URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [fortran/] [trans-array.c] - Rev 801
Go to most recent revision | Compare with Previous | Blame | View Log
/* Array translation routines Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc. Contributed by Paul Brook <paul@nowt.org> and Steven Bosscher <s.bosscher@student.tudelft.nl> This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ /* trans-array.c-- Various array related code, including scalarization, allocation, initialization and other support routines. */ /* How the scalarizer works. In gfortran, array expressions use the same core routines as scalar expressions. First, a Scalarization State (SS) chain is built. This is done by walking the expression tree, and building a linear list of the terms in the expression. As the tree is walked, scalar subexpressions are translated. The scalarization parameters are stored in a gfc_loopinfo structure. First the start and stride of each term is calculated by gfc_conv_ss_startstride. During this process the expressions for the array descriptors and data pointers are also translated. If the expression is an assignment, we must then resolve any dependencies. In fortran all the rhs values of an assignment must be evaluated before any assignments take place. This can require a temporary array to store the values. We also require a temporary when we are passing array expressions or vector subscripts as procedure parameters. Array sections are passed without copying to a temporary. These use the scalarizer to determine the shape of the section. The flag loop->array_parameter tells the scalarizer that the actual values and loop variables will not be required. The function gfc_conv_loop_setup generates the scalarization setup code. It determines the range of the scalarizing loop variables. If a temporary is required, this is created and initialized. Code for scalar expressions taken outside the loop is also generated at this time. Next the offset and scaling required to translate from loop variables to array indices for each term is calculated. A call to gfc_start_scalarized_body marks the start of the scalarized expression. This creates a scope and declares the loop variables. Before calling this gfc_make_ss_chain_used must be used to indicate which terms will be used inside this loop. The scalar gfc_conv_* functions are then used to build the main body of the scalarization loop. Scalarization loop variables and precalculated scalar values are automatically substituted. Note that gfc_advance_se_ss_chain must be used, rather than changing the se->ss directly. For assignment expressions requiring a temporary two sub loops are generated. The first stores the result of the expression in the temporary, the second copies it to the result. A call to gfc_trans_scalarized_loop_boundary marks the end of the main loop code and the start of the copying loop. The temporary may be less than full rank. Finally gfc_trans_scalarizing_loops is called to generate the implicit do loops. The loops are added to the pre chain of the loopinfo. The post chain may still contain cleanup code. After the loop code has been added into its parent scope gfc_cleanup_loop is called to free all the SS allocated by the scalarizer. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tree.h" #include "gimple.h" #include "diagnostic-core.h" /* For internal_error/fatal_error. */ #include "flags.h" #include "gfortran.h" #include "constructor.h" #include "trans.h" #include "trans-stmt.h" #include "trans-types.h" #include "trans-array.h" #include "trans-const.h" #include "dependency.h" static bool gfc_get_array_constructor_size (mpz_t *, gfc_constructor_base); /* The contents of this structure aren't actually used, just the address. */ static gfc_ss gfc_ss_terminator_var; gfc_ss * const gfc_ss_terminator = &gfc_ss_terminator_var; static tree gfc_array_dataptr_type (tree desc) { return (GFC_TYPE_ARRAY_DATAPTR_TYPE (TREE_TYPE (desc))); } /* Build expressions to access the members of an array descriptor. It's surprisingly easy to mess up here, so never access an array descriptor by "brute force", always use these functions. This also avoids problems if we change the format of an array descriptor. To understand these magic numbers, look at the comments before gfc_build_array_type() in trans-types.c. The code within these defines should be the only code which knows the format of an array descriptor. Any code just needing to read obtain the bounds of an array should use gfc_conv_array_* rather than the following functions as these will return know constant values, and work with arrays which do not have descriptors. Don't forget to #undef these! */ #define DATA_FIELD 0 #define OFFSET_FIELD 1 #define DTYPE_FIELD 2 #define DIMENSION_FIELD 3 #define CAF_TOKEN_FIELD 4 #define STRIDE_SUBFIELD 0 #define LBOUND_SUBFIELD 1 #define UBOUND_SUBFIELD 2 /* This provides READ-ONLY access to the data field. The field itself doesn't have the proper type. */ tree gfc_conv_descriptor_data_get (tree desc) { tree field, type, t; type = TREE_TYPE (desc); gcc_assert (GFC_DESCRIPTOR_TYPE_P (type)); field = TYPE_FIELDS (type); gcc_assert (DATA_FIELD == 0); t = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), desc, field, NULL_TREE); t = fold_convert (GFC_TYPE_ARRAY_DATAPTR_TYPE (type), t); return t; } /* This provides WRITE access to the data field. TUPLES_P is true if we are generating tuples. This function gets called through the following macros: gfc_conv_descriptor_data_set gfc_conv_descriptor_data_set. */ void gfc_conv_descriptor_data_set (stmtblock_t *block, tree desc, tree value) { tree field, type, t; type = TREE_TYPE (desc); gcc_assert (GFC_DESCRIPTOR_TYPE_P (type)); field = TYPE_FIELDS (type); gcc_assert (DATA_FIELD == 0); t = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), desc, field, NULL_TREE); gfc_add_modify (block, t, fold_convert (TREE_TYPE (field), value)); } /* This provides address access to the data field. This should only be used by array allocation, passing this on to the runtime. */ tree gfc_conv_descriptor_data_addr (tree desc) { tree field, type, t; type = TREE_TYPE (desc); gcc_assert (GFC_DESCRIPTOR_TYPE_P (type)); field = TYPE_FIELDS (type); gcc_assert (DATA_FIELD == 0); t = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), desc, field, NULL_TREE); return gfc_build_addr_expr (NULL_TREE, t); } static tree gfc_conv_descriptor_offset (tree desc) { tree type; tree field; type = TREE_TYPE (desc); gcc_assert (GFC_DESCRIPTOR_TYPE_P (type)); field = gfc_advance_chain (TYPE_FIELDS (type), OFFSET_FIELD); gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type); return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), desc, field, NULL_TREE); } tree gfc_conv_descriptor_offset_get (tree desc) { return gfc_conv_descriptor_offset (desc); } void gfc_conv_descriptor_offset_set (stmtblock_t *block, tree desc, tree value) { tree t = gfc_conv_descriptor_offset (desc); gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value)); } tree gfc_conv_descriptor_dtype (tree desc) { tree