp_mode == DFmode) return tilegx_emit_fp_setcc (res, code, cmp_mode, op0, op1); /* The general case: fold the comparison code to the types of compares that we have, choosing the branch as necessary. */ switch (code) { case EQ: case NE: case LE: case LT: case LEU: case LTU: /* We have these compares. */ break; case GE: case GT: case GEU: case GTU: /* We do not have these compares, so we reverse the operands. */ swap = true; break; default: /* We should not have called this with any other code. */ gcc_unreachable (); } if (swap) { code = swap_condition (code); tmp = op0, op0 = op1, op1 = tmp; } if (!reg_or_0_operand (op0, cmp_mode)) op0 = force_reg (cmp_mode, op0); if (!CONST_INT_P (op1) && !register_operand (op1, cmp_mode)) op1 = force_reg (cmp_mode, op1); /* Return the setcc comparison. */ emit_insn (gen_rtx_SET (VOIDmode, res, gen_rtx_fmt_ee (code, DImode, op0, op1))); return true; } /* Implement cstore patterns. */ bool tilegx_emit_setcc (rtx operands[], enum machine_mode cmp_mode) { return tilegx_emit_setcc_internal (operands[0], GET_CODE (operands[1]), operands[2], operands[3], cmp_mode); } /* Return whether CODE is a signed comparison. */ static bool signed_compare_p (enum rtx_code code) { return (code == EQ || code == NE || code == LT || code == LE || code == GT || code == GE); } /* Generate the comparison for a DImode conditional branch. */ static rtx tilegx_emit_cc_test (enum rtx_code code, rtx op0, rtx op1, enum machine_mode cmp_mode, bool eq_ne_only) { enum rtx_code branch_code; rtx temp; if (cmp_mode == SFmode || cmp_mode == DFmode) { /* Compute a boolean saying whether the comparison is true. */ temp = gen_reg_rtx (DImode); tilegx_emit_setcc_internal (temp, code, op0, op1, cmp_mode); /* Test that flag. */ return gen_rtx_fmt_ee (NE, VOIDmode, temp, const0_rtx); } /* Check for a compare against zero using a comparison we can do directly. */ if (op1 == const0_rtx && (code == EQ || code == NE || (!eq_ne_only && signed_compare_p (code)))) { op0 = force_reg (cmp_mode, op0); return gen_rtx_fmt_ee (code, VOIDmode, op0, const0_rtx); } /* The general case: fold the comparison code to the types of compares that we have, choosing the branch as necessary. */ switch (code) { case EQ: case LE: case LT: case LEU: case LTU: /* We have these compares. */ branch_code = NE; break; case NE: case GE: case GT: case GEU: case GTU: /* These must be reversed (except NE, but let's canonicalize). */ code = reverse_condition (code); branch_code = EQ; break; default: gcc_unreachable (); } if (CONST_INT_P (op1) && (!satisfies_constraint_I (op1) || code == LEU)) { HOST_WIDE_INT n = INTVAL (op1); switch (code) { case EQ: /* Subtract off the value we want to compare against and see if we get zero. This is cheaper than creating a constant in a register. Except that subtracting -128 is more expensive than seqi to -128, so we leave that alone. */ /* ??? Don't do this when comparing against symbols, otherwise we'll reduce (&x == 0x1234) to (&x-0x1234 == 0), which will be declared false out of hand (at least for non-weak). */ if (n != -128 && add_operand (GEN_INT (-n), DImode) && !(symbolic_operand (op0, VOIDmode) || (REG_P (op0) && REG_POINTER (op0)))) { /* TODO: Use a SIMD add immediate to hit zero for tiled constants in a single instruction. */ if (GET_MODE (op0) != DImode) { /* Convert to DImode so we can use addli. Note that this will not actually generate any code because sign extension from SI -> DI is a no-op. I don't know if it's safe just to make a paradoxical subreg here though. */ rtx temp2 = gen_reg_rtx (DImode); emit_insn (gen_extendsidi2 (temp2, op0)); op0 = temp2; } else { op0 = force_reg (DImode, op0); } temp = gen_reg_rtx (DImode); emit_move_insn (temp, gen_rtx_PLUS (DImode, op0, GEN_INT (-n))); return gen_rtx_fmt_ee (reverse_condition (branch_code), VOIDmode, temp, const0_rtx); } break; case LEU: if (n == -1) break; /* FALLTHRU */ case LTU: /* Change ((unsigned)x < 0x1000) into !((int)x >> 12), etc. We use arithmetic shift right because it's a 3-wide op, while logical shift right is not. */ { int first = exact_log2 (code == LTU ? n : n + 1); if (first != -1) { op0 = force_reg (cmp_mode, op0); temp = gen_reg_rtx (cmp_mode); emit_move_insn (temp, gen_rtx_ASHIFTRT (cmp_mode, op0, GEN_INT (first))); return gen_rtx_fmt_ee (reverse_condition (branch_code), VOIDmode, temp, const0_rtx); } } break; default: break; } } /* Compute a flag saying whether we should branch. */ temp = gen_reg_rtx (DImode); tilegx_emit_setcc_internal (temp, code, op0, op1, cmp_mode); /* Return the branch comparison. */ return gen_rtx_fmt_ee (branch_code, VOIDmode, temp, const0_rtx); } /* Generate the comparison for a conditional branch. */ void tilegx_emit_conditional_branch (rtx operands[], enum machine_mode cmp_mode) { rtx cmp_rtx = tilegx_emit_cc_test (GET_CODE (operands[0]), operands[1], operands[2], cmp_mode, false); rtx branch_rtx = gen_rtx_SET (VOIDmode, pc_rtx, gen_rtx_IF_THEN_ELSE (VOIDmode, cmp_rtx, gen_rtx_LABEL_REF (VOIDmode, operands[3]), pc_rtx)); emit_jump_insn (branch_rtx); } /* Implement the mov<mode>cc pattern. */ rtx tilegx_emit_conditional_move (rtx cmp) { return tilegx_emit_cc_test (GET_CODE (cmp), XEXP (cmp, 0), XEXP (cmp, 1), GET_MODE (XEXP (cmp, 0)), true); } /* Return true if INSN is annotated with a REG_BR_PROB note that indicates it's a branch that's predicted taken. */ static bool cbranch_predicted_p (rtx insn) { rtx x = find_reg_note (insn, REG_BR_PROB, 0); if (x) { int pred_val = INTVAL (XEXP (x, 0)); return pred_val >= REG_BR_PROB_BASE / 2; } return false; } /* Output assembly code for a specific branch instruction, appending the branch prediction flag to the opcode if appropriate. */ static const char * tilegx_output_simple_cbranch_with_opcode (rtx insn, const char *opcode, int regop, bool reverse_predicted) { static char buf[64]; sprintf (buf, "%s%s\t%%r%d, %%l0", opcode, (cbranch_predicted_p (insn) ^ reverse_predicted) ? "t" : "", regop); return buf; } /* Output assembly code for a specific branch instruction, appending the branch prediction flag to the opcode if appropriate. */ const char * tilegx_output_cbranch_with_opcode (rtx insn, rtx *operands, const char *opcode, const char *rev_opcode, int regop) { const char *branch_if_false; rtx taken, not_taken; bool is_simple_branch; gcc_assert (LABEL_P (operands[0])); is_simple_branch = true; if (INSN_ADDRESSES_SET_P ()) { int from_addr = INSN_ADDRESSES (INSN_UID (insn)); int to_addr = INSN_ADDRESSES (INSN_UID (operands[0])); int delta = to_addr - from_addr; is_simple_branch = IN_RANGE (delta, -524288, 524280); } if (is_simple_branch) { /* Just a simple conditional branch. */ return tilegx_output_simple_cbranch_with_opcode (insn, opcode, regop, false); } /* Generate a reversed branch around a direct jump. This fallback does not use branch-likely instructions. */ not_taken = gen_label_rtx (); taken = operands[0]; /* Generate the reversed branch to NOT_TAKEN. */ operands[0] = not_taken; branch_if_false = tilegx_output_simple_cbranch_with_opcode (insn, rev_opcode, regop, true); output_asm_insn (branch_if_false, operands); output_asm_insn ("j\t%l0", &taken); /* Output NOT_TAKEN. */ targetm.asm_out.internal_label (asm_out_file, "L", CODE_LABEL_NUMBER (not_taken)); return ""; } /* Output assembly code for a conditional branch instruction. */ const char * tilegx_output_cbranch (rtx insn, rtx *operands, bool reversed) { enum rtx_code code = GET_CODE (operands[1]); const char *opcode; const char *rev_opcode; if (reversed) code = reverse_condition (code); switch (code) { case NE: opcode = "bnez"; rev_opcode = "beqz"; break; case EQ: opcode = "beqz"; rev_opcode = "bnez"; break; case GE: opcode = "bgez"; rev_opcode = "bltz"; break; case GT: opcode = "bgtz"; rev_opcode = "blez"; break; case LE: opcode = "blez"; rev_opcode = "bgtz"; break; case LT: opcode = "bltz"; rev_opcode = "bgez"; break; default: gcc_unreachable (); } return tilegx_output_cbranch_with_opcode (insn, operands, opcode, rev_opcode, 2); } /* Implement the tablejump pattern. */ void tilegx_expand_tablejump (rtx op0, rtx op1) { if (flag_pic) { rtx temp = gen_reg_rtx (Pmode); rtx temp2 = gen_reg_rtx (Pmode); compute_pcrel_address (temp, gen_rtx_LABEL_REF (Pmode, op1)); emit_move_insn (temp2, gen_rtx_PLUS (Pmode, convert_to_mode (Pmode, op0, false), temp)); op0 = temp2; } emit_jump_insn (gen_tablejump_aux (op0, op1)); } /* Emit barrier before an atomic, as needed for the memory MODEL. */ void tilegx_pre_atomic_barrier (enum memmodel model) { switch (model) { case MEMMODEL_RELAXED: case MEMMODEL_CONSUME: case MEMMODEL_ACQUIRE: break; case MEMMODEL_RELEASE: case MEMMODEL_ACQ_REL: case MEMMODEL_SEQ_CST: emit_insn (gen_memory_barrier ()); break; default: gcc_unreachable (); } } /* Emit barrier after an atomic, as needed for the memory MODEL. */ void tilegx_post_atomic_barrier (enum memmodel model) { switch (model) { case MEMMODEL_RELAXED: case MEMMODEL_CONSUME: case MEMMODEL_RELEASE: break; case MEMMODEL_ACQUIRE: case MEMMODEL_ACQ_REL: case MEMMODEL_SEQ_CST: emit_insn (gen_memory_barrier ()); break; default: gcc_unreachable (); } } /* Expand a builtin vector binary op, by calling gen function GEN with operands in the proper modes. DEST is converted to DEST_MODE, and src0 and src1 (if DO_SRC1 is true) is converted to SRC_MODE. */ void tilegx_expand_builtin_vector_binop (rtx (*gen) (rtx, rtx, rtx), enum machine_mode dest_mode, rtx dest, enum machine_mode src_mode, rtx src0, rtx src1, bool do_src1) { dest = gen_lowpart (dest_mode, dest); if (src0 == const0_rtx) src0 = CONST0_RTX (src_mode); else src0 = gen_lowpart (src_mode, src0); if (do_src1) { if (src1 == const0_rtx) src1 = CONST0_RTX (src_mode); else src1 = gen_lowpart (src_mode, src1); } emit_insn ((*gen) (dest, src0, src1)); } /* Intrinsics */ struct tile_builtin_info { enum insn_code icode; tree fndecl; }; static struct tile_builtin_info tilegx_builtin_info[TILEGX_BUILTIN_max] = { { CODE_FOR_adddi3, NULL }, /* add */ { CODE_FOR_addsi3, NULL }, /* addx */ { CODE_FOR_ssaddsi3, NULL }, /* addxsc */ { CODE_FOR_anddi3, NULL }, /* and */ { CODE_FOR_insn_bfexts, NULL }, /* bfexts */ { CODE_FOR_insn_bfextu, NULL }, /* bfextu */ { CODE_FOR_insn_bfins, NULL }, /* bfins */ { CODE_FOR_clzdi2, NULL }, /* clz */ { CODE_FOR_insn_cmoveqz, NULL }, /* cmoveqz */ { CODE_FOR_insn_cmovnez, NULL }, /* cmovnez */ { CODE_FOR_insn_cmpeq_didi, NULL }, /* cmpeq */ { CODE_FOR_insn_cmpexch, NULL }, /* cmpexch */ { CODE_FOR_insn_cmpexch4, NULL }, /* cmpexch4 */ { CODE_FOR_insn_cmples_didi, NULL }, /* cmples */ { CODE_FOR_insn_cmpleu_didi, NULL }, /* cmpleu */ { CODE_FOR_insn_cmplts_didi, NULL }, /* cmplts */ { CODE_FOR_insn_cmpltu_didi, NULL }, /* cmpltu */ { CODE_FOR_insn_cmpne_didi, NULL }, /* cmpne */ { CODE_FOR_insn_cmul, NULL }, /* cmul */ { CODE_FOR_insn_cmula, NULL }, /* cmula */ { CODE_FOR_insn_cmulaf, NULL }, /* cmulaf */ { CODE_FOR_insn_cmulf, NULL }, /* cmulf */ { CODE_FOR_insn_cmulfr, NULL }, /* cmulfr */ { CODE_FOR_insn_cmulh, NULL }, /* cmulh */ { CODE_FOR_insn_cmulhr, NULL }, /* cmulhr */ { CODE_FOR_insn_crc32_32, NULL }, /* crc32_32 */ { CODE_FOR_insn_crc32_8, NULL }, /* crc32_8 */ { CODE_FOR_ctzdi2, NULL }, /* ctz */ { CODE_FOR_insn_dblalign, NULL }, /* dblalign */ { CODE_FOR_insn_dblalign2, NULL }, /* dblalign2 */ { CODE_FOR_insn_dblalign4, NULL }, /* dblalign4 */ { CODE_FOR_insn_dblalign6, NULL }, /* dblalign6 */ { CODE_FOR_insn_drain, NULL }, /* drain */ { CODE_FOR_insn_dtlbpr, NULL }, /* dtlbpr */ { CODE_FOR_insn_exch, NULL }, /* exch */ { CODE_FOR_insn_exch4, NULL }, /* exch4 */ { CODE_FOR_insn_fdouble_add_flags, NULL }, /* fdouble_add_flags */ { CODE_FOR_insn_fdouble_addsub, NULL }, /* fdouble_addsub */ { CODE_FOR_insn_fdouble_mul_flags, NULL }, /* fdouble_mul_flags */ { CODE_FOR_insn_fdouble_pack1, NULL }, /* fdouble_pack1 */ { CODE_FOR_insn_fdouble_pack2, NULL }, /* fdouble_pack2 */ { CODE_FOR_insn_fdouble_sub_flags, NULL }, /* fdouble_sub_flags */ { CODE_FOR_insn_fdouble_unpack_max, NULL }, /* fdouble_unpack_max */ { CODE_FOR_insn_fdouble_unpack_min, NULL }, /* fdouble_unpack_min */ { CODE_FOR_insn_fetchadd, NULL }, /* fetchadd */ { CODE_FOR_insn_fetchadd4, NULL }, /* fetchadd4 */ { CODE_FOR_insn_fetchaddgez, NULL }, /* fetchaddgez */ { CODE_FOR_insn_fetchaddgez4, NULL }, /* fetchaddgez4 */ { CODE_FOR_insn_fetchand, NULL }, /* fetchand */ { CODE_FOR_insn_fetchand4, NULL }, /* fetchand4 */ { CODE_FOR_insn_fetchor, NULL }, /* fetchor */ { CODE_FOR_insn_fetchor4, NULL }, /* fetchor4 */ { CODE_FOR_insn_finv, NULL }, /* finv */ { CODE_FOR_insn_flush, NULL }, /* flush */ { CODE_FOR_insn_flushwb, NULL }, /* flushwb */ { CODE_FOR_insn_fnop, NULL }, /* fnop */ { CODE_FOR_insn_fsingle_add1, NULL }, /* fsingle_add1 */ { CODE_FOR_insn_fsingle_addsub2, NULL }, /* fsingle_addsub2 */ { CODE_FOR_insn_fsingle_mul1, NULL }, /* fsingle_mul1 */ { CODE_FOR_insn_fsingle_mul2, NULL }, /* fsingle_mul2 */ { CODE_FOR_insn_fsingle_pack1, NULL }, /* fsingle_pack1 */ { CODE_FOR_insn_fsingle_pack2, NULL }, /* fsingle_pack2 */ { CODE_FOR_insn_fsingle_sub1, NULL }, /* fsingle_sub1 */ { CODE_FOR_insn_icoh, NULL }, /* icoh */ { CODE_FOR_insn_ill, NULL }, /* ill */ { CODE_FOR_insn_info, NULL }, /* info */ { CODE_FOR_insn_infol, NULL }, /* infol */ { CODE_FOR_insn_inv, NULL }, /* inv */ { CODE_FOR_insn_ld, NULL }, /* ld */ { CODE_FOR_insn_ld1s, NULL }, /* ld1s */ { CODE_FOR_insn_ld1u, NULL }, /* ld1u */ { CODE_FOR_insn_ld2s, NULL }, /* ld2s */ { CODE_FOR_insn_ld2u, NULL }, /* ld2u */ { CODE_FOR_insn_ld4s, NULL }, /* ld4s */ { CODE_FOR_insn_ld4u, NULL }, /* ld4u */ { CODE_FOR_insn_ldna, NULL }, /* ldna */ { CODE_FOR_insn_ldnt, NULL }, /* ldnt */ { CODE_FOR_insn_ldnt1s, NULL }, /* ldnt1s */ { CODE_FOR_insn_ldnt1u, NULL }, /* ldnt1u */ { CODE_FOR_insn_ldnt2s, NULL }, /* ldnt2s */ { CODE_FOR_insn_ldnt2u, NULL }, /* ldnt2u */ { CODE_FOR_insn_ldnt4s, NULL }, /* ldnt4s */ { CODE_FOR_insn_ldnt4u, NULL }, /* ldnt4u */ { CODE_FOR_insn_ld_L2, NULL }, /* ld_L2 */ { CODE_FOR_insn_ld1s_L2, NULL }, /* ld1s_L2 */ { CODE_FOR_insn_ld1u_L2, NULL }, /* ld1u_L2 */ { CODE_FOR_insn_ld2s_L2, NULL }, /* ld2s_L2 */ { CODE_FOR_insn_ld2u_L2, NULL }, /* ld2u_L2 */ { CODE_FOR_insn_ld4s_L2, NULL }, /* ld4s_L2 */ { CODE_FOR_insn_ld4u_L2, NULL }, /* ld4u_L2 */ { CODE_FOR_insn_ldna_L2, NULL }, /* ldna_L2 */ { CODE_FOR_insn_ldnt_L2, NULL }, /* ldnt_L2 */ { CODE_FOR_insn_ldnt1s_L2, NULL }, /* ldnt1s_L2 */ { CODE_FOR_insn_ldnt1u_L2, NULL }, /* ldnt1u_L2 */ { CODE_FOR_insn_ldnt2s_L2, NULL }, /* ldnt2s_L2 */ { CODE_FOR_insn_ldnt2u_L2, NULL }, /* ldnt2u_L2 */ { CODE_FOR_insn_ldnt4s_L2, NULL }, /* ldnt4s_L2 */ { CODE_FOR_insn_ldnt4u_L2, NULL }, /* ldnt4u_L2 */ { CODE_FOR_insn_ld_miss, NULL }, /* ld_miss */ { CODE_FOR_insn_ld1s_miss, NULL }, /* ld1s_miss */ { CODE_FOR_insn_ld1u_miss, NULL }, /* ld1u_miss */ { CODE_FOR_insn_ld2s_miss, NULL }, /* ld2s_miss */ { CODE_FOR_insn_ld2u_miss, NULL }, /* ld2u_miss */ { CODE_FOR_insn_ld4s_miss, NULL }, /* ld4s_miss */ { CODE_FOR_insn_ld4u_miss, NULL }, /* ld4u_miss */ { CODE_FOR_insn_ldna_miss, NULL }, /* ldna_miss */ { CODE_FOR_insn_ldnt_miss, NULL }, /* ldnt_miss */ { CODE_FOR_insn_ldnt1s_miss, NULL }, /* ldnt1s_miss */ { CODE_FOR_insn_ldnt1u_miss, NULL }, /* ldnt1u_miss */ { CODE_FOR_insn_ldnt2s_miss, NULL }, /* ldnt2s_miss */ { CODE_FOR_insn_ldnt2u_miss, NULL }, /* ldnt2u_miss */ { CODE_FOR_insn_ldnt4s_miss, NULL }, /* ldnt4s_miss */ { CODE_FOR_insn_ldnt4u_miss, NULL }, /* ldnt4u_miss */ { CODE_FOR_insn_lnk, NULL }, /* lnk */ { CODE_FOR_memory_barrier, NULL }, /* mf */ { CODE_FOR_insn_mfspr, NULL }, /* mfspr */ { CODE_FOR_insn_mm, NULL }, /* mm */ { CODE_FOR_insn_mnz, NULL }, /* mnz */ { CODE_FOR_movdi, NULL }, /* move */ { CODE_FOR_insn_mtspr, NULL }, /* mtspr */ { CODE_FOR_insn_mul_hs_hs, NULL }, /* mul_hs_hs */ { CODE_FOR_insn_mul_hs_hu, NULL }, /* mul_hs_hu */ { CODE_FOR_insn_mul_hs_ls, NULL }, /* mul_hs_ls */ { CODE_FOR_insn_mul_hs_lu, NULL }, /* mul_hs_lu */ { CODE_FOR_insn_mul_hu_hu, NULL }, /* mul_hu_hu */ { CODE_FOR_insn_mul_hu_ls, NULL }, /* mul_hu_ls */ { CODE_FOR_insn_mul_hu_lu, NULL }, /* mul_hu_lu */ { CODE_FOR_insn_mul_ls_ls, NULL }, /* mul_ls_ls */ { CODE_FOR_insn_mul_ls_lu, NULL }, /* mul_ls_lu */ { CODE_FOR_insn_mul_lu_lu, NULL }, /* mul_lu_lu */ { CODE_FOR_insn_mula_hs_hs, NULL }, /* mula_hs_hs */ { CODE_FOR_insn_mula_hs_hu, NULL }, /* mula_hs_hu */ { CODE_FOR_insn_mula_hs_ls, NULL }, /* mula_hs_ls */ { CODE_FOR_insn_mula_hs_lu, NULL }, /* mula_hs_lu */ { CODE_FOR_insn_mula_hu_hu, NULL }, /* mula_hu_hu */ { CODE_FOR_insn_mula_hu_ls, NULL }, /* mula_hu_ls */ { CODE_FOR_insn_mula_hu_lu, NULL }, /* mula_hu_lu */ { CODE_FOR_insn_mula_ls_ls, NULL }, /* mula_ls_ls */ { CODE_FOR_insn_mula_ls_lu, NULL }, /* mula_ls_lu */ { CODE_FOR_insn_mula_lu_lu, NULL }, /* mula_lu_lu */ { CODE_FOR_insn_mulax, NULL }, /* mulax */ { CODE_FOR_mulsi3, NULL }, /* mulx */ { CODE_FOR_insn_mz, NULL }, /* mz */ { CODE_FOR_insn_nap, NULL }, /* nap */ { CODE_FOR_nop, NULL }, /* nop */ { CODE_FOR_insn_nor_di, NULL }, /* nor */ { CODE_FOR_iordi3, NULL }, /* or */ { CODE_FOR_popcountdi2, NULL }, /* pcnt */ { CODE_FOR_insn_prefetch_l1, NULL }, /* prefetch_l1 */ { CODE_FOR_insn_prefetch_l1_fault, NULL }, /* prefetch_l1_fault */ { CODE_FOR_insn_prefetch_l2, NULL }, /* prefetch_l2 */ { CODE_FOR_insn_prefetch_l2_fault, NULL }, /* prefetch_l2_fault */ { CODE_FOR_insn_prefetch_l3, NULL }, /* prefetch_l3 */ { CODE_FOR_insn_prefetch_l3_fault, NULL }, /* prefetch_l3_fault */ { CODE_FOR_insn_revbits, NULL }, /* revbits */ { CODE_FOR_bswapdi2, NULL }, /* revbytes */ { CODE_FOR_rotldi3, NULL }, /* rotl */ { CODE_FOR_ashldi3, NULL }, /* shl */ { CODE_FOR_insn_shl16insli, NULL }, /* shl16insli */ { CODE_FOR_insn_shl1add, NULL }, /* shl1add */ { CODE_FOR_insn_shl1addx, NULL }, /* shl1addx */ { CODE_FOR_insn_shl2add, NULL }, /* shl2add */ { CODE_FOR_insn_shl2addx, NULL }, /* shl2addx */ { CODE_FOR_insn_shl3add, NULL }, /* shl3add */ { CODE_FOR_insn_shl3addx, NULL }, /* shl3addx */ { CODE_FOR_ashlsi3, NULL }, /* shlx */ { CODE_FOR_ashrdi3, NULL }, /* shrs */ { CODE_FOR_lshrdi3, NULL }, /* shru */ { CODE_FOR_lshrsi3, NULL }, /* shrux */ { CODE_FOR_insn_shufflebytes, NULL }, /* shufflebytes */ { CODE_FOR_insn_st, NULL }, /* st */ { CODE_FOR_insn_st1, NULL }, /* st1 */ { CODE_FOR_insn_st2, NULL }, /* st2 */ { CODE_FOR_insn_st4, NULL }, /* st4 */ { CODE_FOR_insn_stnt, NULL }, /* stnt */ { CODE_FOR_insn_stnt1, NULL }, /* stnt1 */ { CODE_FOR_insn_stnt2, NULL }, /* stnt2 */ { CODE_FOR_insn_stnt4, NULL }, /* stnt4 */ { CODE_FOR_subdi3, NULL }, /* sub */ { CODE_FOR_subsi3, NULL }, /* subx */ { CODE_FOR_sssubsi3, NULL }, /* subxsc */ { CODE_FOR_insn_tblidxb0, NULL }, /* tblidxb0 */ { CODE_FOR_insn_tblidxb1, NULL }, /* tblidxb1 */ { CODE_FOR_insn_tblidxb2, NULL }, /* tblidxb2 */ { CODE_FOR_insn_tblidxb3, NULL }, /* tblidxb3 */ { CODE_FOR_insn_v1add, NULL }, /* v1add */ { CODE_FOR_insn_v1addi, NULL }, /* v1addi */ { CODE_FOR_insn_v1adduc, NULL }, /* v1adduc */ { CODE_FOR_insn_v1adiffu, NULL }, /* v1adiffu */ { CODE_FOR_insn_v1avgu, NULL }, /* v1avgu */ { CODE_FOR_insn_v1cmpeq, NULL }, /* v1cmpeq */ { CODE_FOR_insn_v1cmpeqi, NULL }, /* v1cmpeqi */ { CODE_FOR_insn_v1cmples, NULL }, /* v1cmples */ { CODE_FOR_insn_v1cmpleu, NULL }, /* v1cmpleu */ { CODE_FOR_insn_v1cmplts, NULL }, /* v1cmplts */ { CODE_FOR_insn_v1cmpltsi, NULL }, /* v1cmpltsi */ { CODE_FOR_insn_v1cmpltu, NULL }, /* v1cmpltu */ { CODE_FOR_insn_v1cmpltui, NULL }, /* v1cmpltui */ { CODE_FOR_insn_v1cmpne, NULL }, /* v1cmpne */ { CODE_FOR_insn_v1ddotpu, NULL }, /* v1ddotpu */ { CODE_FOR_insn_v1ddotpua, NULL }, /* v1ddotpua */ { CODE_FOR_insn_v1ddotpus, NULL }, /* v1ddotpus */ { CODE_FOR_insn_v1ddotpusa, NULL }, /* v1ddotpusa */ { CODE_FOR_insn_v1dotp, NULL }, /* v1dotp */ { CODE_FOR_insn_v1dotpa, NULL }, /* v1dotpa */ { CODE_FOR_insn_v1dotpu, NULL }, /* v1dotpu */ { CODE_FOR_insn_v1dotpua, NULL }, /* v1dotpua */ { CODE_FOR_insn_v1dotpus, NULL }, /* v1dotpus */ { CODE_FOR_insn_v1dotpusa, NULL }, /* v1dotpusa */ { CODE_FOR_insn_v1int_h, NULL }, /* v1int_h */ { CODE_FOR_insn_v1int_l, NULL }, /* v1int_l */ { CODE_FOR_insn_v1maxu, NULL }, /* v1maxu */ { CODE_FOR_insn_v1maxui, NULL }, /* v1maxui */ { CODE_FOR_insn_v1minu, NULL }, /* v1minu */ { CODE_FOR_insn_v1minui, NULL }, /* v1minui */ { CODE_FOR_insn_v1mnz, NULL }, /* v1mnz */ { CODE_FOR_insn_v1multu, NULL }, /* v1multu */ { CODE_FOR_insn_v1mulu, NULL }, /* v1mulu */ { CODE_FOR_insn_v1mulus, NULL }, /* v1mulus */ { CODE_FOR_insn_v1mz, NULL }, /* v1mz */ { CODE_FOR_insn_v1sadau, NULL }, /* v1sadau */ { CODE_FOR_insn_v1sadu, NULL }, /* v1sadu */ { CODE_FOR_insn_v1shl, NULL }, /* v1shl */ { CODE_FOR_insn_v1shl, NULL }, /* v1shli */ { CODE_FOR_insn_v1shrs, NULL }, /* v1shrs */ { CODE_FOR_insn_v1shrs, NULL }, /* v1shrsi */ { CODE_FOR_insn_v1shru, NULL }, /* v1shru */ { CODE_FOR_insn_v1shru, NULL }, /* v1shrui */ { CODE_FOR_insn_v1sub, NULL }, /* v1sub */ { CODE_FOR_insn_v1subuc, NULL }, /* v1subuc */ { CODE_FOR_insn_v2add, NULL }, /* v2add */ { CODE_FOR_insn_v2addi, NULL }, /* v2addi */ { CODE_FOR_insn_v2addsc, NULL }, /* v2addsc */ { CODE_FOR_insn_v2adiffs, NULL }, /* v2adiffs */ { CODE_FOR_insn_v2avgs, NULL }, /* v2avgs */ { CODE_FOR_insn_v2cmpeq, NULL }, /* v2cmpeq */ { CODE_FOR_insn_v2cmpeqi, NULL }, /* v2cmpeqi */ { CODE_FOR_insn_v2cmples, NULL }, /* v2cmples */ { CODE_FOR_insn_v2cmpleu, NULL }, /* v2cmpleu */ { CODE_FOR_insn_v2cmplts, NULL }, /* v2cmplts */ { CODE_FOR_insn_v2cmpltsi, NULL }, /* v2cmpltsi */ { CODE_FOR_insn_v2cmpltu, NULL }, /* v2cmpltu */ { CODE_FOR_insn_v2cmpltui, NULL }, /* v2cmpltui */ { CODE_FOR_insn_v2cmpne, NULL }, /* v2cmpne */ { CODE_FOR_insn_v2dotp, NULL }, /* v2dotp */ { CODE_FOR_insn_v2dotpa, NULL }, /* v2dotpa */ { CODE_FOR_insn_v2int_h, NULL }, /* v2int_h */ { CODE_FOR_insn_v2int_l, NULL }, /* v2int_l */ { CODE_FOR_insn_v2maxs, NULL }, /* v2maxs */ { CODE_FOR_insn_v2maxsi, NULL }, /* v2maxsi */ { CODE_FOR_insn_v2mins, NULL }, /* v2mins */ { CODE_FOR_insn_v2minsi, NULL }, /* v2minsi */ { CODE_FOR_insn_v2mnz, NULL }, /* v2mnz */ { CODE_FOR_insn_v2mulfsc, NULL }, /* v2mulfsc */ { CODE_FOR_insn_v2muls, NULL }, /* v2muls */ { CODE_FOR_insn_v2mults, NULL }, /* v2mults */ { CODE_FOR_insn_v2mz, NULL }, /* v2mz */ { CODE_FOR_insn_v2packh, NULL }, /* v2packh */ { CODE_FOR_insn_v2packl, NULL }, /* v2packl */ { CODE_FOR_insn_v2packuc, NULL }, /* v2packuc */ { CODE_FOR_insn_v2sadas, NULL }, /* v2sadas */ { CODE_FOR_insn_v2sadau, NULL }, /* v2sadau */ { CODE_FOR_insn_v2sads, NULL }, /* v2sads */ { CODE_FOR_insn_v2sadu, NULL }, /* v2sadu */ { CODE_FOR_insn_v2shl, NULL }, /* v2shl */ { CODE_FOR_insn_v2shl, NULL }, /* v2shli */ { CODE_FOR_insn_v2shlsc, NULL }, /* v2shlsc */ { CODE_FOR_insn_v2shrs, NULL }, /* v2shrs */ { CODE_FOR_insn_v2shrs, NULL }, /* v2shrsi */ { CODE_FOR_insn_v2shru, NULL }, /* v2shru */ { CODE_FOR_insn_v2shru, NULL }, /* v2shrui */ { CODE_FOR_insn_v2sub, NULL }, /* v2sub */ { CODE_FOR_insn_v2subsc, NULL }, /* v2subsc */ { CODE_FOR_insn_v4add, NULL }, /* v4add */ { CODE_FOR_insn_v4addsc, NULL }, /* v4addsc */ { CODE_FOR_insn_v4int_h, NULL }, /* v4int_h */ { CODE_FOR_insn_v4int_l, NULL }, /* v4int_l */ { CODE_FOR_insn_v4packsc, NULL }, /* v4packsc */ { CODE_FOR_insn_v4shl, NULL }, /* v4shl */ { CODE_FOR_insn_v4shlsc, NULL }, /* v4shlsc */ { CODE_FOR_insn_v4shrs, NULL }, /* v4shrs */ { CODE_FOR_insn_v4shru, NULL }, /* v4shru */ { CODE_FOR_insn_v4sub, NULL }, /* v4sub */ { CODE_FOR_insn_v4subsc, NULL }, /* v4subsc */ { CODE_FOR_insn_wh64, NULL }, /* wh64 */ { CODE_FOR_xordi3, NULL }, /* xor */ { CODE_FOR_tilegx_network_barrier, NULL }, /* network_barrier */ { CODE_FOR_tilegx_idn0_receive, NULL }, /* idn0_receive */ { CODE_FOR_tilegx_idn1_receive, NULL }, /* idn1_receive */ { CODE_FOR_tilegx_idn_send, NULL }, /* idn_send */ { CODE_FOR_tilegx_udn0_receive, NULL }, /* udn0_receive */ { CODE_FOR_tilegx_udn1_receive, NULL }, /* udn1_receive */ { CODE_FOR_tilegx_udn2_receive, NULL }, /* udn2_receive */ { CODE_FOR_tilegx_udn3_receive, NULL }, /* udn3_receive */ { CODE_FOR_tilegx_udn_send, NULL }, /* udn_send */ }; struct tilegx_builtin_def { const char *name; enum tilegx_builtin code; bool is_const; /* The first character is the return type. Subsequent characters are the argument types. See char_to_type. */ const char *type; }; static const struct tilegx_builtin_def tilegx_builtins[] = { { "__insn_add", TILEGX_INSN_ADD, true, "lll" }, { "__insn_addi", TILEGX_INSN_ADD, true, "lll" }, { "__insn_addli", TILEGX_INSN_ADD, true, "lll" }, { "__insn_addx", TILEGX_INSN_ADDX, true, "iii" }, { "__insn_addxi", TILEGX_INSN_ADDX, true, "iii" }, { "__insn_addxli", TILEGX_INSN_ADDX, true, "iii" }, { "__insn_addxsc", TILEGX_INSN_ADDXSC, true, "iii" }, { "__insn_and", TILEGX_INSN_AND, true, "lll" }, { "__insn_andi", TILEGX_INSN_AND, true, "lll" }, { "__insn_bfexts", TILEGX_INSN_BFEXTS, true, "llll" }, { "__insn_bfextu", TILEGX_INSN_BFEXTU, true, "llll" }, { "__insn_bfins", TILEGX_INSN_BFINS, true, "lllll"}, { "__insn_clz", TILEGX_INSN_CLZ, true, "ll" }, { "__insn_cmoveqz", TILEGX_INSN_CMOVEQZ, true, "llll" }, { "__insn_cmovnez", TILEGX_INSN_CMOVNEZ, true, "llll" }, { "__insn_cmpeq", TILEGX_INSN_CMPEQ, true, "lll" }, { "__insn_cmpeqi", TILEGX_INSN_CMPEQ, true, "lll" }, { "__insn_cmpexch", TILEGX_INSN_CMPEXCH, false, "lpl" }, { "__insn_cmpexch4", TILEGX_INSN_CMPEXCH4, false, "ipi" }, { "__insn_cmples", TILEGX_INSN_CMPLES, true, "lll" }, { "__insn_cmpleu", TILEGX_INSN_CMPLEU, true, "lll" }, { "__insn_cmplts", TILEGX_INSN_CMPLTS, true, "lll" }, { "__insn_cmpltsi", TILEGX_INSN_CMPLTS, true, "lll" }, { "__insn_cmpltu", TILEGX_INSN_CMPLTU, true, "lll" }, { "__insn_cmpltui", TILEGX_INSN_CMPLTU, true, "lll" }, { "__insn_cmpne", TILEGX_INSN_CMPNE, true, "lll" }, { "__insn_cmul", TILEGX_INSN_CMUL, true, "lll" }, { "__insn_cmula", TILEGX_INSN_CMULA, true, "llll" }, { "__insn_cmulaf", TILEGX_INSN_CMULAF, true, "llll" }, { "__insn_cmulf", TILEGX_INSN_CMULF, true, "lll" }, { "__insn_cmulfr", TILEGX_INSN_CMULFR, true, "lll" }, { "__insn_cmulh", TILEGX_INSN_CMULH, true, "lll" }, { "__insn_cmulhr", TILEGX_INSN_CMULHR, true, "lll" }, { "__insn_crc32_32", TILEGX_INSN_CRC32_32, true, "lll" }, { "__insn_crc32_8", TILEGX_INSN_CRC32_8, true, "lll" }, { "__insn_ctz", TILEGX_INSN_CTZ, true, "ll" }, { "__insn_dblalign", TILEGX_INSN_DBLALIGN, true, "lllk" }, { "__insn_dblalign2", TILEGX_INSN_DBLALIGN2, true, "lll" }, { "__insn_dblalign4", TILEGX_INSN_DBLALIGN4, true, "lll" }, { "__insn_dblalign6", TILEGX_INSN_DBLALIGN6, true, "lll" }, { "__insn_drain", TILEGX_INSN_DRAIN, false, "v" }, { "__insn_dtlbpr", TILEGX_INSN_DTLBPR, false, "vl" }, { "__insn_exch", TILEGX_INSN_EXCH, false, "lpl" }, { "__insn_exch4", TILEGX_INSN_EXCH4, false, "ipi" }, { "__insn_fdouble_add_flags", TILEGX_INSN_FDOUBLE_ADD_FLAGS, true, "lll" }, { "__insn_fdouble_addsub", TILEGX_INSN_FDOUBLE_ADDSUB, true, "llll" }, { "__insn_fdouble_mul_flags", TILEGX_INSN_FDOUBLE_MUL_FLAGS, true, "lll" }, { "__insn_fdouble_pack1", TILEGX_INSN_FDOUBLE_PACK1, true, "lll" }, { "__insn_fdouble_pack2", TILEGX_INSN_FDOUBLE_PACK2, true, "llll" }, { "__insn_fdouble_sub_flags", TILEGX_INSN_FDOUBLE_SUB_FLAGS, true, "lll" }, { "__insn_fdouble_unpack_max", TILEGX_INSN_FDOUBLE_UNPACK_MAX, true, "lll" }, { "__insn_fdouble_unpack_min", TILEGX_INSN_FDOUBLE_UNPACK_MIN, true, "lll" }, { "__insn_fetchadd", TILEGX_INSN_FETCHADD, false, "lpl" }, { "__insn_fetchadd4", TILEGX_INSN_FETCHADD4, false, "ipi" }, { "__insn_fetchaddgez", TILEGX_INSN_FETCHADDGEZ, false, "lpl" }, { "__insn_fetchaddgez4", TILEGX_INSN_FETCHADDGEZ4, false, "ipi" }, { "__insn_fetchand", TILEGX_INSN_FETCHAND, false, "lpl" }, { "__insn_fetchand4", TILEGX_INSN_FETCHAND4, false, "ipi" }, { "__insn_fetchor", TILEGX_INSN_FETCHOR, false, "lpl" }, { "__insn_fetchor4", TILEGX_INSN_FETCHOR4, false, "ipi" }, { "__insn_finv", TILEGX_INSN_FINV, false, "vk" }, { "__insn_flush", TILEGX_INSN_FLUSH, false, "vk" }, { "__insn_flushwb", TILEGX_INSN_FLUSHWB, false, "v" }, { "__insn_fnop", TILEGX_INSN_FNOP, false, "v" }, { "__insn_fsingle_add1", TILEGX_INSN_FSINGLE_ADD1, true, "lll" }, { "__insn_fsingle_addsub2", TILEGX_INSN_FSINGLE_ADDSUB2, true, "llll" }, { "__insn_fsingle_mul1", TILEGX_INSN_FSINGLE_MUL1, true, "lll" }, { "__insn_fsingle_mul2", TILEGX_INSN_FSINGLE_MUL2, true, "lll" }, { "__insn_fsingle_pack1", TILEGX_INSN_FSINGLE_PACK1, true, "ll" }, { "__insn_fsingle_pack2", TILEGX_INSN_FSINGLE_PACK2, true, "lll" }, { "__insn_fsingle_sub1", TILEGX_INSN_FSINGLE_SUB1, true, "lll" }, { "__insn_icoh", TILEGX_INSN_ICOH, false, "vk" }, { "__insn_ill", TILEGX_INSN_ILL, false, "v" }, { "__insn_info", TILEGX_INSN_INFO, false, "vl" }, { "__insn_infol", TILEGX_INSN_INFOL, false, "vl" }, { "__insn_inv", TILEGX_INSN_INV, false, "vp" }, { "__insn_ld", TILEGX_INSN_LD, false, "lk" }, { "__insn_ld1s", TILEGX_INSN_LD1S, false, "lk" }, { "__insn_ld1u", TILEGX_INSN_LD1U, false, "lk" }, { "__insn_ld2s", TILEGX_INSN_LD2S, false, "lk" }, { "__insn_ld2u", TILEGX_INSN_LD2U, false, "lk" }, { "__insn_ld4s", TILEGX_INSN_LD4S, false, "lk" }, { "__insn_ld4u", TILEGX_INSN_LD4U, false, "lk" }, { "__insn_ldna", TILEGX_INSN_LDNA, false, "lk" }, { "__insn_ldnt", TILEGX_INSN_LDNT, false, "lk" }, { "__insn_ldnt1s", TILEGX_INSN_LDNT1S, false, "lk" }, { "__insn_ldnt1u", TILEGX_INSN_LDNT1U, false, "lk" }, { "__insn_ldnt2s", TILEGX_INSN_LDNT2S, false, "lk" }, { "__insn_ldnt2u", TILEGX_INSN_LDNT2U, false, "lk" }, { "__insn_ldnt4s", TILEGX_INSN_LDNT4S, false, "lk" }, { "__insn_ldnt4u", TILEGX_INSN_LDNT4U, false, "lk" }, { "__insn_ld_L2", TILEGX_INSN_LD_L2, false, "lk" }, { "__insn_ld1s_L2", TILEGX_INSN_LD1S_L2, false, "lk" }, { "__insn_ld1u_L2", TILEGX_INSN_LD1U_L2, false, "lk" }, { "__insn_ld2s_L2", TILEGX_INSN_LD2S_L2, false, "lk" }, { "__insn_ld2u_L2", TILEGX_INSN_LD2U_L2, false, "lk" }, { "__insn_ld4s_L2", TILEGX_INSN_LD4S_L2, false, "lk" }, { "__insn_ld4u_L2", TILEGX_INSN_LD4U_L2, false, "lk" }, { "__insn_ldna_L2", TILEGX_INSN_LDNA_L2, false, "lk" }, { "__insn_ldnt_L2", TILEGX_INSN_LDNT_L2, false, "lk" }, { "__insn_ldnt1s_L2", TILEGX_INSN_LDNT1S_L2, false, "lk" }, { "__insn_ldnt1u_L2", TILEGX_INSN_LDNT1U_L2, false, "lk" }, { "__insn_ldnt2s_L2", TILEGX_INSN_LDNT2S_L2, false, "lk" }, { "__insn_ldnt2u_L2", TILEGX_INSN_LDNT2U_L2, false, "lk" }, { "__insn_ldnt4s_L2", TILEGX_INSN_LDNT4S_L2, false, "lk" }, { "__insn_ldnt4u_L2", TILEGX_INSN_LDNT4U_L2, false, "lk" }, { "__insn_ld_miss", TILEGX_INSN_LD_MISS, false, "lk" }, { "__insn_ld1s_miss", TILEGX_INSN_LD1S_MISS, false, "lk" }, { "__insn_ld1u_miss", TILEGX_INSN_LD1U_MISS, false, "lk" }, { "__insn_ld2s_miss", TILEGX_INSN_LD2S_MISS, false, "lk" }, { "__insn_ld2u_miss", TILEGX_INSN_LD2U_MISS, false, "lk" }, { "__insn_ld4s_miss", TILEGX_INSN_LD4S_MISS, false, "lk" }, { "__insn_ld4u_miss", TILEGX_INSN_LD4U_MISS, false, "lk" }, { "__insn_ldna_miss", TILEGX_INSN_LDNA_MISS, false, "lk" }, { "__insn_ldnt_miss", TILEGX_INSN_LDNT_MISS, false, "lk" }, { "__insn_ldnt1s_miss", TILEGX_INSN_LDNT1S_MISS, false, "lk" }, { "__insn_ldnt1u_miss", TILEGX_INSN_LDNT1U_MISS, false, "lk" }, { "__insn_ldnt2s_miss", TILEGX_INSN_LDNT2S_MISS, false, "lk" }, { "__insn_ldnt2u_miss", TILEGX_INSN_LDNT2U_MISS, false, "lk" }, { "__insn_ldnt4s_miss", TILEGX_INSN_LDNT4S_MISS, false, "lk" }, { "__insn_ldnt4u_miss", TILEGX_INSN_LDNT4U_MISS, false, "lk" }, { "__insn_lnk", TILEGX_INSN_LNK, true, "l" }, { "__insn_mf", TILEGX_INSN_MF, false, "v" }, { "__insn_mfspr", TILEGX_INSN_MFSPR, false, "ll" }, { "__insn_mm", TILEGX_INSN_MM, true, "lllll"}, { "__insn_mnz", TILEGX_INSN_MNZ, true, "lll" }, { "__insn_move", TILEGX_INSN_MOVE, true, "ll" }, { "__insn_movei", TILEGX_INSN_MOVE, true, "ll" }, { "__insn_moveli", TILEGX_INSN_MOVE, true, "ll" }, { "__insn_mtspr", TILEGX_INSN_MTSPR, false, "vll" }, { "__insn_mul_hs_hs", TILEGX_INSN_MUL_HS_HS, true, "lll" }, { "__insn_mul_hs_hu", TILEGX_INSN_MUL_HS_HU, true, "lll" }, { "__insn_mul_hs_ls", TILEGX_INSN_MUL_HS_LS, true, "lll" }, { "__insn_mul_hs_lu", TILEGX_INSN_MUL_HS_LU, true, "lll" }, { "__insn_mul_hu_hu", TILEGX_INSN_MUL_HU_HU, true, "lll" }, { "__insn_mul_hu_ls", TILEGX_INSN_MUL_HU_LS, true, "lll" }, { "__insn_mul_hu_lu", TILEGX_INSN_MUL_HU_LU, true, "lll" }, { "__insn_mul_ls_ls", TILEGX_INSN_MUL_LS_LS, true, "lll" }, { "__insn_mul_ls_lu", TILEGX_INSN_MUL_LS_LU, true, "lll" }, { "__insn_mul_lu_lu", TILEGX_INSN_MUL_LU_LU, true, "lll" }, { "__insn_mula_hs_hs", TILEGX_INSN_MULA_HS_HS, true, "llll" }, { "__insn_mula_hs_hu", TILEGX_INSN_MULA_HS_HU, true, "llll" }, { "__insn_mula_hs_ls", TILEGX_INSN_MULA_HS_LS, true, "llll" }, { "__insn_mula_hs_lu", TILEGX_INSN_MULA_HS_LU, true, "llll" }, { "__insn_mula_hu_hu", TILEGX_INSN_MULA_HU_HU, true, "llll" }, { "__insn_mula_hu_ls", TILEGX_INSN_MULA_HU_LS, true, "llll" }, { "__insn_mula_hu_lu", TILEGX_INSN_MULA_HU_LU, true, "llll" }, { "__insn_mula_ls_ls", TILEGX_INSN_MULA_LS_LS, true, "llll" }, { "__insn_mula_ls_lu", TILEGX_INSN_MULA_LS_LU, true, "llll" }, { "__insn_mula_lu_lu", TILEGX_INSN_MULA_LU_LU, true, "llll" }, { "__insn_mulax", TILEGX_INSN_MULAX, true, "iiii" }, { "__insn_mulx", TILEGX_INSN_MULX, true, "iii" }, { "__insn_mz", TILEGX_INSN_MZ, true, "lll" }, { "__insn_nap", TILEGX_INSN_NAP, false, "v" }, { "__insn_nop", TILEGX_INSN_NOP, true, "v" }, { "__insn_nor", TILEGX_INSN_NOR, true, "lll" }, { "__insn_or", TILEGX_INSN_OR, true, "lll" }, { "__insn_ori", TILEGX_INSN_OR, true, "lll" }, { "__insn_pcnt", TILEGX_INSN_PCNT, true, "ll" }, { "__insn_prefetch", TILEGX_INSN_PREFETCH_L1, false, "vk" }, { "__insn_prefetch_l1", TILEGX_INSN_PREFETCH_L1, false, "vk" }, { "__insn_prefetch_l1_fault", TILEGX_INSN_PREFETCH_L1_FAULT, false, "vk" }, { "__insn_prefetch_l2", TILEGX_INSN_PREFETCH_L2, false, "vk" }, { "__insn_prefetch_l2_fault", TILEGX_INSN_PREFETCH_L2_FAULT, false, "vk" }, { "__insn_prefetch_l3", TILEGX_INSN_PREFETCH_L3, false, "vk" }, { "__insn_prefetch_l3_fault", TILEGX_INSN_PREFETCH_L3_FAULT, false, "vk" }, { "__insn_revbits", TILEGX_INSN_REVBITS, true, "ll" }, { "__insn_revbytes", TILEGX_INSN_REVBYTES, true, "ll" }, { "__insn_rotl", TILEGX_INSN_ROTL, true, "lli" }, { "__insn_rotli", TILEGX_INSN_ROTL, true, "lli" }, { "__insn_shl", TILEGX_INSN_SHL, true, "lli" }, { "__insn_shl16insli", TILEGX_INSN_SHL16INSLI, true, "lll" }, { "__insn_shl1add", TILEGX_INSN_SHL1ADD, true, "lll" }, { "__insn_shl1addx", TILEGX_INSN_SHL1ADDX, true, "iii" }, { "__insn_shl2add", TILEGX_INSN_SHL2ADD, true, "lll" }, { "__insn_shl2addx", TILEGX_INSN_SHL2ADDX, true, "iii" }, { "__insn_shl3add", TILEGX_INSN_SHL3ADD, true, "lll" }, { "__insn_shl3addx", TILEGX_INSN_SHL3ADDX, true, "iii" }, { "__insn_shli", TILEGX_INSN_SHL, true, "lli" }, { "__insn_shlx", TILEGX_INSN_SHLX, true, "iii" }, { "__insn_shlxi", TILEGX_INSN_SHLX, true, "iii" }, { "__insn_shrs", TILEGX_INSN_SHRS, true, "lli" }, { "__insn_shrsi", TILEGX_INSN_SHRS, true, "lli" }, { "__insn_shru", TILEGX_INSN_SHRU, true, "lli" }, { "__insn_shrui", TILEGX_INSN_SHRU, true, "lli" }, { "__insn_shrux", TILEGX_INSN_SHRUX, true, "iii" }, { "__insn_shruxi", TILEGX_INSN_SHRUX, true, "iii" }, { "__insn_shufflebytes", TILEGX_INSN_SHUFFLEBYTES, true, "llll" }, { "__insn_st", TILEGX_INSN_ST, false, "vpl" }, { "__insn_st1", TILEGX_INSN_ST1, false, "vpl" }, { "__insn_st2", TILEGX_INSN_ST2, false, "vpl" }, { "__insn_st4", TILEGX_INSN_ST4, false, "vpl" }, { "__insn_stnt", TILEGX_INSN_STNT, false, "vpl" }, { "__insn_stnt1", TILEGX_INSN_STNT1, false, "vpl" }, { "__insn_stnt2", TILEGX_INSN_STNT2, false, "vpl" }, { "__insn_stnt4", TILEGX_INSN_STNT4, false, "vpl" }, { "__insn_sub", TILEGX_INSN_SUB, true, "lll" }, { "__insn_subx", TILEGX_INSN_SUBX, true, "iii" }, { "__insn_subxsc", TILEGX_INSN_SUBXSC, true, "iii" }, { "__insn_tblidxb0", TILEGX_INSN_TBLIDXB0, true, "lll" }, { "__insn_tblidxb1", TILEGX_INSN_TBLIDXB1, true, "lll" }, { "__insn_tblidxb2", TILEGX_INSN_TBLIDXB2, true, "lll" }, { "__insn_tblidxb3", TILEGX_INSN_TBLIDXB3, true, "lll" }, { "__insn_v1add", TILEGX_INSN_V1ADD, true, "lll" }, { "__insn_v1addi", TILEGX_INSN_V1ADDI, true, "lll" }, { "__insn_v1adduc", TILEGX_INSN_V1ADDUC, true, "lll" }, { "__insn_v1adiffu", TILEGX_INSN_V1ADIFFU, true, "lll" }, { "__insn_v1avgu", TILEGX_INSN_V1AVGU, true, "lll" }, { "__insn_v1cmpeq", TILEGX_INSN_V1CMPEQ, true, "lll" }, { "__insn_v1cmpeqi", TILEGX_INSN_V1CMPEQI, true, "lll" }, { "__insn_v1cmples", TILEGX_INSN_V1CMPLES, true, "lll" }, { "__insn_v1cmpleu", TILEGX_INSN_V1CMPLEU, true, "lll" }, { "__insn_v1cmplts", TILEGX_INSN_V1CMPLTS, true, "lll" }, { "__insn_v1cmpltsi", TILEGX_INSN_V1CMPLTSI, true, "lll" }, { "__insn_v1cmpltu", TILEGX_INSN_V1CMPLTU, true, "lll" }, { "__insn_v1cmpltui", TILEGX_INSN_V1CMPLTUI, true, "lll" }, { "__insn_v1cmpne", TILEGX_INSN_V1CMPNE, true, "lll" }, { "__insn_v1ddotpu", TILEGX_INSN_V1DDOTPU, true, "lll" }, { "__insn_v1ddotpua", TILEGX_INSN_V1DDOTPUA, true, "llll" }, { "__insn_v1ddotpus", TILEGX_INSN_V1DDOTPUS, true, "lll" }, { "__insn_v1ddotpusa", TILEGX_INSN_V1DDOTPUSA, true, "llll" }, { "__insn_v1dotp", TILEGX_INSN_V1DOTP, true, "lll" }, { "__insn_v1dotpa", TILEGX_INSN_V1DOTPA, true, "llll" }, { "__insn_v1dotpu", TILEGX_INSN_V1DOTPU, true, "lll" }, { "__insn_v1dotpua", TILEGX_INSN_V1DOTPUA, true, "llll" }, { "__insn_v1dotpus", TILEGX_INSN_V1DOTPUS, true, "lll" }, { "__insn_v1dotpusa", TILEGX_INSN_V1DOTPUSA, true, "llll" }, { "__insn_v1int_h", TILEGX_INSN_V1INT_H, true, "lll" }, { "__insn_v1int_l", TILEGX_INSN_V1INT_L, true, "lll" }, { "__insn_v1maxu", TILEGX_INSN_V1MAXU, true, "lll" }, { "__insn_v1maxui", TILEGX_INSN_V1MAXUI, true, "lll" }, { "__insn_v1minu", TILEGX_INSN_V1MINU, true, "lll" }, { "__insn_v1minui", TILEGX_INSN_V1MINUI, true, "lll" }, { "__insn_v1mnz", TILEGX_INSN_V1MNZ, true, "lll" }, { "__insn_v1multu", TILEGX_INSN_V1MULTU, true, "lll" }, { "__insn_v1mulu", TILEGX_INSN_V1MULU, true, "lll" }, { "__insn_v1mulus", TILEGX_INSN_V1MULUS, true, "lll" }, { "__insn_v1mz", TILEGX_INSN_V1MZ, true, "lll" }, { "__insn_v1sadau", TILEGX_INSN_V1SADAU, true, "llll" }, { "__insn_v1sadu", TILEGX_INSN_V1SADU, true, "lll" }, { "__insn_v1shl", TILEGX_INSN_V1SHL, true, "lll" }, { "__insn_v1shli", TILEGX_INSN_V1SHLI, true, "lll" }, { "__insn_v1shrs", TILEGX_INSN_V1SHRS, true, "lll" }, { "__insn_v1shrsi", TILEGX_INSN_V1SHRSI, true, "lll" }, { "__insn_v1shru", TILEGX_INSN_V1SHRU, true, "lll" }, { "__insn_v1shrui", TILEGX_INSN_V1SHRUI, true, "lll" }, { "__insn_v1sub", TILEGX_INSN_V1SUB, true, "lll" }, { "__insn_v1subuc", TILEGX_INSN_V1SUBUC, true, "lll" }, { "__insn_v2add", TILEGX_INSN_V2ADD, true, "lll" }, { "__insn_v2addi", TILEGX_INSN_V2ADDI, true, "lll" }, { "__insn_v2addsc", TILEGX_INSN_V2ADDSC, true, "lll" }, { "__insn_v2adiffs", TILEGX_INSN_V2ADIFFS, true, "lll" }, { "__insn_v2avgs", TILEGX_INSN_V2AVGS, true, "lll" }, { "__insn_v2cmpeq", TILEGX_INSN_V2CMPEQ, true, "lll" }, { "__insn_v2cmpeqi", TILEGX_INSN_V2CMPEQI, true, "lll" }, { "__insn_v2cmples", TILEGX_INSN_V2CMPLES, true, "lll" }, { "__insn_v2cmpleu", TILEGX_INSN_V2CMPLEU, true, "lll" }, { "__insn_v2cmplts", TILEGX_INSN_V2CMPLTS, true, "lll" }, { "__insn_v2cmpltsi", TILEGX_INSN_V2CMPLTSI, true, "lll" }, { "__insn_v2cmpltu", TILEGX_INSN_V2CMPLTU, true, "lll" }, { "__insn_v2cmpltui", TILEGX_INSN_V2CMPLTUI, true, "lll" }, { "__insn_v2cmpne", TILEGX_INSN_V2CMPNE, true, "lll" }, { "__insn_v2dotp", TILEGX_INSN_V2DOTP, true, "lll" }, { "__insn_v2dotpa", TILEGX_INSN_V2DOTPA, true, "llll" }, { "__insn_v2int_h", TILEGX_INSN_V2INT_H, true, "lll" }, { "__insn_v2int_l", TILEGX_INSN_V2INT_L, true, "lll" }, { "__insn_v2maxs", TILEGX_INSN_V2MAXS, true, "lll" }, { "__insn_v2maxsi", TILEGX_INSN_V2MAXSI, true, "lll" }, { "__insn_v2mins", TILEGX_INSN_V2MINS, true, "lll" }, { "__insn_v2minsi", TILEGX_INSN_V2MINSI, true, "lll" }, { "__insn_v2mnz", TILEGX_INSN_V2MNZ, true, "lll" }, { "__insn_v2mulfsc", TILEGX_INSN_V2MULFSC, true, "lll" }, { "__insn_v2muls", TILEGX_INSN_V2MULS, true, "lll" }, { "__insn_v2mults", TILEGX_INSN_V2MULTS, true, "lll" }, { "__insn_v2mz", TILEGX_INSN_V2MZ, true, "lll" }, { "__insn_v2packh", TILEGX_INSN_V2PACKH, true, "lll" }, { "__insn_v2packl", TILEGX_INSN_V2PACKL, true, "lll" }, { "__insn_v2packuc", TILEGX_INSN_V2PACKUC, true, "lll" }, { "__insn_v2sadas", TILEGX_INSN_V2SADAS, true, "llll" }, { "__insn_v2sadau", TILEGX_INSN_V2SADAU, true, "llll" }, { "__insn_v2sads", TILEGX_INSN_V2SADS, true, "lll" }, { "__insn_v2sadu", TILEGX_INSN_V2SADU, true, "lll" }, { "__insn_v2shl", TILEGX_INSN_V2SHL, true, "lll" }, { "__insn_v2shli", TILEGX_INSN_V2SHLI, true, "lll" }, { "__insn_v2shlsc", TILEGX_INSN_V2SHLSC, true, "lll" }, { "__insn_v2shrs", TILEGX_INSN_V2SHRS, true, "lll" }, { "__insn_v2shrsi", TILEGX_INSN_V2SHRSI, true, "lll" }, { "__insn_v2shru", TILEGX_INSN_V2SHRU, true, "lll" }, { "__insn_v2shrui", TILEGX_INSN_V2SHRUI, true, "lll" }, { "__insn_v2sub", TILEGX_INSN_V2SUB, true, "lll" }, { "__insn_v2subsc", TILEGX_INSN_V2SUBSC, true, "lll" }, { "__insn_v4add", TILEGX_INSN_V4ADD, true, "lll" }, { "__insn_v4addsc", TILEGX_INSN_V4ADDSC, true, "lll" }, { "__insn_v4int_h", TILEGX_INSN_V4INT_H, true, "lll" }, { "__insn_v4int_l", TILEGX_INSN_V4INT_L, true, "lll" }, { "__insn_v4packsc", TILEGX_INSN_V4PACKSC, true, "lll" }, { "__insn_v4shl", TILEGX_INSN_V4SHL, true, "lll" }, { "__insn_v4shlsc", TILEGX_INSN_V4SHLSC, true, "lll" }, { "__insn_v4shrs", TILEGX_INSN_V4SHRS, true, "lll" }, { "__insn_v4shru", TILEGX_INSN_V4SHRU, true, "lll" }, { "__insn_v4sub", TILEGX_INSN_V4SUB, true, "lll" }, { "__insn_v4subsc", TILEGX_INSN_V4SUBSC, true, "lll" }, { "__insn_wh64", TILEGX_INSN_WH64, false, "vp" }, { "__insn_xor", TILEGX_INSN_XOR, true, "lll" }, { "__insn_xori", TILEGX_INSN_XOR, true, "lll" }, { "__tile_network_barrier", TILEGX_NETWORK_BARRIER, false, "v" }, { "__tile_idn0_receive", TILEGX_IDN0_RECEIVE, false, "l" }, { "__tile_idn1_receive", TILEGX_IDN1_RECEIVE, false, "l" }, { "__tile_idn_send", TILEGX_IDN_SEND, false, "vl" }, { "__tile_udn0_receive", TILEGX_UDN0_RECEIVE, false, "l" }, { "__tile_udn1_receive", TILEGX_UDN1_RECEIVE, false, "l" }, { "__tile_udn2_receive", TILEGX_UDN2_RECEIVE, false, "l" }, { "__tile_udn3_receive", TILEGX_UDN3_RECEIVE, false, "l" }, { "__tile_udn_send", TILEGX_UDN_SEND, false, "vl" }, }; /* Convert a character in a builtin type string to a tree type. */ static tree char_to_type (char c) { static tree volatile_ptr_type_node = NULL; static tree volatile_const_ptr_type_node = NULL; if (volatile_ptr_type_node == NULL) { volatile_ptr_type_node = build_pointer_type (build_qualified_type (void_type_node, TYPE_QUAL_VOLATILE)); volatile_const_ptr_type_node = build_pointer_type (build_qualified_type (void_type_node, TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)); } switch (c) { case 'v': return void_type_node; case 'i': return unsigned_type_node; case 'l': return long_long_unsigned_type_node; case 'p': return volatile_ptr_type_node; case 'k': return volatile_const_ptr_type_node; default: gcc_unreachable (); } } /* Implement TARGET_INIT_BUILTINS. */ static void tilegx_init_builtins (void) { size_t i; for (i = 0; i < ARRAY_SIZE (tilegx_builtins); i++) { const struct tilegx_builtin_def *p = &tilegx_builtins[i]; tree ftype, ret_type, arg_type_list = void_list_node; tree decl; int j; for (j = strlen (p->type) - 1; j > 0; j--) { arg_type_list = tree_cons (NULL_TREE, char_to_type (p->type[j]), arg_type_list); } ret_type = char_to_type (p->type[0]); ftype = build_function_type (ret_type, arg_type_list); decl = add_builtin_function (p->name, ftype, p->code, BUILT_IN_MD, NULL, NULL); if (p->is_const) TREE_READONLY (decl) = 1; TREE_NOTHROW (decl) = 1; if (tilegx_builtin_info[p->code].fndecl == NULL) tilegx_builtin_info[p->code].fndecl = decl; } } /* Implement TARGET_EXPAND_BUILTIN. */ static rtx tilegx_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED, enum machine_mode mode ATTRIBUTE_UNUSED, int ignore ATTRIBUTE_UNUSED) { #define MAX_BUILTIN_ARGS 4 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); unsigned int fcode = DECL_FUNCTION_CODE (fndecl); tree arg; call_expr_arg_iterator iter; enum insn_code icode; rtx op[MAX_BUILTIN_ARGS + 1], pat; int opnum; bool nonvoid; insn_gen_fn fn; if (fcode >= TILEGX_BUILTIN_max) internal_error ("bad builtin fcode"); icode = tilegx_builtin_info[fcode].icode; if (icode == 0) internal_error ("bad builtin icode"); nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node; opnum = nonvoid; FOR_EACH_CALL_EXPR_ARG (arg, iter, exp) { const struct insn_operand_data *insn_op; if (arg == error_mark_node) return NULL_RTX; if (opnum > MAX_BUILTIN_ARGS) return NULL_RTX; insn_op = &insn_data[icode].operand[opnum]; op[opnum] = expand_expr (arg, NULL_RTX, insn_op->mode, EXPAND_NORMAL); if (!(*insn_op->predicate) (op[opnum], insn_op->mode)) { enum machine_mode opmode = insn_op->mode; /* pointer_operand and pmode_register_operand operands do not specify a mode, so use the operand's mode instead (which should always be right by the time we get here, except for constants, which are VOIDmode). */ if (opmode == VOIDmode) { enum machine_mode m = GET_MODE (op[opnum]); gcc_assert (m == Pmode || m == VOIDmode); opmode = Pmode; } op[opnum] = copy_to_mode_reg (opmode, op[opnum]); } if (!(*insn_op->predicate) (op[opnum], insn_op->mode)) { /* We still failed to meet the predicate even after moving into a register. Assume we needed an immediate. */ error_at (EXPR_LOCATION (exp), "operand must be an immediate of the right size"); return const0_rtx; } opnum++; } if (nonvoid) { enum machine_mode tmode = insn_data[icode].operand[0].mode; if (!target || GET_MODE (target) != tmode || !