field; tree type; type = TREE_TYPE (desc); gcc_assert (GFC_DESCRIPTOR_TYPE_P (type)); field = gfc_advance_chain (TYPE_FIELDS (type), DTYPE_FIELD); gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type); return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), desc, field, NULL_TREE); } static tree gfc_conv_descriptor_dimension (tree desc, tree dim) { tree field; tree type; tree tmp; type = TREE_TYPE (desc); gcc_assert (GFC_DESCRIPTOR_TYPE_P (type)); field = gfc_advance_chain (TYPE_FIELDS (type), DIMENSION_FIELD); gcc_assert (field != NULL_TREE && TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE && TREE_CODE (TREE_TYPE (TREE_TYPE (field))) == RECORD_TYPE); tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), desc, field, NULL_TREE); tmp = gfc_build_array_ref (tmp, dim, NULL); return tmp; } tree gfc_conv_descriptor_token (tree desc) { tree type; tree field; type = TREE_TYPE (desc); gcc_assert (GFC_DESCRIPTOR_TYPE_P (type)); gcc_assert (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE); gcc_assert (gfc_option.coarray == GFC_FCOARRAY_LIB); field = gfc_advance_chain (TYPE_FIELDS (type), CAF_TOKEN_FIELD); gcc_assert (field != NULL_TREE && TREE_TYPE (field) == prvoid_type_node); return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), desc, field, NULL_TREE); } static tree gfc_conv_descriptor_stride (tree desc, tree dim) { tree tmp; tree field; tmp = gfc_conv_descriptor_dimension (desc, dim); field = TYPE_FIELDS (TREE_TYPE (tmp)); field = gfc_advance_chain (field, STRIDE_SUBFIELD); gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type); tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), tmp, field, NULL_TREE); return tmp; } tree gfc_conv_descriptor_stride_get (tree desc, tree dim) { tree type = TREE_TYPE (desc); gcc_assert (GFC_DESCRIPTOR_TYPE_P (type)); if (integer_zerop (dim) && (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE ||GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT ||GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)) return gfc_index_one_node; return gfc_conv_descriptor_stride (desc, dim); } void gfc_conv_descriptor_stride_set (stmtblock_t *block, tree desc, tree dim, tree value) { tree t = gfc_conv_descriptor_stride (desc, dim); gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value)); } static tree gfc_conv_descriptor_lbound (tree desc, tree dim) { tree tmp; tree field; tmp = gfc_conv_descriptor_dimension (desc, dim); field = TYPE_FIELDS (TREE_TYPE (tmp)); field = gfc_advance_chain (field, LBOUND_SUBFIELD); gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type); tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), tmp, field, NULL_TREE); return tmp; } tree gfc_conv_descriptor_lbound_get (tree desc, tree dim) { return gfc_conv_descriptor_lbound (desc, dim); } void gfc_conv_descriptor_lbound_set (stmtblock_t *block, tree desc, tree dim, tree value) { tree t = gfc_conv_descriptor_lbound (desc, dim); gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value)); } static tree gfc_conv_descriptor_ubound (tree desc, tree dim) { tree tmp; tree field; tmp = gfc_conv_descriptor_dimension (desc, dim); field = TYPE_FIELDS (TREE_TYPE (tmp)); field = gfc_advance_chain (field, UBOUND_SUBFIELD); gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type); tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), tmp, field, NULL_TREE); return tmp; } tree gfc_conv_descriptor_ubound_get (tree desc, tree dim) { return gfc_conv_descriptor_ubound (desc, dim); } void gfc_conv_descriptor_ubound_set (stmtblock_t *block, tree desc, tree dim, tree value) { tree t = gfc_conv_descriptor_ubound (desc, dim); gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value)); } /* Build a null array descriptor constructor. */ tree gfc_build_null_descriptor (tree type) { tree field; tree tmp; gcc_assert (GFC_DESCRIPTOR_TYPE_P (type)); gcc_assert (DATA_FIELD == 0); field = TYPE_FIELDS (type); /* Set a NULL data pointer. */ tmp = build_constructor_single (type, field, null_pointer_node); TREE_CONSTANT (tmp) = 1; /* All other fields are ignored. */ return tmp; } /* Modify a descriptor such that the lbound of a given dimension is the value specified. This also updates ubound and offset accordingly. */ void gfc_conv_shift_descriptor_lbound (stmtblock_t* block, tree desc, int dim, tree new_lbound) { tree offs, ubound, lbound, stride; tree diff, offs_diff; new_lbound = fold_convert (gfc_array_index_type, new_lbound); offs = gfc_conv_descriptor_offset_get (desc); lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[dim]); ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[dim]); stride = gfc_conv_descriptor_stride_get (desc, gfc_rank_cst[dim]); /* Get difference (new - old) by which to shift stuff. */ diff = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, new_lbound, lbound); /* Shift ubound and offset accordingly. This has to be done before updating the lbound, as they depend on the lbound expression! */ ubound = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, ubound, diff); gfc_conv_descriptor_ubound_set (block, desc, gfc_rank_cst[dim], ubound); offs_diff = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, diff, stride); offs = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, offs, offs_diff); gfc_conv_descriptor_offset_set (block, desc, offs); /* Finally set lbound to value we want. */ gfc_conv_descriptor_lbound_set (block, desc, gfc_rank_cst[dim], new_lbound); } /* Cleanup those #defines. */ #undef DATA_FIELD #undef OFFSET_FIELD #undef DTYPE_FIELD #undef DIMENSION_FIELD #undef CAF_TOKEN_FIELD #undef STRIDE_SUBFIELD #undef LBOUND_SUBFIELD #undef UBOUND_SUBFIELD /* Mark a SS chain as used. Flags specifies in which loops the SS is used. flags & 1 = Main loop body. flags & 2 = temp copy loop. */ void gfc_mark_ss_chain_used (gfc_ss * ss, unsigned flags) { for (; ss != gfc_ss_terminator; ss = ss->next) ss->info->useflags = flags; } /* Free a gfc_ss chain. */ void gfc_free_ss_chain (gfc_ss * ss) { gfc_ss *next; while (ss != gfc_ss_terminator) { gcc_assert (ss != NULL); next = ss->next; gfc_free_ss (ss); ss = next; } } static void free_ss_info (gfc_ss_info *ss_info) { ss_info->refcount--; if (ss_info->refcount > 0) return; gcc_assert (ss_info->refcount == 0); free (ss_info); } /* Free a SS. */ void gfc_free_ss (gfc_ss * ss) { gfc_ss_info *ss_info; int n; ss_info = ss->info; switch (ss_info->type) { case GFC_SS_SECTION: for (n = 0; n < ss->dimen; n++) { if (ss_info->data.array.subscript[ss->dim[n]]) gfc_free_ss_chain (ss_info->data.array.subscript[ss->dim[n]]); } break; default: break; } free_ss_info (ss_info); free (ss); } /* Creates and initializes an array type gfc_ss struct. */ gfc_ss * gfc_get_array_ss (gfc_ss *next, gfc_expr *expr, int dimen, gfc_ss_type type) { gfc_ss *ss; gfc_ss_info *ss_info; int i; ss_info = gfc_get_ss_info (); ss_info->refcount++; ss_info->type = type; ss_info->expr = expr; ss = gfc_get_ss (); ss->info = ss_info; ss->next = next; ss->dimen = dimen; for (i = 0; i < ss->dimen; i++) ss->dim[i] = i; return ss; } /* Creates and initializes a temporary type gfc_ss struct. */ gfc_ss * gfc_get_temp_ss (tree type, tree string_length, int dimen) { gfc_ss *ss; gfc_ss_info *ss_info; int i; ss_info = gfc_get_ss_info (); ss_info->refcount++; ss_info->type = GFC_SS_TEMP; ss_info->string_length = string_length; ss_info->data.temp.type = type; ss = gfc_get_ss (); ss->info = ss_info; ss->next = gfc_ss_terminator; ss->dimen = dimen; for (i = 0; i < ss->dimen; i++) ss->dim[i] = i; return ss; } /* Creates and initializes a scalar type gfc_ss struct. */ gfc_ss * gfc_get_scalar_ss (gfc_ss *next, gfc_expr *expr) { gfc_ss *ss; gfc_ss_info *ss_info; ss_info = gfc_get_ss_info (); ss_info->refcount++; ss_info->type = GFC_SS_SCALAR; ss_info->expr = expr; ss = gfc_get_ss (); ss->info = ss_info; ss->next = next; return ss; } /* Free all the SS associated with a loop. */ void gfc_cleanup_loop (gfc_loopinfo * loop) { gfc_loopinfo *loop_next, **ploop; gfc_ss *ss; gfc_ss *next; ss = loop->ss; while (ss != gfc_ss_terminator) { gcc_assert (ss != NULL); next = ss->loop_chain; gfc_free_ss (ss); ss = next; } /* Remove reference to self in the parent loop. */ if (loop->parent) for (ploop = &loop->parent->nested; *ploop; ploop = &(*ploop)->next) if (*ploop == loop) { *ploop = loop->next; break; } /* Free non-freed nested loops. */ for (loop = loop->nested; loop; loop = loop_next) { loop_next = loop->next; gfc_cleanup_loop (loop); free (loop); } } static void set_ss_loop (gfc_ss *ss, gfc_loopinfo *loop) { int n; for (; ss != gfc_ss_terminator; ss = ss->next) { ss->loop = loop; if (ss->info->type == GFC_SS_SCALAR || ss->info->type == GFC_SS_REFERENCE || ss->info->type == GFC_SS_TEMP) continue; for (n = 0; n < GFC_MAX_DIMENSIONS; n++) if (ss->info->data.array.subscript[n] != NULL) set_ss_loop (ss->info->data.array.subscript[n], loop); } } /* Associate a SS chain with a loop. */ void gfc_add_ss_to_loop (gfc_loopinfo * loop, gfc_ss * head) { gfc_ss *ss; gfc_loopinfo *nested_loop; if (head == gfc_ss_terminator) return; set_ss_loop (head, loop); ss = head; for (; ss && ss != gfc_ss_terminator; ss = ss->next) { if (ss->nested_ss) { nested_loop = ss->nested_ss->loop; /* More than one ss can belong to the same loop. Hence, we add the loop to the chain only if it is different from the previously added one, to avoid duplicate nested loops. */ if (nested_loop != loop->nested) { gcc_assert (nested_loop->parent == NULL); nested_loop->parent = loop; gcc_assert (nested_loop->next == NULL); nested_loop->next = loop->nested; loop->nested = nested_loop; } else gcc_assert (nested_loop->parent == loop); } if (ss->next == gfc_ss_terminator) ss->loop_chain = loop->ss; else ss->loop_chain = ss->next; } gcc_assert (ss == gfc_ss_terminator); loop->ss = head; } /* Generate an initializer for a static pointer or allocatable array. */ void gfc_trans_static_array_pointer (gfc_symbol * sym) { tree type; gcc_assert (TREE_STATIC (sym->backend_decl)); /* Just zero the data member. */ type = TREE_TYPE (sym->backend_decl); DECL_INITIAL (sym->backend_decl) = gfc_build_null_descriptor (type); } /* If the bounds of SE's loop have not yet been set, see if they can be determined from array spec AS, which is the array spec of a called function. MAPPING maps the callee's dummy arguments to the values that the caller is passing. Add any initialization and finalization code to SE. */ void gfc_set_loop_bounds_from_array_spec (gfc_interface_mapping * mapping, gfc_se * se, gfc_array_spec * as) { int n, dim, total_dim; gfc_se tmpse; gfc_ss *ss; tree lower; tree upper; tree tmp; total_dim = 0; if (!as || as->type != AS_EXPLICIT) return; for (ss = se->ss; ss; ss = ss->parent) { total_dim += ss->loop->dimen; for (n = 0; n < ss->loop->dimen; n++) { /* The bound is known, nothing to do. */ if (ss->loop->to[n] != NULL_TREE) continue; dim = ss->dim[n]; gcc_assert (dim < as->rank); gcc_assert (ss->loop->dimen <= as->rank); /* Evaluate the lower bound. */ gfc_init_se (&tmpse, NULL); gfc_apply_interface_mapping (mapping, &tmpse, as->lower[dim]); gfc_add_block_to_block (&se->pre, &tmpse.pre); gfc_add_block_to_block (&se->post, &tmpse.post); lower = fold_convert (gfc_array_index_type, tmpse.expr); /* ...and the upper bound. */ gfc_init_se (&tmpse, NULL); gfc_apply_interface_mapping (mapping, &tmpse, as->upper[dim]); gfc_add_block_to_block (&se->pre, &tmpse.pre); gfc_add_block_to_block (&se->post, &tmpse.post); upper = fold_convert (gfc_array_index_type, tmpse.expr); /* Set the upper bound of the loop to UPPER - LOWER. */ tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, upper, lower); tmp = gfc_evaluate_now (tmp, &se->pre); ss->loop->to[n] = tmp; } } gcc_assert (total_dim == as->rank); } /* Generate code to allocate an array temporary, or create a variable to hold the data. If size is NULL, zero the descriptor so that the callee will allocate the array. If DEALLOC is true, also generate code to free the array afterwards. If INITIAL is not NULL, it is packed using internal_pack and the result used as data instead of allocating a fresh, unitialized area of memory. Initialization code is added to PRE and finalization code to POST. DYNAMIC is true if the caller may want to extend the array later using realloc. This prevents us from putting the array on the stack. */ static void gfc_trans_allocate_array_storage (stmtblock_t * pre, stmtblock_t * post, gfc_array_info * info, tree size, tree nelem, tree initial, bool dynamic, bool dealloc) { tree tmp; tree desc; bool onstack; desc = info->descriptor; info->offset = gfc_index_zero_node; if (size == NULL_TREE || integer_zerop (size)) { /* A callee allocated array. */ gfc_conv_descriptor_data_set (pre, desc, null_pointer_node); onstack = FALSE; } else { /* Allocate the temporary. */ onstack = !dynamic && initial == NULL_TREE && (gfc_option.flag_stack_arrays || gfc_can_put_var_on_stack (size)); if (onstack) { /* Make a temporary variable to hold the data. */ tmp = fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE (nelem), nelem, gfc_index_one_node); tmp = gfc_evaluate_now (tmp, pre); tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node, tmp); tmp = build_array_type (gfc_get_element_type (TREE_TYPE (desc)), tmp); tmp = gfc_create_var (tmp, "A"); /* If we're here only because of -fstack-arrays we have to emit a DECL_EXPR to make the gimplifier emit alloca calls. */ if (!gfc_can_put_var_on_stack (size)) gfc_add_expr_to_block (pre, fold_build1_loc (input_location, DECL_EXPR, TREE_TYPE (tmp), tmp)); tmp = gfc_build_addr_expr (NULL_TREE, tmp); gfc_conv_descriptor_data_set (pre, desc, tmp); } else { /* Allocate memory to hold the data or call internal_pack. */ if (initial == NULL_TREE) { tmp = gfc_call_malloc (pre, NULL, size); tmp = gfc_evaluate_now (tmp, pre); } else { tree packed; tree source_data; tree was_packed; stmtblock_t do_copying; tmp = TREE_TYPE (initial); /* Pointer to descriptor. */ gcc_assert (TREE_CODE (tmp) == POINTER_TYPE); tmp = TREE_TYPE (tmp); /* The descriptor itself. */ tmp = gfc_get_element_type (tmp); gcc_assert (tmp == gfc_get_element_type (TREE_TYPE (desc))); packed = gfc_create_var (build_pointer_type (tmp), "data"); tmp = build_call_expr_loc (input_location, gfor_fndecl_in_pack, 1, initial); tmp = fold_convert (TREE_TYPE (packed), tmp); gfc_add_modify (pre, packed, tmp); tmp = build_fold_indirect_ref_loc (input_location, initial); source_data = gfc_conv_descriptor_data_get (tmp); /* internal_pack may return source->data without any allocation or copying if it is already packed. If that's the case, we need to allocate and copy manually. */ gfc_start_block (&do_copying); tmp = gfc_call_malloc (&do_copying, NULL, size); tmp = fold_convert (TREE_TYPE (packed), tmp); gfc_add_modify (&do_copying, packed, tmp); tmp = gfc_build_memcpy_call (packed, source_data, size); gfc_add_expr_to_block (&do_copying, tmp); was_packed = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, packed, source_data); tmp = gfc_finish_block (&do_copying); tmp = build3_v (COND_EXPR, was_packed, tmp, build_empty_stmt (input_location)); gfc_add_expr_to_block (pre, tmp); tmp = fold_convert (pvoid_type_node, packed); } gfc_conv_descriptor_data_set (pre, desc, tmp); } } info->data = gfc_conv_descriptor_data_get (desc); /* The offset is zero because we create temporaries with a zero lower bound. */ gfc_conv_descriptor_offset_set (pre, desc, gfc_index_zero_node); if (dealloc && !onstack) { /* Free the temporary. */ tmp = gfc_conv_descriptor_data_get (desc); tmp = gfc_call_free (fold_convert (pvoid_type_node, tmp)); gfc_add_expr_to_block (post, tmp); } } /* Get the scalarizer array dimension corresponding to actual array dimension given by ARRAY_DIM. For example, if SS represents the array ref a(1,:,:,1), it is a bidimensional scalarizer array, and the result would be 0 for ARRAY_DIM=1, and 1 for ARRAY_DIM=2. If SS represents transpose(a(:,1,1,:)), it is again a bidimensional scalarizer array, and the result would be 1 for ARRAY_DIM=0 and 0 for ARRAY_DIM=3. If SS represents sum(a(:,:,:,1), dim=1), it is a 2+1-dimensional scalarizer array. If called on the inner ss, the result would be respectively 0,1,2 for ARRAY_DIM=0,1,2. If called on the outer ss, the result would be 0,1 for ARRAY_DIM=1,2. */ static int get_scalarizer_dim_for_array_dim (gfc_ss *ss, int array_dim) { int array_ref_dim; int n; array_ref_dim = 0; for (; ss; ss = ss->parent) for (n = 0; n < ss->dimen; n++) if (ss->dim[n] < array_dim) array_ref_dim++; return array_ref_dim; } static gfc_ss * innermost_ss (gfc_ss *ss) { while (ss->nested_ss != NULL) ss = ss->nested_ss; return ss; } /* Get the array reference dimension corresponding to the given loop dimension. It is different from the true array dimension given by the dim array in the case of a partial array reference (i.e. a(:,:,1,:) for example) It is different from the loop dimension in the case of a transposed array. */ static int get_array_ref_dim_for_loop_dim (gfc_ss *ss, int loop_dim) { return get_scalarizer_dim_for_array_dim (innermost_ss (ss), ss->dim[loop_dim]); } /* Generate code to create and initialize the descriptor for a temporary array. This is used for both temporaries needed by the scalarizer, and functions returning arrays. Adjusts the loop variables to be zero-based, and calculates the loop bounds for callee allocated arrays. Allocate the array unless it's callee allocated (we have a callee allocated array if 'callee_alloc' is true, or if loop->to[n] is NULL_TREE for any n). Also fills in the descriptor, data and offset fields of info if known. Returns the size of the array, or NULL for a callee allocated array. 'eltype' == NULL signals that the temporary should be a class object. The 'initial' expression is used to obtain the size of the dynamic type; otehrwise the allocation and initialisation proceeds as for any other expression PRE, POST, INITIAL, DYNAMIC and DEALLOC are as for gfc_trans_allocate_array_storage. */ tree gfc_trans_create_temp_array (stmtblock_t * pre, stmtblock_t * post, gfc_ss * ss, tree eltype, tree initial, bool dynamic, bool dealloc, bool callee_alloc, locus * where) { gfc_loopinfo *loop; gfc_ss *s; gfc_array_info *info; tree from[GFC_MAX_DIMENSIONS], to[GFC_MAX_DIMENSIONS]; tree type; tree desc; tree tmp; tree size; tree nelem; tree cond; tree or_expr; tree class_expr = NULL_TREE; int n, dim, tmp_dim; int total_dim = 0; /* This signals a class array for which we need the size of the dynamic type. Generate an eltype and then the class expression. */ if (eltype == NULL_TREE && initial) { if (POINTER_TYPE_P (TREE_TYPE (initial))) class_expr = build_fold_indirect_ref_loc (input_location, initial); eltype = TREE_TYPE (class_expr); eltype = gfc_get_element_type (eltype); /* Obtain the structure (class) expression. */ class_expr = TREE_OPERAND (class_expr, 0); gcc_assert (class_expr); } memset (from, 0, sizeof (from)); memset (to, 0, sizeof (to)); info = &ss->info->data.array; gcc_assert (ss->dimen > 0); gcc_assert (ss->loop->dimen == ss->dimen); if (gfc_option.warn_array_temp && where) gfc_warning ("Creating array temporary at %L", where); /* Set the lower bound to zero. */ for (s = ss; s; s = s->parent) { loop = s->loop; total_dim += loop->dimen; for (n = 0; n < loop->dimen; n++) { dim = s->dim[n]; /* Callee allocated arrays may not have a known bound yet. */ if (loop->to[n]) loop->to[n] = gfc_evaluate_now ( fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, loop->to[n], loop->from[n]), pre); loop->from[n] = gfc_index_zero_node; /* We have just changed the loop bounds, we must clear the corresponding specloop, so that delta calculation is not skipped later in gfc_set_delta. */ loop->specloop[n] = NULL; /* We are constructing the temporary's descriptor based on the loop dimensions. As the dimensions may be accessed in arbitrary order (think of transpose) the size taken from the n'th loop may not map to the n'th dimension of the array. We need to reconstruct loop infos in the right order before using it to set the descriptor bounds. */ tmp_dim = get_scalarizer_dim_for_array_dim (ss, dim); from[tmp_dim] = loop->from[n]; to[tmp_dim] = loop->to[n]; info->delta[dim] = gfc_index_zero_node; info->start[dim] = gfc_index_zero_node; info->end[dim] = gfc_index_zero_node; info->stride[dim] = gfc_index_one_node; } } /* Initialize the descriptor. */ type = gfc_get_array_type_bounds (eltype, total_dim, 0, from, to, 1, GFC_ARRAY_UNKNOWN, true); desc = gfc_create_var (type, "atmp"); GFC_DECL_PACKED_ARRAY (desc) = 1; info->descriptor = desc; size = gfc_index_one_node; /* Fill in the array dtype. */ tmp = gfc_conv_descriptor_dtype (desc); gfc_add_modify (pre, tmp, gfc_get_dtype (TREE_TYPE (desc))); /* Fill in the bounds and stride. This is a packed array, so: size = 1; for (n = 0; n < rank; n++) { stride[n] = size delta = ubound[n] + 1 - lbound[n]; size = size * delta; } size = size * sizeof(element); */ or_expr = NULL_TREE; /* If there is at least one null loop->to[n], it is a callee allocated array. */ for (n = 0; n < total_dim; n++) if (to[n] == NULL_TREE) { size = NULL_TREE; break; } if (size == NULL_TREE) for (s = ss; s; s = s->parent) for (n = 0; n < s->loop->dimen; n++) { dim = get_scalarizer_dim_for_array_dim (ss, s->dim[n]); /* For a