(*insn_data[icode].operand[0].predicate) (target, tmode)) { if (tmode == VOIDmode) { /* get the mode from the return type. */ tmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (fndecl))); } target = gen_reg_rtx (tmode); } op[0] = target; } fn = GEN_FCN (icode); switch (opnum) { case 0: pat = fn (NULL_RTX); break; case 1: pat = fn (op[0]); break; case 2: pat = fn (op[0], op[1]); break; case 3: pat = fn (op[0], op[1], op[2]); break; case 4: pat = fn (op[0], op[1], op[2], op[3]); break; case 5: pat = fn (op[0], op[1], op[2], op[3], op[4]); break; default: gcc_unreachable (); } if (!pat) return NULL_RTX; emit_insn (pat); if (nonvoid) return target; else return const0_rtx; } /* Implement TARGET_BUILTIN_DECL. */ static tree tilegx_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED) { if (code >= TILEGX_BUILTIN_max) return error_mark_node; return tilegx_builtin_info[code].fndecl; } /* Stack frames */ /* Return whether REGNO needs to be saved in the stack frame. */ static bool need_to_save_reg (unsigned int regno) { if (!fixed_regs[regno] && !call_used_regs[regno] && df_regs_ever_live_p (regno)) return true; if (flag_pic && (regno == PIC_OFFSET_TABLE_REGNUM || regno == TILEGX_PIC_TEXT_LABEL_REGNUM) && (crtl->uses_pic_offset_table || crtl->saves_all_registers)) return true; if (crtl->calls_eh_return) { unsigned i; for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; i++) { if (regno == EH_RETURN_DATA_REGNO (i)) return true; } } return false; } /* Return the size of the register savev area. This function is only correct starting with local register allocation */ static int tilegx_saved_regs_size (void) { int reg_save_size = 0; int regno; int offset_to_frame; int align_mask; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (need_to_save_reg (regno)) reg_save_size += UNITS_PER_WORD; /* Pad out the register save area if necessary to make frame_pointer_rtx be as aligned as the stack pointer. */ offset_to_frame = crtl->args.pretend_args_size + reg_save_size; align_mask = (STACK_BOUNDARY / BITS_PER_UNIT) - 1; reg_save_size += (-offset_to_frame) & align_mask; return reg_save_size; } /* Round up frame size SIZE. */ static int round_frame_size (int size) { return ((size + STACK_BOUNDARY / BITS_PER_UNIT - 1) & -STACK_BOUNDARY / BITS_PER_UNIT); } /* Emit a store in the stack frame to save REGNO at address ADDR, and emit the corresponding REG_CFA_OFFSET note described by CFA and CFA_OFFSET. Return the emitted insn. */ static rtx frame_emit_store (int regno, int regno_note, rtx addr, rtx cfa, int cfa_offset) { rtx reg = gen_rtx_REG (DImode, regno); rtx mem = gen_frame_mem (DImode, addr); rtx mov = gen_movdi (mem, reg); /* Describe what just happened in a way that dwarf understands. We use temporary registers to hold the address to make scheduling easier, and use the REG_CFA_OFFSET to describe the address as an offset from the CFA. */ rtx reg_note = gen_rtx_REG (DImode, regno_note); rtx cfa_relative_addr = gen_rtx_PLUS (Pmode, cfa, GEN_INT (cfa_offset)); rtx cfa_relative_mem = gen_frame_mem (DImode, cfa_relative_addr); rtx real = gen_rtx_SET (VOIDmode, cfa_relative_mem, reg_note); add_reg_note (mov, REG_CFA_OFFSET, real); return emit_insn (mov); } /* Emit a load in the stack frame to load REGNO from address ADDR. Add a REG_CFA_RESTORE note to CFA_RESTORES if CFA_RESTORES is non-null. Return the emitted insn. */ static rtx frame_emit_load (int regno, rtx addr, rtx *cfa_restores) { rtx reg = gen_rtx_REG (DImode, regno); rtx mem = gen_frame_mem (DImode, addr); if (cfa_restores) *cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, *cfa_restores); return emit_insn (gen_movdi (reg, mem)); } /* Helper function to set RTX_FRAME_RELATED_P on instructions, including sequences. */ static rtx set_frame_related_p (void) { rtx seq = get_insns (); rtx insn; end_sequence (); if (!seq) return NULL_RTX; if (INSN_P (seq)) { insn = seq; while (insn != NULL_RTX) { RTX_FRAME_RELATED_P (insn) = 1; insn = NEXT_INSN (insn); } seq = emit_insn (seq); } else { seq = emit_insn (seq); RTX_FRAME_RELATED_P (seq) = 1; } return seq; } #define FRP(exp) (start_sequence (), exp, set_frame_related_p ()) /* This emits code for 'sp += offset'. The ABI only allows us to modify 'sp' in a single 'addi' or 'addli', so the backtracer understands it. Larger amounts cannot use those instructions, so are added by placing the offset into a large register and using 'add'. This happens after reload, so we need to expand it ourselves. */ static rtx emit_sp_adjust (int offset, int *next_scratch_regno, bool frame_related, rtx reg_notes) { rtx to_add; rtx imm_rtx = GEN_INT (offset); rtx insn; if (satisfies_constraint_J (imm_rtx)) { /* We can add this using a single immediate add. */ to_add = imm_rtx; } else { rtx tmp = gen_rtx_REG (Pmode, (*next_scratch_regno)--); tilegx_expand_set_const64 (tmp, imm_rtx); to_add = tmp; } /* Actually adjust the stack pointer. */ if (TARGET_32BIT) insn = gen_sp_adjust_32bit (stack_pointer_rtx, stack_pointer_rtx, to_add); else insn = gen_sp_adjust (stack_pointer_rtx, stack_pointer_rtx, to_add); insn = emit_insn (insn); REG_NOTES (insn) = reg_notes; /* Describe what just happened in a way that dwarf understands. */ if (frame_related) { rtx real = gen_rtx_SET (VOIDmode, stack_pointer_rtx, gen_rtx_PLUS (Pmode, stack_pointer_rtx, imm_rtx)); RTX_FRAME_RELATED_P (insn) = 1; add_reg_note (insn, REG_CFA_ADJUST_CFA, real); } return insn; } /* Return whether the current function is leaf. This takes into account whether the function calls tls_get_addr. */ static bool tilegx_current_function_is_leaf (void) { return current_function_is_leaf && !cfun->machine->calls_tls_get_addr; } /* Return the frame size. */ static int compute_total_frame_size (void) { int total_size = (get_frame_size () + tilegx_saved_regs_size () + crtl->outgoing_args_size + crtl->args.pretend_args_size); if (!tilegx_current_function_is_leaf () || cfun->calls_alloca) { /* Make room for save area in callee. */ total_size += STACK_POINTER_OFFSET; } return round_frame_size (total_size); } /* Return nonzero if this function is known to have a null epilogue. This allows the optimizer to omit jumps to jumps if no stack was created. */ bool tilegx_can_use_return_insn_p (void) { return (reload_completed && cfun->static_chain_decl == 0 && compute_total_frame_size () == 0 && tilegx_current_function_is_leaf () && !crtl->profile && !df_regs_ever_live_p (TILEGX_LINK_REGNUM)); } /* Returns an rtx for a stack slot at 'FP + offset_from_fp'. If there is a frame pointer, it computes the value relative to that. Otherwise it uses the stack pointer. */ static rtx compute_frame_addr (int offset_from_fp, int *next_scratch_regno) { rtx base_reg_rtx, tmp_reg_rtx, offset_rtx; int offset_from_base; if (frame_pointer_needed) { base_reg_rtx = hard_frame_pointer_rtx; offset_from_base = offset_from_fp; } else { int offset_from_sp = compute_total_frame_size () + offset_from_fp; offset_from_base = offset_from_sp; base_reg_rtx = stack_pointer_rtx; } if (offset_from_base == 0) return base_reg_rtx; /* Compute the new value of the stack pointer. */ tmp_reg_rtx = gen_rtx_REG (Pmode, (*next_scratch_regno)--); offset_rtx = GEN_INT (offset_from_base); if (!add_operand (offset_rtx, Pmode)) { expand_set_cint64 (tmp_reg_rtx, offset_rtx); offset_rtx = tmp_reg_rtx; } emit_insn (gen_rtx_SET (VOIDmode, tmp_reg_rtx, gen_rtx_PLUS (Pmode, base_reg_rtx, offset_rtx))); return tmp_reg_rtx; } /* The stack frame looks like this: +-------------+ | ... | | incoming | | stack args | AP -> +-------------+ | caller's HFP| +-------------+ | lr save | HFP -> +-------------+ | var args | | reg save | crtl->args.pretend_args_size bytes +-------------+ | ... | | saved regs | tilegx_saved_regs_size() bytes FP -> +-------------+ | ... | | vars | get_frame_size() bytes +-------------+ | ... | | outgoing | | stack args | crtl->outgoing_args_size bytes +-------------+ | HFP | ptr_size bytes (only here if nonleaf / alloca) +-------------+ | callee lr | ptr_size bytes (only here if nonleaf / alloca) | save | SP -> +-------------+ HFP == incoming SP. For functions with a frame larger than 32767 bytes, or which use alloca (), r52 is used as a frame pointer. Otherwise there is no frame pointer. FP is saved at SP+ptr_size before calling a subroutine so the callee can chain. */ void tilegx_expand_prologue (void) { #define ROUND_ROBIN_SIZE 4 /* We round-robin through four scratch registers to hold temporary addresses for saving registers, to make instruction scheduling easier. */ rtx reg_save_addr[ROUND_ROBIN_SIZE] = { NULL_RTX, NULL_RTX, NULL_RTX, NULL_RTX }; rtx insn, cfa; unsigned int which_scratch; int offset, start_offset, regno; /* A register that holds a copy of the incoming fp. */ int fp_copy_regno = -1; /* A register that holds a copy of the incoming sp. */ int sp_copy_regno = -1; /* Next scratch register number to hand out (postdecrementing). */ int next_scratch_regno = 29; int total_size = compute_total_frame_size (); if (flag_stack_usage_info) current_function_static_stack_size = total_size; /* Save lr first in its special location because code after this might use the link register as a scratch register. */ if (df_regs_ever_live_p (TILEGX_LINK_REGNUM) || crtl->calls_eh_return) FRP (frame_emit_store (TILEGX_LINK_REGNUM, TILEGX_LINK_REGNUM, stack_pointer_rtx, stack_pointer_rtx, 0)); if (total_size == 0) { /* Load the PIC register if needed. */ if (flag_pic && crtl->uses_pic_offset_table) load_pic_register (false); return; } cfa = stack_pointer_rtx; if (frame_pointer_needed) { fp_copy_regno = next_scratch_regno--; /* Copy the old frame pointer aside so we can save it later. */ insn = FRP (emit_move_insn (gen_rtx_REG (word_mode, fp_copy_regno), gen_lowpart (word_mode, hard_frame_pointer_rtx))); add_reg_note (insn, REG_CFA_REGISTER, NULL_RTX); /* Set up the frame pointer. */ insn = FRP (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx)); add_reg_note (insn, REG_CFA_DEF_CFA, hard_frame_pointer_rtx); cfa = hard_frame_pointer_rtx; REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY; /* fp holds a copy of the incoming sp, in case we need to store it. */ sp_copy_regno = HARD_FRAME_POINTER_REGNUM; } else if (!tilegx_current_function_is_leaf ()) { /* Copy the old stack pointer aside so we can save it later. */ sp_copy_regno = next_scratch_regno--; insn = FRP (emit_move_insn (gen_rtx_REG (Pmode, sp_copy_regno), stack_pointer_rtx)); add_reg_note (insn, REG_CFA_REGISTER, NULL_RTX); } if (tilegx_current_function_is_leaf ()) { /* No need to store chain pointer to caller's frame. */ emit_sp_adjust (-total_size, &next_scratch_regno, !frame_pointer_needed, NULL_RTX); } else { /* Save the frame pointer (incoming sp value) to support backtracing. First we need to create an rtx with the store address. */ rtx chain_addr = gen_rtx_REG (Pmode, next_scratch_regno--); rtx size_rtx = GEN_INT (-(total_size - UNITS_PER_WORD)); int cfa_offset = frame_pointer_needed ? UNITS_PER_WORD - total_size : UNITS_PER_WORD; if (add_operand (size_rtx, Pmode)) { /* Expose more parallelism by computing this value from the original stack pointer, not the one after we have pushed the frame. */ rtx p = gen_rtx_PLUS (Pmode, stack_pointer_rtx, size_rtx); emit_insn (gen_rtx_SET (VOIDmode, chain_addr, p)); emit_sp_adjust (-total_size, &next_scratch_regno, !frame_pointer_needed, NULL_RTX); } else { /* The stack frame is large, so just store the incoming sp value at *(new_sp + UNITS_PER_WORD). */ rtx p; emit_sp_adjust (-total_size, &next_scratch_regno, !frame_pointer_needed, NULL_RTX); p = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (UNITS_PER_WORD)); emit_insn (gen_rtx_SET (VOIDmode, chain_addr, p)); } /* Save our frame pointer for backtrace chaining. */ FRP (frame_emit_store (sp_copy_regno, STACK_POINTER_REGNUM, chain_addr, cfa, cfa_offset)); } /* Compute where to start storing registers we need to save. */ start_offset = -crtl->args.pretend_args_size - UNITS_PER_WORD; offset = start_offset; /* Store all registers that need saving. */ which_scratch = 0; for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno--) if (need_to_save_reg (regno)) { rtx r = reg_save_addr[which_scratch]; int from_regno; int cfa_offset = frame_pointer_needed ? offset : total_size + offset; if (r == NULL_RTX) { rtx p = compute_frame_addr (offset, &next_scratch_regno); r = gen_rtx_REG (Pmode, next_scratch_regno--); reg_save_addr[which_scratch] = r; emit_insn (gen_rtx_SET (VOIDmode, r, p)); } else { /* Advance to the next stack slot to store this register. */ int stride = ROUND_ROBIN_SIZE * -UNITS_PER_WORD; rtx