callee allocated array express the loop bounds in terms of the descriptor fields. */ tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[dim]), gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[dim])); s->loop->to[n] = tmp; } else { for (n = 0; n < total_dim; n++) { /* Store the stride and bound components in the descriptor. */ gfc_conv_descriptor_stride_set (pre, desc, gfc_rank_cst[n], size); gfc_conv_descriptor_lbound_set (pre, desc, gfc_rank_cst[n], gfc_index_zero_node); gfc_conv_descriptor_ubound_set (pre, desc, gfc_rank_cst[n], to[n]); tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, to[n], gfc_index_one_node); /* Check whether the size for this dimension is negative. */ cond = fold_build2_loc (input_location, LE_EXPR, boolean_type_node, tmp, gfc_index_zero_node); cond = gfc_evaluate_now (cond, pre); if (n == 0) or_expr = cond; else or_expr = fold_build2_loc (input_location, TRUTH_OR_EXPR, boolean_type_node, or_expr, cond); size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, size, tmp); size = gfc_evaluate_now (size, pre); } } /* Get the size of the array. */ if (size && !callee_alloc) { tree elemsize; /* If or_expr is true, then the extent in at least one dimension is zero and the size is set to zero. */ size = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type, or_expr, gfc_index_zero_node, size); nelem = size; if (class_expr == NULL_TREE) elemsize = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (gfc_get_element_type (type))); else elemsize = gfc_vtable_size_get (class_expr); size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, size, elemsize); } else { nelem = size; size = NULL_TREE; } gfc_trans_allocate_array_storage (pre, post, info, size, nelem, initial, dynamic, dealloc); while (ss->parent) ss = ss->parent; if (ss->dimen > ss->loop->temp_dim) ss->loop->temp_dim = ss->dimen; return size; } /* Return the number of iterations in a loop that starts at START, ends at END, and has step STEP. */ static tree gfc_get_iteration_count (tree start, tree end, tree step) { tree tmp; tree type; type = TREE_TYPE (step); tmp = fold_build2_loc (input_location, MINUS_EXPR, type, end, start); tmp = fold_build2_loc (input_location, FLOOR_DIV_EXPR, type, tmp, step); tmp = fold_build2_loc (input_location, PLUS_EXPR, type, tmp, build_int_cst (type, 1)); tmp = fold_build2_loc (input_location, MAX_EXPR, type, tmp, build_int_cst (type, 0)); return fold_convert (gfc_array_index_type, tmp); } /* Extend the data in array DESC by EXTRA elements. */ static void gfc_grow_array (stmtblock_t * pblock, tree desc, tree extra) { tree arg0, arg1; tree tmp; tree size; tree ubound; if (integer_zerop (extra)) return; ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[0]); /* Add EXTRA to the upper bound. */ tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, ubound, extra); gfc_conv_descriptor_ubound_set (pblock, desc, gfc_rank_cst[0], tmp); /* Get the value of the current data pointer. */ arg0 = gfc_conv_descriptor_data_get (desc); /* Calculate the new array size. */ size = TYPE_SIZE_UNIT (gfc_get_element_type (TREE_TYPE (desc))); tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, ubound, gfc_index_one_node); arg1 = fold_build2_loc (input_location, MULT_EXPR, size_type_node, fold_convert (size_type_node, tmp), fold_convert (size_type_node, size)); /* Call the realloc() function. */ tmp = gfc_call_realloc (pblock, arg0, arg1); gfc_conv_descriptor_data_set (pblock, desc, tmp); } /* Return true if the bounds of iterator I can only be determined at run time. */ static inline bool gfc_iterator_has_dynamic_bounds (gfc_iterator * i) { return (i->start->expr_type != EXPR_CONSTANT || i->end->expr_type != EXPR_CONSTANT || i->step->expr_type != EXPR_CONSTANT); } /* Split the size of constructor element EXPR into the sum of two terms, one of which can be determined at compile time and one of which must be calculated at run time. Set *SIZE to the former and return true if the latter might be nonzero. */ static bool gfc_get_array_constructor_element_size (mpz_t * size, gfc_expr * expr) { if (expr->expr_type == EXPR_ARRAY) return gfc_get_array_constructor_size (size, expr->value.constructor); else if (expr->rank > 0) { /* Calculate everything at run time. */ mpz_set_ui (*size, 0); return true; } else { /* A single element. */ mpz_set_ui (*size, 1); return false; } } /* Like gfc_get_array_constructor_element_size, but applied to the whole of array constructor C. */ static bool gfc_get_array_constructor_size (mpz_t * size, gfc_constructor_base base) { gfc_constructor *c; gfc_iterator *i; mpz_t val; mpz_t len; bool dynamic; mpz_set_ui (*size, 0); mpz_init (len); mpz_init (val); dynamic = false; for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c)) { i = c->iterator; if (i && gfc_iterator_has_dynamic_bounds (i)) dynamic = true; else { dynamic |= gfc_get_array_constructor_element_size (&len, c->expr); if (i) { /* Multiply the static part of the element size by the number of iterations. */ mpz_sub (val, i->end->value.integer, i->start->value.integer); mpz_fdiv_q (val, val, i->step->value.integer); mpz_add_ui (val, val, 1); if (mpz_sgn (val) > 0) mpz_mul (len, len, val); else mpz_set_ui (len, 0); } mpz_add (*size, *size, len); } } mpz_clear (len); mpz_clear (val); return dynamic; } /* Make sure offset is a variable. */ static void gfc_put_offset_into_var (stmtblock_t * pblock, tree * poffset, tree * offsetvar) { /* We should have already created the offset variable. We cannot create it here because we may be in an inner scope. */ gcc_assert (*offsetvar != NULL_TREE); gfc_add_modify (pblock, *offsetvar, *poffset); *poffset = *offsetvar; TREE_USED (*offsetvar) = 1; } /* Variables needed for bounds-checking. */ static bool first_len; static tree first_len_val; static bool typespec_chararray_ctor; static void gfc_trans_array_ctor_element (stmtblock_t * pblock, tree desc, tree offset, gfc_se * se, gfc_expr * expr) { tree tmp; gfc_conv_expr (se, expr); /* Store the value. */ tmp = build_fold_indirect_ref_loc (input_location, gfc_conv_descriptor_data_get (desc)); tmp = gfc_build_array_ref (tmp, offset, NULL); if (expr->ts.type == BT_CHARACTER) { int i = gfc_validate_kind (BT_CHARACTER, expr->ts.kind, false); tree esize; esize = size_in_bytes (gfc_get_element_type (TREE_TYPE (desc))); esize = fold_convert (gfc_charlen_type_node, esize); esize = fold_build2_loc (input_location, TRUNC_DIV_EXPR, gfc_charlen_type_node, esize, build_int_cst (gfc_charlen_type_node, gfc_character_kinds[i].bit_size / 8)); gfc_conv_string_parameter (se); if (POINTER_TYPE_P (TREE_TYPE (tmp))) { /* The temporary is an array of pointers. */ se->expr = fold_convert (TREE_TYPE (tmp), se->expr); gfc_add_modify (&se->pre, tmp, se->expr); } else { /* The temporary is an array of string values. */ tmp = gfc_build_addr_expr (gfc_get_pchar_type (expr->ts.kind), tmp); /* We know the temporary and the value will be the same length, so can use memcpy. */ gfc_trans_string_copy (&se->pre, esize, tmp, expr->ts.kind, se->string_length, se->expr, expr->ts.kind); } if ((gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) && !typespec_chararray_ctor) { if (first_len) { gfc_add_modify (&se->pre, first_len_val, se->string_length); first_len = false; } else { /* Verify that all constructor elements are of the same length. */ tree cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, first_len_val, se->string_length); gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where, "Different CHARACTER lengths (%ld/%ld) in array constructor", fold_convert (long_integer_type_node, first_len_val), fold_convert (long_integer_type_node, se->string_length)); } } } else { /* TODO: Should the frontend already have done this conversion? */ se->expr = fold_convert (TREE_TYPE (tmp), se->expr); gfc_add_modify (&se->pre, tmp, se->expr); } gfc_add_block_to_block (pblock, &se->pre); gfc_add_block_to_block (pblock, &se->post); } /* Add the contents of an array to the constructor. DYNAMIC is as for gfc_trans_array_constructor_value. */ static void gfc_trans_array_constructor_subarray (stmtblock_t * pblock, tree type ATTRIBUTE_UNUSED, tree desc, gfc_expr * expr, tree * poffset, tree * offsetvar, bool dynamic) { gfc_se se; gfc_ss *ss; gfc_loopinfo loop; stmtblock_t body; tree tmp; tree size; int n; /* We need this to be a variable so we can increment it. */ gfc_put_offset_into_var (pblock, poffset, offsetvar); gfc_init_se (&se, NULL); /* Walk the array expression. */ ss = gfc_walk_expr (expr); gcc_assert (ss != gfc_ss_terminator); /* Initialize the scalarizer. */ gfc_init_loopinfo (&loop); gfc_add_ss_to_loop (&loop, ss); /* Initialize the loop. */ gfc_conv_ss_startstride (&loop); gfc_conv_loop_setup (&loop, &expr->where); /* Make sure the constructed array has room for the new data. */ if (dynamic) { /* Set SIZE to the total number of elements in the subarray. */ size = gfc_index_one_node; for (n = 0; n < loop.dimen; n++) { tmp = gfc_get_iteration_count (loop.from[n], loop.to[n], gfc_index_one_node); size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, size, tmp); } /* Grow the constructed array by SIZE elements. */ gfc_grow_array (&loop.pre, desc, size); } /* Make the loop body. */ gfc_mark_ss_chain_used (ss, 1); gfc_start_scalarized_body (&loop, &body); gfc_copy_loopinfo_to_se (&se, &loop); se.ss = ss; gfc_trans_array_ctor_element (&body, desc, *poffset, &se, expr); gcc_assert (se.ss == gfc_ss_terminator); /* Increment the offset. */ tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, *poffset, gfc_index_one_node); gfc_add_modify (&body, *poffset, tmp); /* Finish the loop. */ gfc_trans_scalarizing_loops (&loop, &body); gfc_add_block_to_block (&loop.pre, &loop.post); tmp = gfc_finish_block (&loop.pre); gfc_add_expr_to_block (pblock, tmp); gfc_cleanup_loop (&loop); } /* Assign the values to the elements of an array constructor. DYNAMIC is true if descriptor DESC only contains enough data for the static size calculated by gfc_get_array_constructor_size. When true, memory for the dynamic parts must be allocated using realloc. */ static void gfc_trans_array_constructor_value (stmtblock_t * pblock, tree type, tree desc, gfc_constructor_base base, tree * poffset, tree * offsetvar, bool dynamic) { tree tmp; stmtblock_t body; gfc_se se; mpz_t size; gfc_constructor *c; tree shadow_loopvar = NULL_TREE; gfc_saved_var saved_loopvar; mpz_init (size); for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c)) { /* If this is an iterator or an array, the offset must be a variable. */ if ((c->iterator || c->expr->rank > 0) && INTEGER_CST_P (*poffset)) gfc_put_offset_into_var (pblock, poffset, offsetvar); /* Shadowing the iterator avoids changing its value and saves us from keeping track of it. Further, it makes sure that there's always a backend-decl for the symbol, even if there wasn't one before, e.g. in the case of an iterator that appears in a specification expression in an interface mapping. */ if (c->iterator) { gfc_symbol *sym = c->iterator->var->symtree->n.sym; tree type = gfc_typenode_for_spec (&sym->ts); shadow_loopvar = gfc_create_var (type, "shadow_loopvar"); gfc_shadow_sym (sym, shadow_loopvar, &saved_loopvar); } gfc_start_block (&body); if (c->expr->expr_type == EXPR_ARRAY) { /* Array constructors can be nested. */ gfc_trans_array_constructor_value (&body, type, desc, c->expr->value.constructor, poffset, offsetvar, dynamic); } else if (c->expr->rank > 0) { gfc_trans_array_constructor_subarray (&body, type, desc, c->expr, poffset, offsetvar, dynamic); } else { /* This code really upsets the gimplifier so don't bother for now. */ gfc_constructor *p; HOST_WIDE_INT n; HOST_WIDE_INT size; p = c; n = 0; while (p && !(p->iterator || p->expr->expr_type != EXPR_CONSTANT)) { p = gfc_constructor_next (p); n++; } if (n < 4) { /* Scalar values. */ gfc_init_se (&se, NULL); gfc_trans_array_ctor_element (&body, desc, *poffset, &se, c->expr); *poffset = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, *poffset, gfc_index_one_node); } else { /* Collect multiple scalar constants into a constructor. */ VEC(constructor_elt,gc) *v = NULL; tree init; tree bound; tree tmptype; HOST_WIDE_INT idx = 0; p = c; /* Count the number of consecutive scalar constants. */ while (p && !(p->iterator || p->expr->expr_type != EXPR_CONSTANT)) { gfc_init_se (&se, NULL); gfc_conv_constant (&se, p->expr); if (c->expr->ts.type != BT_CHARACTER) se.expr = fold_convert (type, se.expr); /* For constant character array constructors we build an array of pointers. */ else if (POINTER_TYPE_P (type)) se.expr = gfc_build_addr_expr (gfc_get_pchar_type (p->expr->ts.kind), se.expr); CONSTRUCTOR_APPEND_ELT (v, build_int_cst (gfc_array_index_type, idx++), se.expr); c = p; p = gfc_constructor_next (p); } bound = size_int (n - 1); /* Create an array type to hold them. */ tmptype = build_range_type (gfc_array_index_type, gfc_index_zero_node, bound); tmptype = build_array_type (type, tmptype); init = build_constructor (tmptype, v); TREE_CONSTANT (init) = 1; TREE_STATIC (init) = 1; /* Create a static variable to hold the data. */ tmp = gfc_create_var (tmptype, "data"); TREE_STATIC (tmp) = 1; TREE_CONSTANT (tmp) = 1; TREE_READONLY (tmp) = 1; DECL_INITIAL (tmp) = init; init = tmp; /* Use BUILTIN_MEMCPY to assign the values. */ tmp = gfc_conv_descriptor_data_get (desc); tmp = build_fold_indirect_ref_loc (input_location, tmp); tmp = gfc_build_array_ref (tmp, *poffset, NULL); tmp = gfc_build_addr_expr (NULL_TREE, tmp); init = gfc_build_addr_expr (NULL_TREE, init); size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (type)); bound = build_int_cst (size_type_node, n * size); tmp = build_call_expr_loc (input_location, builtin_decl_explicit (BUILT_IN_MEMCPY), 3, tmp, init, bound); gfc_add_expr_to_block (&body, tmp); *poffset = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, *poffset, build_int_cst (gfc_array_index_type, n)); } if (!INTEGER_CST_P (*poffset)) { gfc_add_modify (&body, *offsetvar, *poffset); *poffset = *offsetvar; } } /* The frontend should already have done any expansions at compile-time. */ if (!c->iterator) { /* Pass the code as is. */ tmp = gfc_finish_block (&body); gfc_add_expr_to_block (pblock, tmp); } else { /* Build the implied do-loop. */ stmtblock_t implied_do_block; tree cond; tree end; tree step; tree exit_label; tree loopbody; tree tmp2; loopbody = gfc_finish_block (&body); /* Create a new block that holds the implied-do loop. A temporary loop-variable is used. */ gfc_start_block(&implied_do_block); /* Initialize the loop. */ gfc_init_se (&se, NULL); gfc_conv_expr_val (&se, c->iterator->start); gfc_add_block_to_block (&implied_do_block, &se.pre); gfc_add_modify (&implied_do_block, shadow_loopvar, se.expr); gfc_init_se (&se, NULL); gfc_conv_expr_val (&se, c->iterator->end); gfc_add_block_to_block (&implied_do_block, &se.pre); end = gfc_evaluate_now (se.expr, &implied_do_block); gfc_init_se (&se, NULL); gfc_conv_expr_val (&se, c->iterator->step); gfc_add_block_to_block (&implied_do_block, &se.pre); step = gfc_evaluate_now (se.expr, &implied_do_block); /* If this array expands dynamically, and the number of iterations is not constant, we won't have allocated space for the static part of C->EXPR's size. Do that now. */ if (dynamic && gfc_iterator_has_dynamic_bounds (c->iterator)) { /* Get the number of iterations. */ tmp = gfc_get_iteration_count (shadow_loopvar, end, step); /* Get the static part of C->EXPR's size. */ gfc_get_array_constructor_element_size (&size, c->expr); tmp2 = gfc_conv_mpz_to_tree (size, gfc_index_integer_kind); /* Grow the array by TMP * TMP2 elements. */ tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, tmp, tmp2); gfc_grow_array (&implied_do_block, desc, tmp); } /* Generate the loop body. */ exit_label = gfc_build_label_decl (NULL_TREE); gfc_start_block (&body); /* Generate the exit condition. Depending on the sign of the step variable we have to generate the correct comparison. */ tmp = fold_build2_loc (input_location, GT_EXPR, boolean_type_node, step, build_int_cst (TREE_TYPE (step), 0)); cond = fold_build3_loc (input_location, COND_EXPR, boolean_type_node, tmp, fold_build2_loc (input_location, GT_EXPR, boolean_type_node, shadow_loopvar, end), fold_build2_loc (input_location, LT_EXPR, boolean_type_node, shadow_loopvar, end)); tmp = build1_v (GOTO_EXPR, exit_label); TREE_USED (exit_label) = 1; tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location)); gfc_add_expr_to_block (&body, tmp); /* The main loop body. */ gfc_add_expr_to_block (&body, loopbody); /* Increase loop variable by step. */ tmp = fold_build2_loc (input_location, PLUS_EXPR, TREE_TYPE (shadow_loopvar), shadow_loopvar, step); gfc_add_modify (&body, shadow_loopvar, tmp); /* Finish the loop. */ tmp = gfc_finish_block (&body); tmp = build1_v (LOOP_EXPR, tmp); gfc_add_expr_to_block (&implied_do_block, tmp); /* Add the exit label. */ tmp = build1_v (LABEL_EXPR, exit_label); gfc_add_expr_to_block (&implied_do_block, tmp); /* Finishe the implied-do loop. */ tmp = gfc_finish_block(&implied_do_block); gfc_add_expr_to_block(pblock, tmp); gfc_restore_sym (c->iterator->var->symtree->n.sym, &saved_loopvar); } } mpz_clear (size); } /* A catch-all to obtain the string length for anything that is not a a substring of non-constant length, a constant, array or variable. */ static void get_array_ctor_all_strlen (stmtblock_t *block, gfc_expr *e, tree *len) { gfc_se se; gfc_ss *ss; /* Don't bother if we already know the length is a constant. */ if (*len && INTEGER_CST_P (*len)) return; if (!e->ref && e->ts.u.cl && e->ts.u.cl->length && e->ts.u.cl->length->expr_type == EXPR_CONSTANT) { /* This is easy. */ gfc_conv_const_charlen (e->ts.u.cl); *len = e->ts.u.cl->backend_decl; } else { /* Otherwise, be brutal even if inefficient. */ ss = gfc_walk_expr (e); gfc_init_se (&se, NULL); /* No function call, in case of side effects. */ se.no_function_call = 1; if (ss == gfc_ss_terminator) gfc_conv_expr (&se, e); else gfc_conv_expr_descriptor (&se, e, ss); /* Fix the value. */ *len = gfc_evaluate_now (se.string_length, &se.pre); gfc_add_block_to_block (block, &se.pre); gfc_add_block_to_block (block, &se.post); e->ts.u.cl->backend_decl = *len; } } /* Figure out the string length of a variable reference expression. Used by get_array_ctor_strlen. */ static void get_array_ctor_var_strlen (stmtblock_t *block, gfc_expr * expr, tree * len) { gfc_ref *ref; gfc_typespec *ts; mpz_t char_len; /* Don't bother if we already know the length is a constant. */ if (*len && INTEGER_CST_P (*len)) return; ts = &expr->symtree->n.sym->ts; for (ref = expr->ref; ref; ref = ref->next) { switch (ref->type) { case REF_ARRAY: /* Array references don't change the string length. */ break; case REF_COMPONENT: /* Use the length of the component. */ ts = &ref->u.c.component->ts; break; case REF_SUBSTRING: if (ref->u.ss.start->expr_type != EXPR_CONSTANT || ref->u.ss.end->expr_type != EXPR_CONSTANT) { /* Note that this might evaluate expr. */ get_array_ctor_all_strlen (block, expr, len); return; } mpz_init_set_ui (char_len, 1); mpz_add (char_len, char_len, ref->u.ss.end->value.integer); mpz_sub (char_len, char_len, ref->u.ss.start->value.integer); *len = gfc_conv_mpz_to_tree (char_len, gfc_default_integer_kind); *len = convert (gfc_charlen_type_node, *len); mpz_clear (char_len); return; default: gcc_unreachable (); } } *len = ts->u.cl->backend_decl; } /* Figure out the string length of a character array constructor. If len is NULL, don't calculate the length; this happens for recursive calls when a sub-array-constructor is an element but not at the first position, so when we're not interested in the length. Returns TRUE if all elements are character constants. */ bool get_array_ctor_strlen (stmtblock_t *block, gfc_constructor_base base, tree * len) { gfc_constructor *c; bool is_const; is_const = TRUE; if (gfc_constructor_first (base) == NULL) { if (len) *len = build_int_cstu (gfc_charlen_type_node, 0); return is_const; } /* Loop over all constructor elements to find out is_const, but in len we want to store the length of the first, not the last, element. We can of course exit the loop as soon as is_const is found to be false. */ for (c = gfc_constructor_first (base); c && is_const; c = gfc_constructor_next (c)) { switch (c->expr->expr_type) { case EXPR_CONSTANT: if (len && !