p = gen_rtx_PLUS (Pmode, r, GEN_INT (stride)); emit_insn (gen_rtx_SET (VOIDmode, r, p)); } /* Save this register to the stack (but use the old fp value we copied aside if appropriate). */ from_regno = (fp_copy_regno >= 0 && regno == HARD_FRAME_POINTER_REGNUM) ? fp_copy_regno : regno; FRP (frame_emit_store (from_regno, regno, r, cfa, cfa_offset)); offset -= UNITS_PER_WORD; which_scratch = (which_scratch + 1) % ROUND_ROBIN_SIZE; } /* If profiling, force that to happen after the frame is set up. */ if (crtl->profile) emit_insn (gen_blockage ()); /* Load the PIC register if needed. */ if (flag_pic && crtl->uses_pic_offset_table) load_pic_register (false); } /* Implement the epilogue and sibcall_epilogue patterns. SIBCALL_P is true for a sibcall_epilogue pattern, and false for an epilogue pattern. */ void tilegx_expand_epilogue (bool sibcall_p) { /* We round-robin through four scratch registers to hold temporary addresses for saving registers, to make instruction scheduling easier. */ rtx reg_save_addr[ROUND_ROBIN_SIZE] = { NULL_RTX, NULL_RTX, NULL_RTX, NULL_RTX }; rtx last_insn, insn; unsigned int which_scratch; int offset, start_offset, regno; rtx cfa_restores = NULL_RTX; /* A register that holds a copy of the incoming fp. */ int fp_copy_regno = -1; /* Next scratch register number to hand out (postdecrementing). */ int next_scratch_regno = 29; int total_size = compute_total_frame_size (); last_insn = get_last_insn (); /* Load lr first since we are going to need it first. */ insn = NULL; if (df_regs_ever_live_p (TILEGX_LINK_REGNUM)) { insn = frame_emit_load (TILEGX_LINK_REGNUM, compute_frame_addr (0, &next_scratch_regno), &cfa_restores); } if (total_size == 0) { if (insn) { RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = cfa_restores; } goto done; } /* Compute where to start restoring registers. */ start_offset = -crtl->args.pretend_args_size - UNITS_PER_WORD; offset = start_offset; if (frame_pointer_needed) fp_copy_regno = next_scratch_regno--; /* Restore all callee-saved registers. */ which_scratch = 0; for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno--) if (need_to_save_reg (regno)) { rtx r = reg_save_addr[which_scratch]; if (r == NULL_RTX) { r = compute_frame_addr (offset, &next_scratch_regno); reg_save_addr[which_scratch] = r; } else { /* Advance to the next stack slot to store this register. */ int stride = ROUND_ROBIN_SIZE * -UNITS_PER_WORD; rtx p = gen_rtx_PLUS (Pmode, r, GEN_INT (stride)); emit_insn (gen_rtx_SET (VOIDmode, r, p)); } if (fp_copy_regno >= 0 && regno == HARD_FRAME_POINTER_REGNUM) frame_emit_load (fp_copy_regno, r, NULL); else frame_emit_load (regno, r, &cfa_restores); offset -= UNITS_PER_WORD; which_scratch = (which_scratch + 1) % ROUND_ROBIN_SIZE; } if (!tilegx_current_function_is_leaf ()) cfa_restores = alloc_reg_note (REG_CFA_RESTORE, stack_pointer_rtx, cfa_restores); emit_insn (gen_blockage ()); if (crtl->calls_eh_return) { rtx r = compute_frame_addr (-total_size + UNITS_PER_WORD, &next_scratch_regno); insn = emit_move_insn (gen_lowpart (DImode, stack_pointer_rtx), gen_frame_mem (DImode, r)); RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = cfa_restores; } else if (frame_pointer_needed) { /* Restore the old stack pointer by copying from the frame pointer. */ if (TARGET_32BIT) { insn = emit_insn (gen_sp_restore_32bit (stack_pointer_rtx, hard_frame_pointer_rtx)); } else { insn = emit_insn (gen_sp_restore (stack_pointer_rtx, hard_frame_pointer_rtx)); } RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = cfa_restores; add_reg_note (insn, REG_CFA_DEF_CFA, stack_pointer_rtx); } else { insn = emit_sp_adjust (total_size, &next_scratch_regno, true, cfa_restores); } /* Restore the old frame pointer. */ if (frame_pointer_needed) { insn = emit_move_insn (gen_lowpart (DImode, hard_frame_pointer_rtx), gen_rtx_REG (DImode, fp_copy_regno)); add_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx); } /* Mark the pic registers as live outside of the function. */ if (flag_pic) { emit_use (cfun->machine->text_label_rtx); emit_use (cfun->machine->got_rtx); } done: if (!sibcall_p) { emit_jump_insn (gen__return ()); } else { emit_use (gen_rtx_REG (Pmode, TILEGX_LINK_REGNUM)); } /* Mark all insns we just emitted as frame-related. */ for (; last_insn != NULL_RTX; last_insn = next_insn (last_insn)) RTX_FRAME_RELATED_P (last_insn) = 1; } #undef ROUND_ROBIN_SIZE /* Implement INITIAL_ELIMINATION_OFFSET. */ int tilegx_initial_elimination_offset (int from, int to) { int total_size = compute_total_frame_size (); if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM) { return (total_size - crtl->args.pretend_args_size - tilegx_saved_regs_size ()); } else if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) { return -(crtl->args.pretend_args_size + tilegx_saved_regs_size ()); } else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM) { return STACK_POINTER_OFFSET + total_size; } else if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) { return STACK_POINTER_OFFSET; } else gcc_unreachable (); } /* Return an RTX indicating where the return address to the calling function can be found. */ rtx tilegx_return_addr (int count, rtx frame ATTRIBUTE_UNUSED) { if (count != 0) return const0_rtx; return get_hard_reg_initial_val (Pmode, TILEGX_LINK_REGNUM); } /* Implement EH_RETURN_HANDLER_RTX. The MEM needs to be volatile to prevent it from being deleted. */ rtx tilegx_eh_return_handler_rtx (void) { rtx tmp = gen_frame_mem (Pmode, hard_frame_pointer_rtx); MEM_VOLATILE_P (tmp) = true; return tmp; } /* Registers */ /* Implemnet TARGET_CONDITIONAL_REGISTER_USAGE. */ static void tilegx_conditional_register_usage (void) { global_regs[TILEGX_NETORDER_REGNUM] = 1; /* TILEGX_PIC_TEXT_LABEL_REGNUM is conditionally used. It is a member of fixed_regs, and therefore must be member of call_used_regs, but it is not a member of call_really_used_regs[] because it is not clobbered by a call. */ if (TILEGX_PIC_TEXT_LABEL_REGNUM != INVALID_REGNUM) { fixed_regs[TILEGX_PIC_TEXT_LABEL_REGNUM] = 1; call_used_regs[TILEGX_PIC_TEXT_LABEL_REGNUM] = 1; } if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) { fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; } } /* Implement TARGET_FRAME_POINTER_REQUIRED. */ static bool tilegx_frame_pointer_required (void) { return crtl->calls_eh_return || cfun->calls_alloca; } /* Scheduling and reorg */ /* Return the length of INSN. LENGTH is the initial length computed by attributes in the machine-description file. This is where we account for bundles. */ int tilegx_adjust_insn_length (rtx insn, int length) { enum machine_mode mode = GET_MODE (insn); /* A non-termininating instruction in a bundle has length 0. */ if (mode == SImode) return 0; /* By default, there is not length adjustment. */ return length; } /* Implement TARGET_SCHED_ISSUE_RATE. */ static int tilegx_issue_rate (void) { return 3; } /* Return the rtx for the jump target. */ static rtx get_jump_target (rtx branch) { if (CALL_P (branch)) { rtx call; call = PATTERN (branch); if (GET_CODE (call) == PARALLEL) call = XVECEXP (call, 0, 0); if (GET_CODE (call) == SET) call = SET_SRC (call); if (GET_CODE (call) == CALL) return XEXP (XEXP (call, 0), 0); } return 0; } /* Implement TARGET_SCHED_ADJUST_COST. */ static int tilegx_sched_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost) { /* If we have a true dependence, INSN is a call, and DEP_INSN defines a register that is needed by the call (argument or stack pointer) , set its latency to 0 so that it can be bundled with the call. Explicitly check for and exclude the case when DEP_INSN defines the target of the jump. */ if (CALL_P (insn) && REG_NOTE_KIND (link) == REG_DEP_TRUE) { rtx target = get_jump_target (insn); if (!REG_P (target) || !set_of (target, dep_insn)) return 0; } return cost; } /* Skip over irrelevant NOTEs and such and look for the next insn we would consider bundling. */ static rtx next_insn_to_bundle (rtx r, rtx end) { for (; r != end; r = NEXT_INSN (r)) { if (NONDEBUG_INSN_P (r) && GET_CODE (PATTERN (r)) != USE && GET_CODE (PATTERN (r)) != CLOBBER) return r; } return NULL_RTX; } /* Go through all insns, and use the information generated during scheduling to generate SEQUENCEs to represent bundles of instructions issued simultaneously. */ static void tilegx_gen_bundles (void) { basic_block bb; FOR_EACH_BB (bb) { rtx insn, next; rtx end = NEXT_INSN (BB_END (bb)); for (insn = next_insn_to_bundle (BB_HEAD (bb), end); insn; insn = next) { next = next_insn_to_bundle (NEXT_INSN (insn), end); /* Never wrap {} around inline asm. */ if (GET_CODE (PATTERN (insn)) != ASM_INPUT) { if (next == NULL_RTX || GET_MODE (next) == TImode /* NOTE: The scheduler incorrectly believes a call insn can execute in the same cycle as the insn after the call. This is of course impossible. Really we need to fix the scheduler somehow, so the code after the call gets scheduled optimally. */ || CALL_P (insn)) { /* Mark current insn as the end of a bundle. */ PUT_MODE (insn, QImode); } else { /* Mark it as part of a bundle. */ PUT_MODE (insn, SImode); } } } } } /* Replace OLD_INSN with NEW_INSN. */ static void replace_insns (rtx old_insn, rtx new_insns) { if (new_insns) emit_insn_before (new_insns, old_insn); delete_insn (old_insn); } /* Returns true if INSN is the first instruction of a pc-relative address compuatation. */ static bool match_pcrel_step1 (rtx insn) { rtx pattern = PATTERN (insn); rtx src; if (GET_CODE (pattern) != SET) return false; src = SET_SRC (pattern); return (GET_CODE (src) == CONST && GET_CODE (XEXP (src, 0)) == UNSPEC && XINT (XEXP (src, 0), 1) == UNSPEC_HW1_LAST_PCREL); } /* Do the first replacement step in tilegx_fixup_pcrel_references. */ static void replace_mov_pcrel_step1 (rtx insn) { rtx pattern = PATTERN (insn); rtx unspec; rtx opnds[2]; rtx new_insns; gcc_assert (GET_CODE (pattern) == SET); opnds[0] = SET_DEST (pattern); gcc_assert (GET_CODE (SET_SRC (pattern)) == CONST); unspec = XEXP (SET_SRC (pattern), 0); gcc_assert (GET_CODE (unspec) == UNSPEC); gcc_assert (XINT (unspec, 1) == UNSPEC_HW1_LAST_PCREL); opnds[1] = XVECEXP (unspec, 0, 0); /* We only need to replace SYMBOL_REFs, not LABEL_REFs. */ if (GET_CODE (opnds[1]) != SYMBOL_REF) return; start_sequence (); if (flag_pic != 1) { if (TARGET_32BIT) emit_insn (gen_mov_got32_step1_32bit (opnds[0], opnds[1])); else emit_insn (gen_mov_got32_step1 (opnds[0], opnds[1])); } new_insns = get_insns (); end_sequence (); replace_insns (insn, new_insns); } /* Returns true if INSN is the second instruction of a pc-relative address compuatation. */ static bool match_pcrel_step2 (rtx insn) { rtx unspec; rtx addr; if (TARGET_32BIT) { if (recog_memoized (insn) != CODE_FOR_insn_addr_shl16insli_32bit) return false; } else { if (recog_memoized (insn) != CODE_FOR_insn_addr_shl16insli) return false; } unspec = SET_SRC (PATTERN (insn)); addr = XVECEXP (unspec, 0, 1); return (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == UNSPEC && XINT (XEXP (addr, 0), 1) == UNSPEC_HW0_PCREL); } /* Do the second replacement step in tilegx_fixup_pcrel_references. */ static void replace_mov_pcrel_step2 (rtx insn) { rtx pattern = PATTERN (insn); rtx unspec; rtx addr; rtx opnds[3]; rtx new_insns; rtx got_rtx = tilegx_got_rtx (); gcc_assert (GET_CODE (pattern) == SET); opnds[0] = SET_DEST (pattern); unspec = SET_SRC (pattern); gcc_assert (GET_CODE (unspec) == UNSPEC); gcc_assert (XINT (unspec, 1) == UNSPEC_INSN_ADDR_SHL16INSLI); opnds[1] = XVECEXP (unspec, 0, 0); addr = XVECEXP (unspec, 0, 1); gcc_assert (GET_CODE (addr) == CONST); unspec = XEXP (addr, 0); gcc_assert (GET_CODE (unspec) == UNSPEC); gcc_assert (XINT (unspec, 1) == UNSPEC_HW0_PCREL); opnds[2] = XVECEXP (unspec, 0, 0); /* We only need to replace SYMBOL_REFs, not LABEL_REFs. */ if (GET_CODE (opnds[2]) != SYMBOL_REF) return; start_sequence (); if (flag_pic == 1) { if (TARGET_32BIT) emit_insn (gen_add_got16_32bit (opnds[0], got_rtx, opnds[2])); else emit_insn (gen_add_got16 (opnds[0], got_rtx, opnds[2])); } else { if (TARGET_32BIT) emit_insn (gen_mov_got32_step2_32bit (opnds[0], opnds[1], opnds[2])); else emit_insn (gen_mov_got32_step2 (opnds[0], opnds[1], opnds[2])); } new_insns = get_insns (); end_sequence (); replace_insns (insn, new_insns); } /* Do the third replacement step in tilegx_fixup_pcrel_references. */ static void replace_mov_pcrel_step3 (rtx insn) { rtx pattern = PATTERN (insn); rtx unspec; rtx opnds[4]; rtx new_insns; rtx got_rtx = tilegx_got_rtx (); rtx text_label_rtx = tilegx_text_label_rtx (); gcc_assert (GET_CODE (pattern) == SET); opnds[0] = SET_DEST (pattern); unspec = SET_SRC (pattern); gcc_assert (GET_CODE (unspec) == UNSPEC); gcc_assert (XINT (unspec, 1) == UNSPEC_MOV_PCREL_STEP3); opnds[1] = got_rtx; if (XVECEXP (unspec, 0, 0) == text_label_rtx) opnds[2] = XVECEXP (unspec, 0, 1); else { gcc_assert (XVECEXP (unspec, 0, 1) == text_label_rtx); opnds[2] = XVECEXP (unspec, 0, 0); } opnds[3] = XVECEXP (unspec, 0, 2); /* We only need to replace SYMBOL_REFs, not LABEL_REFs. */ if (GET_CODE (opnds[3]) != SYMBOL_REF) return; start_sequence (); if (flag_pic == 1) { emit_move_insn (opnds[0], gen_const_mem (Pmode, opnds[2])); } else { emit_move_insn (opnds[0], gen_rtx_PLUS (Pmode, opnds[1], opnds[2])); emit_move_insn (opnds[0], gen_const_mem (Pmode, opnds[0])); } new_insns = get_insns (); end_sequence (); replace_insns (insn, new_insns); } /* We generate PC relative SYMBOL_REFs as an optimization, to avoid going through the GOT when the symbol is local to the compilation unit. But such a symbol requires that the common text_label that we generate at the beginning of the function be in the same section as the reference to the SYMBOL_REF. This may not be true if we generate hot/cold sections. This function looks for such cases and replaces such references with the longer sequence going through the GOT. We expect following instruction sequence: moveli tmp1, hw1_last(x-.L_PICLNK) [1] shl16insli tmp2, tmp1, hw0(x-.L_PICLNK) [2] add<x> tmp3, txt_label_reg, tmp2 [3] If we're compiling -fpic, we replace with the following sequence (the numbers in brackets match the instructions they're replacing above). add<x>li tmp2, got_reg, hw0_last_got(x) [2] ld<4> tmp3, tmp2 [3] If we're compiling -fPIC, we replace the first instruction with: moveli tmp1, hw1_last_got(x) [1] shl16insli tmp2, tmp1, hw0_got(x) [2] add<x> tmp3, got_reg, tmp2 [3] ld<4> tmp3, tmp3 [3] Note that we're careful to disturb the instruction sequence as little as possible, since it's very late in the compilation process. */ static void tilegx_fixup_pcrel_references (void) { rtx insn, next_insn; bool same_section_as_entry = true; for (insn = get_insns (); insn; insn = next_insn) { next_insn = NEXT_INSN (insn); if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS) { same_section_as_entry = !same_section_as_entry; continue; } if (same_section_as_entry) continue; if (!(INSN_P (insn) && GET_CODE (PATTERN (insn)) != USE && GET_CODE (PATTERN (insn)) != CLOBBER)) continue; if (TARGET_32BIT) { if (match_pcrel_step1 (insn)) replace_mov_pcrel_step1 (insn); else if (match_pcrel_step2 (insn)) replace_mov_pcrel_step2 (insn); else if (recog_memoized (insn) == CODE_FOR_mov_pcrel_step3_32bit) replace_mov_pcrel_step3 (insn); } else { if (match_pcrel_step1 (insn)) replace_mov_pcrel_step1 (insn); else if (match_pcrel_step2 (insn)) replace_mov_pcrel_step2 (insn); else if (recog_memoized (insn) == CODE_FOR_mov_pcrel_step3) replace_mov_pcrel_step3 (insn); } } } /* Ensure that no var tracking notes are emitted in the middle of a three-instruction bundle. */ static void reorder_var_tracking_notes (void) { basic_block bb; FOR_EACH_BB (bb) { rtx insn, next; rtx queue = NULL_RTX; bool in_bundle = false; for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = next) { next = NEXT_INSN (insn); if (INSN_P (insn)) { /* Emit queued up notes at the last instruction of a bundle. */ if (GET_MODE (insn) == QImode) { while (queue) { rtx next_queue = PREV_INSN (queue); PREV_INSN (NEXT_INSN (insn)) = queue; NEXT_INSN (queue) = NEXT_INSN (insn); NEXT_INSN (insn) = queue; PREV_INSN (queue) = insn; queue = next_queue; } in_bundle = false; } else if (GET_MODE (insn) == SImode) in_bundle = true; } else if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION) { if (in_bundle) { rtx prev = PREV_INSN (insn); PREV_INSN (next) = prev; NEXT_INSN (prev) = next; PREV_INSN (insn) = queue; queue = insn; } } } } } /* Perform machine dependent operations on the rtl chain INSNS. */ static void tilegx_reorg (void) { /* We are freeing block_for_insn in the toplev to keep compatibility with old MDEP_REORGS that are not CFG based. Recompute it now. */ compute_bb_for_insn (); if (flag_reorder_blocks_and_partition) { tilegx_fixup_pcrel_references (); } if (flag_schedule_insns_after_reload) { split_all_insns (); timevar_push (TV_SCHED2); schedule_insns (); timevar_pop (TV_SCHED2); /* Examine the schedule to group into bundles. */ tilegx_gen_bundles (); } df_analyze (); if (flag_var_tracking) { timevar_push (TV_VAR_TRACKING); variable_tracking_main (); reorder_var_tracking_notes (); timevar_pop (TV_VAR_TRACKING); } df_finish_pass (false); } /* Assembly */ /* Select a format to encode pointers in exception handling data. CODE is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is true if the symbol may be affected by dynamic relocations. */ int tilegx_asm_preferred_eh_data_format (int code ATTRIBUTE_UNUSED, int global) { if (flag_pic) { int type = TARGET_32BIT ? DW_EH_PE_sdata4 : DW_EH_PE_sdata8; return (global ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | type; } else return DW_EH_PE_absptr; } /* Implement TARGET_ASM_OUTPUT_MI_THUNK. */ static void tilegx_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED, HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, tree function) { rtx this_rtx, insn, funexp, addend; /* Pretend to be a post-reload pass while generating rtl. */ reload_completed = 1; /* Mark the end of the (empty) prologue. */ emit_note (NOTE_INSN_PROLOGUE_END); /* Find the "this" pointer. If the function returns a structure, the structure return pointer is in $1. */ if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function)) this_rtx = gen_rtx_REG (Pmode, 1); else this_rtx = gen_rtx_REG (Pmode, 0); /* Add DELTA to THIS_RTX. */ if (!(delta >= -32868 && delta <= 32767)) { addend = gen_rtx_REG (Pmode, 29); emit_move_insn (addend, GEN_INT (delta)); } else addend = GEN_INT (delta); if (TARGET_32BIT) emit_insn (gen_addsi3 (this_rtx, this_rtx, addend)); else emit_insn (gen_adddi3 (this_rtx, this_rtx, addend)); /* If needed, add *(*THIS_RTX + VCALL_OFFSET) to THIS_RTX. */ if (vcall_offset) { rtx tmp; tmp = gen_rtx_REG (Pmode, 29); emit_move_insn (tmp, gen_rtx_MEM (Pmode, this_rtx)); if (!(vcall_offset >= -32868 && vcall_offset <= 32767)) { addend = gen_rtx_REG (Pmode, 28); emit_move_insn (addend, GEN_INT (vcall_offset)); } else addend = GEN_INT (vcall_offset); if (TARGET_32BIT) emit_insn (gen_addsi3 (tmp, tmp, addend)); else emit_insn (gen_adddi3 (tmp, tmp, addend)); emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp)); if (TARGET_32BIT) emit_insn (gen_addsi3 (this_rtx, this_rtx, tmp)); else emit_insn (gen_adddi3 (this_rtx, this_rtx, tmp)); } /* Generate a tail call to the target function. */ if (!TREE_USED (function)) { assemble_external (function); TREE_USED (function) = 1; } funexp = XEXP (DECL_RTL (function), 0); funexp = gen_rtx_MEM (FUNCTION_MODE, funexp); insn = emit_call_insn (gen_sibcall (funexp, const0_rtx)); SIBLING_CALL_P (insn) = 1; /* Run just enough of rest_of_compilation to get the insns emitted. There's not really enough bulk here to make other passes such as instruction scheduling worth while. Note that use_thunk calls assemble_start_function and assemble_end_function. We don't currently bundle, but the instruciton sequence is all serial except for the tail call, so we're only wasting one cycle. */ insn = get_insns (); insn_locators_alloc (); shorten_branches (insn); final_start_function (insn, file, 1); final (insn, file, 1); final_end_function (); /* Stop pretending to be a post-reload pass. */ reload_completed = 0; } /* Implement TARGET_ASM_TRAMPOLINE_TEMPLATE. */ static void tilegx_asm_trampoline_template (FILE *file) { int ptr_mode_size = GET_MODE_SIZE (ptr_mode); if (TARGET_32BIT) { fprintf (file, "\tlnk r10\n"); fprintf (file, "\taddxi r10, r10, 32\n"); fprintf (file, "\tld4s_add r11, r10, %d\n", ptr_mode_size); fprintf (file, "\tld4s r10, r10\n"); fprintf (file, "\tjr r11\n"); fprintf (file, "\t.word 0 # <function address>\n"); fprintf (file, "\t.word 0 # <static chain value>\n"); } else { fprintf (file, "\tlnk r10\n"); fprintf (file, "\taddi r10, r10, 32\n"); fprintf (file, "\tld_add r11, r10, %d\n", ptr_mode_size); fprintf (file, "\tld r10, r10\n"); fprintf (file, "\tjr r11\n"); fprintf (file, "\t.quad 0 # <function address>\n"); fprintf (file, "\t.quad 0 # <static chain value>\n"); } } /* Implement TARGET_TRAMPOLINE_INIT. */ static void tilegx_trampoline_init (rtx m_tramp, tree fndecl, rtx static_chain) { rtx fnaddr, chaddr; rtx mem; rtx begin_addr, end_addr; int ptr_mode_size = GET_MODE_SIZE (ptr_mode); fnaddr = copy_to_reg (XEXP (DECL_RTL (fndecl), 0)); chaddr = copy_to_reg (static_chain); emit_block_move (m_tramp, assemble_trampoline_template (), GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL); mem = adjust_address (m_tramp, ptr_mode, TRAMPOLINE_SIZE - 2 * ptr_mode_size); emit_move_insn (mem, fnaddr); mem = adjust_address (m_tramp, ptr_mode, TRAMPOLINE_SIZE - ptr_mode_size); emit_move_insn (mem, chaddr); /* Get pointers to the beginning and end of the code block. */ begin_addr = force_reg (Pmode, XEXP (m_tramp, 0)); end_addr = force_reg (Pmode, plus_constant (XEXP (m_tramp, 0), TRAMPOLINE_SIZE)); emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__clear_cache"), LCT_NORMAL, VOIDmode, 2, begin_addr, Pmode, end_addr, Pmode); } /* Implement TARGET_PRINT_OPERAND. */ static void tilegx_print_operand (FILE *file, rtx x, int code) { switch (code) { case 'c': /* Print the compare operator opcode for conditional moves. */ switch (GET_CODE (x)) { case EQ: fputs ("z", file); break; case NE: fputs ("nz", file); break; default: output_operand_lossage ("invalid %%c operand"); } return; case 'C': /* Print the compare operator opcode for conditional moves. */ switch (GET_CODE (x)) { case EQ: fputs ("nz", file); break; case NE: fputs ("z", file); break; default: output_operand_lossage ("invalid %%C operand"); } return; case 'd': { /* Print the compare operator opcode for conditional moves. */ switch (GET_CODE (x)) { case EQ: fputs ("eq", file); break; case NE: fputs ("ne", file); break; default: output_operand_lossage ("invalid %%d operand"); } return; } case 'D': { /* Print the compare operator opcode for conditional moves. */ switch (GET_CODE (x)) { case EQ: fputs ("ne", file); break; case NE: fputs ("eq", file); break; default: output_operand_lossage ("invalid %%D operand"); } return; } case 'H': { if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == UNSPEC) { rtx addr = XVECEXP (XEXP (x, 0), 0, 0); int unspec = XINT (XEXP (x, 0), 1); const char *opstr = NULL; switch (unspec) { case UNSPEC_HW0: case UNSPEC_HW0_PCREL: opstr = "hw0"; break; case UNSPEC_HW1: opstr = "hw1"; break; case UNSPEC_HW2: opstr = "hw2"; break; case UNSPEC_HW3: opstr = "hw3"; break; case UNSPEC_HW0_LAST: opstr = "hw0_last"; break; case UNSPEC_HW1_LAST: case UNSPEC_HW1_LAST_PCREL: opstr = "hw1_last"; break; case UNSPEC_HW2_LAST: opstr = "hw2_last"; break; case UNSPEC_HW0_GOT: opstr = "hw0_got"; break; case UNSPEC_HW0_LAST_GOT: opstr = "hw0_last_got"; break; case UNSPEC_HW1_LAST_GOT: opstr = "hw1_last_got"; break; case UNSPEC_HW0_TLS_GD: opstr = "hw0_tls_gd"; break; case UNSPEC_HW1_LAST_TLS_GD: opstr = "hw1_last_tls_gd"; break; case UNSPEC_HW0_TLS_IE: opstr = "hw0_tls_ie"; break; case UNSPEC_HW1_LAST_TLS_IE: opstr = "hw1_last_tls_ie"; break; case UNSPEC_HW0_TLS_LE: opstr = "hw0_tls_le"; break; case UNSPEC_HW1_LAST_TLS_LE: opstr = "hw1_last_tls_le"; break; default: output_operand_lossage ("invalid %%H specifier"); } fputs (opstr, file); fputc ('(', file); output_addr_const (file, addr); if (unspec == UNSPEC_HW0_PCREL || unspec == UNSPEC_HW1_LAST_PCREL) { rtx addr2 = XVECEXP (XEXP (x, 0), 0, 1); fputs (" - " , file); output_addr_const (file, addr2); } fputc (')', file); return; } else if (symbolic_operand (x, VOIDmode)) { output_addr_const (file, x); return; } } /* FALLTHRU */ case 'h': { /* Print the low 16 bits of a constant. */ HOST_WIDE_INT i; if (CONST_INT_P (x)) i = INTVAL (x); else if (GET_CODE (x) == CONST_DOUBLE) i = CONST_DOUBLE_LOW (x); else { output_operand_lossage ("invalid %%h operand"); return; } i = trunc_int_for_mode (i, HImode); fprintf (file, HOST_WIDE_INT_PRINT_DEC, i); return; } case 'I': /* Print an auto-inc memory operand. */ if (!MEM_P (x)) { output_operand_lossage ("invalid %%I operand"); return; } output_memory_reference_mode = GET_MODE (x); output_memory_autoinc_first = true; output_address (XEXP (x, 0)); output_memory_reference_mode = VOIDmode; return; case 'i': /* Print an auto-inc memory operand. */ if (!MEM_P (x)) { output_operand_lossage ("invalid %%i operand"); return; } output_memory_reference_mode = GET_MODE (x); output_memory_autoinc_first = false; output_address (XEXP (x, 0)); output_memory_reference_mode = VOIDmode; return; case 'j': { /* Print the low 8 bits of a constant. */ HOST_WIDE_INT i; if (CONST_INT_P (x)) i = INTVAL (x); else if (GET_CODE (x) == CONST_DOUBLE) i = CONST_DOUBLE_LOW (x); else if (GET_CODE (x) == CONST_VECTOR && CONST_INT_P (CONST_VECTOR_ELT (x, 0))) i = INTVAL (CONST_VECTOR_ELT (x, 0)); else { output_operand_lossage ("invalid %%j operand"); return; } i = trunc_int_for_mode (i, QImode); fprintf (file, HOST_WIDE_INT_PRINT_DEC, i); return; } case 'P': { /* Print a constant plus one. */ if (!CONST_INT_P (x)) { output_operand_lossage ("invalid %%P operand"); return; } fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) + 1); return; } case 'm': case 'M': { /* Print a bfextu-style bit range. */ int first_bit, last_bit; HOST_WIDE_INT flip = (code == 'm') ? ~0 : 0; if (!CONST_INT_P (x) || !tilegx_bitfield_operand_p (INTVAL (x) ^ flip, &first_bit, &last_bit)) { output_operand_lossage ("invalid %%%c operand", code); return; } fprintf (file, "%d, %d", first_bit, last_bit); return; } case 'N': { const char *reg = NULL; /* Print a network register. */ if (!CONST_INT_P (x)) { output_operand_lossage ("invalid %%N operand"); return; } switch (INTVAL (x)) { case TILEGX_NETREG_IDN0: reg = "idn0"; break; case TILEGX_NETREG_IDN1: reg = "idn1"; break; case TILEGX_NETREG_UDN0: reg = "udn0"; break; case TILEGX_NETREG_UDN1: reg = "udn1"; break; case TILEGX_NETREG_UDN2: reg = "udn2"; break; case TILEGX_NETREG_UDN3: reg = "udn3"; break; default: gcc_unreachable (); } fprintf (file, reg); return; } case 'p': if (GET_CODE (x) == SYMBOL_REF) { if (flag_pic && !SYMBOL_REF_LOCAL_P (x)) fprintf (file, "plt("); output_addr_const (file, x); if (flag_pic && !SYMBOL_REF_LOCAL_P (x)) fprintf (file, ")"); } else output_addr_const (file, x); return; case 'r': /* In this case we need a register. Use 'zero' if the operand is const0_rtx. */ if (x == const0_rtx || (GET_MODE (x) != VOIDmode && x == CONST0_RTX (GET_MODE (x)))) { fputs ("zero", file); return; } else if (!REG_P (x)) { output_operand_lossage ("invalid operand for 'r' specifier"); return; } /* FALLTHRU */ case 0: if (REG_P (x)) { fprintf (file, "%s", reg_names[REGNO (x)]); return; } else if (MEM_P (x)) { output_memory_reference_mode = VOIDmode; output_address (XEXP (x, 0)); return; } else { output_addr_const (file, x); return; } } debug_rtx (x); output_operand_lossage ("unable to print out operand yet; code == %d (%c)", code, code); } /* Implement TARGET_PRINT_OPERAND_ADDRESS. */ static void tilegx_print_operand_address (FILE *file, rtx addr) { if (GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC) { int offset = GET_MODE_SIZE (output_memory_reference_mode); gcc_assert (output_memory_reference_mode != VOIDmode); if (output_memory_autoinc_first) fprintf (file, "%s", reg_names[REGNO (XEXP (addr, 0))]); else fprintf (file, "%d", GET_CODE (addr) == POST_DEC ? -offset : offset); } else if (GET_CODE (addr) == POST_MODIFY) { gcc_assert (output_memory_reference_mode != VOIDmode); gcc_assert (GET_CODE (XEXP (addr, 1)) == PLUS); if (output_memory_autoinc_first) fprintf (file, "%s", reg_names[REGNO (XEXP (addr, 0))]); else fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (XEXP (XEXP (addr, 1), 1))); } else tilegx_print_operand (file, addr, 'r'); } /* Machine mode of current insn, for determining curly brace placement. */ static enum machine_mode insn_mode; /* Implement FINAL_PRESCAN_INSN. This is used to emit bundles. */ void tilegx_final_prescan_insn (rtx insn) { /* Record this for tilegx_asm_output_opcode to examine. */ insn_mode = GET_MODE (insn); } /* While emitting asm, are we currently inside '{' for a bundle? */ static bool tilegx_in_bundle = false; /* Implement ASM_OUTPUT_OPCODE. Prepend/append curly braces as appropriate given the bundling information recorded by tilegx_gen_bundles. */ const char * tilegx_asm_output_opcode (FILE *stream, const char *code) { bool pseudo = !strcmp (code, "pseudo"); if (!tilegx_in_bundle && insn_mode == SImode) { /* Start a new bundle. */ fprintf (stream, "{\n\t"); tilegx_in_bundle = true; } if (tilegx_in_bundle && insn_mode == QImode) { /* Close an existing bundle. */ static char buf[100]; gcc_assert (strlen (code) + 3 + 1 < sizeof (buf)); strcpy (buf, pseudo ? "" : code); strcat (buf, "\n\t}"); tilegx_in_bundle = false; return buf; } else { return pseudo ? "" : code; } } /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. */ void tilegx_function_profiler (FILE *file, int labelno ATTRIBUTE_UNUSED) { if (tilegx_in_bundle) { fprintf (file, "\t}\n"); } if (flag_pic) { fprintf (file, "\t{\n" "\tmove\tr10, lr\n" "\tjal\t%s@plt\n" "\t}\n", MCOUNT_NAME); } else { fprintf (file, "\t{\n" "\tmove\tr10, lr\n" "\tjal\t%s\n" "\t}\t\n", MCOUNT_NAME); } tilegx_in_bundle = false; } /* Implement TARGET_ASM_FILE_END. */ static void tilegx_file_end (void) { if (NEED_INDICATE_EXEC_STACK) file_end_indicate_exec_stack (); } #undef TARGET_HAVE_TLS #define TARGET_HAVE_TLS HAVE_AS_TLS #undef TARGET_OPTION_OVERRIDE #define TARGET_OPTION_OVERRIDE tilegx_option_override #undef TARGET_SCALAR_MODE_SUPPORTED_P #define TARGET_SCALAR_MODE_SUPPORTED_P tilegx_scalar_mode_supported_p #undef TARGET_VECTOR_MODE_SUPPORTED_P #define TARGET_VECTOR_MODE_SUPPORTED_P tilegx_vector_mode_supported_p #undef TARGET_CANNOT_FORCE_CONST_MEM #define TARGET_CANNOT_FORCE_CONST_MEM tilegx_cannot_force_const_mem #undef TARGET_FUNCTION_OK_FOR_SIBCALL #define TARGET_FUNCTION_OK_FOR_SIBCALL tilegx_function_ok_for_sibcall #undef TARGET_PASS_BY_REFERENCE #define TARGET_PASS_BY_REFERENCE tilegx_pass_by_reference #undef TARGET_RETURN_IN_MEMORY #define TARGET_RETURN_IN_MEMORY tilegx_return_in_memory #undef TARGET_MODE_REP_EXTENDED #define TARGET_MODE_REP_EXTENDED tilegx_mode_rep_extended #undef TARGET_FUNCTION_ARG_BOUNDARY #define TARGET_FUNCTION_ARG_BOUNDARY tilegx_function_arg_boundary #undef TARGET_FUNCTION_ARG #define TARGET_FUNCTION_ARG tilegx_function_arg #undef TARGET_FUNCTION_ARG_ADVANCE #define TARGET_FUNCTION_ARG_ADVANCE tilegx_function_arg_advance #undef TARGET_FUNCTION_VALUE #define TARGET_FUNCTION_VALUE tilegx_function_value #undef TARGET_LIBCALL_VALUE #define TARGET_LIBCALL_VALUE tilegx_libcall_value #undef TARGET_FUNCTION_VALUE_REGNO_P #define TARGET_FUNCTION_VALUE_REGNO_P tilegx_function_value_regno_p #undef TARGET_PROMOTE_FUNCTION_MODE #define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote #undef TARGET_PROMOTE_PROTOTYPES #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_false #undef TARGET_BUILD_BUILTIN_VA_LIST #define TARGET_BUILD_BUILTIN_VA_LIST tilegx_build_builtin_va_list #undef TARGET_EXPAND_BUILTIN_VA_START #define TARGET_EXPAND_BUILTIN_VA_START tilegx_va_start #undef TARGET_SETUP_INCOMING_VARARGS #define TARGET_SETUP_INCOMING_VARARGS tilegx_setup_incoming_varargs #undef TARGET_GIMPLIFY_VA_ARG_EXPR #define TARGET_GIMPLIFY_VA_ARG_EXPR tilegx_gimplify_va_arg_expr #undef TARGET_RTX_COSTS #define TARGET_RTX_COSTS tilegx_rtx_costs #undef TARGET_SHIFT_TRUNCATION_MASK #define TARGET_SHIFT_TRUNCATION_MASK tilegx_shift_truncation_mask #undef TARGET_INIT_LIBFUNCS #define TARGET_INIT_LIBFUNCS tilegx_init_libfuncs /* Limit to what we can reach in one addli. */ #undef TARGET_MIN_ANCHOR_OFFSET #define TARGET_MIN_ANCHOR_OFFSET -32768 #undef TARGET_MAX_ANCHOR_OFFSET #define TARGET_MAX_ANCHOR_OFFSET 32767 #undef TARGET_LEGITIMATE_CONSTANT_P #define TARGET_LEGITIMATE_CONSTANT_P tilegx_legitimate_constant_p #undef TARGET_LEGITIMATE_ADDRESS_P #define TARGET_LEGITIMATE_ADDRESS_P tilegx_legitimate_address_p #undef TARGET_LEGITIMIZE_ADDRESS #define TARGET_LEGITIMIZE_ADDRESS tilegx_legitimize_address #undef TARGET_DELEGITIMIZE_ADDRESS #define TARGET_DELEGITIMIZE_ADDRESS tilegx_delegitimize_address #undef TARGET_INIT_BUILTINS #define TARGET_INIT_BUILTINS tilegx_init_builtins #undef TARGET_BUILTIN_DECL #define TARGET_BUILTIN_DECL tilegx_builtin_decl #undef TARGET_EXPAND_BUILTIN #define TARGET_EXPAND_BUILTIN tilegx_expand_builtin #undef TARGET_CONDITIONAL_REGISTER_USAGE #define TARGET_CONDITIONAL_REGISTER_USAGE tilegx_conditional_register_usage #undef TARGET_FRAME_POINTER_REQUIRED #define TARGET_FRAME_POINTER_REQUIRED tilegx_frame_pointer_required #undef TARGET_DELAY_SCHED2 #define TARGET_DELAY_SCHED2 true #undef TARGET_DELAY_VARTRACK #define TARGET_DELAY_VARTRACK true #undef TARGET_SCHED_ISSUE_RATE #define TARGET_SCHED_ISSUE_RATE tilegx_issue_rate #undef TARGET_SCHED_ADJUST_COST #define TARGET_SCHED_ADJUST_COST tilegx_sched_adjust_cost #undef TARGET_MACHINE_DEPENDENT_REORG #define TARGET_MACHINE_DEPENDENT_REORG tilegx_reorg #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK #define TARGET_ASM_CAN_OUTPUT_MI_THUNK \ hook_bool_const_tree_hwi_hwi_const_tree_true #undef TARGET_ASM_OUTPUT_MI_THUNK #define TARGET_ASM_OUTPUT_MI_THUNK tilegx_output_mi_thunk #undef TARGET_ASM_TRAMPOLINE_TEMPLATE #define TARGET_ASM_TRAMPOLINE_TEMPLATE tilegx_asm_trampoline_template #undef TARGET_TRAMPOLINE_INIT #define TARGET_TRAMPOLINE_INIT tilegx_trampoline_init #undef TARGET_PRINT_OPERAND #define TARGET_PRINT_OPERAND tilegx_print_operand #undef TARGET_PRINT_OPERAND_ADDRESS #define TARGET_PRINT_OPERAND_ADDRESS tilegx_print_operand_address #undef TARGET_ASM_FILE_END #define TARGET_ASM_FILE_END tilegx_file_end #undef TARGET_ASM_ALIGNED_DI_OP #define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t" struct gcc_target targetm = TARGET_INITIALIZER; #include "gt-tilegx.h"