(*len && INTEGER_CST_P (*len))) *len = build_int_cstu (gfc_charlen_type_node, c->expr->value.character.length); break; case EXPR_ARRAY: if (!get_array_ctor_strlen (block, c->expr->value.constructor, len)) is_const = false; break; case EXPR_VARIABLE: is_const = false; if (len) get_array_ctor_var_strlen (block, c->expr, len); break; default: is_const = false; if (len) get_array_ctor_all_strlen (block, c->expr, len); break; } /* After the first iteration, we don't want the length modified. */ len = NULL; } return is_const; } /* Check whether the array constructor C consists entirely of constant elements, and if so returns the number of those elements, otherwise return zero. Note, an empty or NULL array constructor returns zero. */ unsigned HOST_WIDE_INT gfc_constant_array_constructor_p (gfc_constructor_base base) { unsigned HOST_WIDE_INT nelem = 0; gfc_constructor *c = gfc_constructor_first (base); while (c) { if (c->iterator || c->expr->rank > 0 || c->expr->expr_type != EXPR_CONSTANT) return 0; c = gfc_constructor_next (c); nelem++; } return nelem; } /* Given EXPR, the constant array constructor specified by an EXPR_ARRAY, and the tree type of it's elements, TYPE, return a static constant variable that is compile-time initialized. */ tree gfc_build_constant_array_constructor (gfc_expr * expr, tree type) { tree tmptype, init, tmp; HOST_WIDE_INT nelem; gfc_constructor *c; gfc_array_spec as; gfc_se se; int i; VEC(constructor_elt,gc) *v = NULL; /* First traverse the constructor list, converting the constants to tree to build an initializer. */ nelem = 0; c = gfc_constructor_first (expr->value.constructor); while (c) { gfc_init_se (&se, NULL); gfc_conv_constant (&se, c->expr); if (c->expr->ts.type != BT_CHARACTER) se.expr = fold_convert (type, se.expr); else if (POINTER_TYPE_P (type)) se.expr = gfc_build_addr_expr (gfc_get_pchar_type (c->expr->ts.kind), se.expr); CONSTRUCTOR_APPEND_ELT (v, build_int_cst (gfc_array_index_type, nelem), se.expr); c = gfc_constructor_next (c); nelem++; } /* Next determine the tree type for the array. We use the gfortran front-end's gfc_get_nodesc_array_type in order to create a suitable GFC_ARRAY_TYPE_P that may be used by the scalarizer. */ memset (&as, 0, sizeof (gfc_array_spec)); as.rank = expr->rank; as.type = AS_EXPLICIT; if (!expr->shape) { as.lower[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 0); as.upper[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, nelem - 1); } else for (i = 0; i < expr->rank; i++) { int tmp = (int) mpz_get_si (expr->shape[i]); as.lower[i] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 0); as.upper[i] = gfc_get_int_expr (gfc_default_integer_kind, NULL, tmp - 1); } tmptype = gfc_get_nodesc_array_type (type, &as, PACKED_STATIC, true); /* as is not needed anymore. */ for (i = 0; i < as.rank + as.corank; i++) { gfc_free_expr (as.lower[i]); gfc_free_expr (as.upper[i]); } init = build_constructor (tmptype, v); TREE_CONSTANT (init) = 1; TREE_STATIC (init) = 1; tmp = gfc_create_var (tmptype, "A"); TREE_STATIC (tmp) = 1; TREE_CONSTANT (tmp) = 1; TREE_READONLY (tmp) = 1; DECL_INITIAL (tmp) = init; return tmp; } /* Translate a constant EXPR_ARRAY array constructor for the scalarizer. This mostly initializes the scalarizer state info structure with the appropriate values to directly use the array created by the function gfc_build_constant_array_constructor. */ static void trans_constant_array_constructor (gfc_ss * ss, tree type) { gfc_array_info *info; tree tmp; int i; tmp = gfc_build_constant_array_constructor (ss->info->expr, type); info = &ss->info->data.array; info->descriptor = tmp; info->data = gfc_build_addr_expr (NULL_TREE, tmp); info->offset = gfc_index_zero_node; for (i = 0; i < ss->dimen; i++) { info->delta[i] = gfc_index_zero_node; info->start[i] = gfc_index_zero_node; info->end[i] = gfc_index_zero_node; info->stride[i] = gfc_index_one_node; } } static int get_rank (gfc_loopinfo *loop) { int rank; rank = 0; for (; loop; loop = loop->parent) rank += loop->dimen; return rank; } /* Helper routine of gfc_trans_array_constructor to determine if the bounds of the loop specified by LOOP are constant and simple enough to use with trans_constant_array_constructor. Returns the iteration count of the loop if suitable, and NULL_TREE otherwise. */ static tree constant_array_constructor_loop_size (gfc_loopinfo * l) { gfc_loopinfo *loop; tree size = gfc_index_one_node; tree tmp; int i, total_dim; total_dim = get_rank (l); for (loop = l; loop; loop = loop->parent) { for (i = 0; i < loop->dimen; i++) { /* If the bounds aren't constant, return NULL_TREE. */ if (!INTEGER_CST_P (loop->from[i]) || !INTEGER_CST_P (loop->to[i])) return NULL_TREE; if (!integer_zerop (loop->from[i])) { /* Only allow nonzero "from" in one-dimensional arrays. */ if (total_dim != 1) return NULL_TREE; tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, loop->to[i], loop->from[i]); } else tmp = loop->to[i]; tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, tmp, gfc_index_one_node); size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, size, tmp); } } return size; } static tree * get_loop_upper_bound_for_array (gfc_ss *array, int array_dim) { gfc_ss *ss; int n; gcc_assert (array->nested_ss == NULL); for (ss = array; ss; ss = ss->parent) for (n = 0; n < ss->loop->dimen; n++) if (array_dim == get_array_ref_dim_for_loop_dim (ss, n)) return &(ss->loop->to[n]); gcc_unreachable (); } static gfc_loopinfo * outermost_loop (gfc_loopinfo * loop) { while (loop->parent != NULL) loop = loop->parent; return loop; } /* Array constructors are handled by constructing a temporary, then using that within the scalarization loop. This is not optimal, but seems by far the simplest method. */ static void trans_array_constructor (gfc_ss * ss, locus * where) { gfc_constructor_base c; tree offset; tree offsetvar; tree desc; tree type; tree tmp; tree *loop_ubound0; bool dynamic; bool old_first_len, old_typespec_chararray_ctor; tree old_first_len_val; gfc_loopinfo *loop, *outer_loop; gfc_ss_info *ss_info; gfc_expr *expr; gfc_ss *s; /* Save the old values for nested checking. */ old_first_len = first_len; old_first_len_val = first_len_val; old_typespec_chararray_ctor = typespec_chararray_ctor; loop = ss->loop; outer_loop = outermost_loop (loop); ss_info = ss->info; expr = ss_info->expr; /* Do bounds-checking here and in gfc_trans_array_ctor_element only if no typespec was given for the array constructor. */ typespec_chararray_ctor = (expr->ts.u.cl && expr->ts.u.cl->length_from_typespec); if ((gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) && expr->ts.type == BT_CHARACTER && !typespec_chararray_ctor) { first_len_val = gfc_create_var (gfc_charlen_type_node, "len"); first_len = true; } gcc_assert (ss->dimen == ss->loop->dimen); c = expr->value.constructor; if (expr->ts.type == BT_CHARACTER) { bool const_string; /* get_array_ctor_strlen walks the elements of the constructor, if a typespec was given, we already know the string length and want the one specified there. */ if (typespec_chararray_ctor && expr->ts.u.cl->length && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT) { gfc_se length_se; const_string = false; gfc_init_se (&length_se, NULL); gfc_conv_expr_type (&length_se, expr->ts.u.cl->length, gfc_charlen_type_node); ss_info->string_length = length_se.expr; gfc_add_block_to_block (&outer_loop->pre, &length_se.pre); gfc_add_block_to_block (&outer_loop->post, &length_se.post); } else const_string = get_array_ctor_strlen (&outer_loop->pre, c, &ss_info->string_length); /* Complex character array constructors should have been taken care of and not end up here. */ gcc_assert (ss_info->string_length); expr->ts.u.cl->backend_decl = ss_info->string_length; type = gfc_get_character_type_len (expr->ts.kind, ss_info->string_length); if (const_string) type = build_pointer_type (type); } else type = gfc_typenode_for_spec (&expr->ts); /* See if the constructor determines the loop bounds. */ dynamic = false; loop_ubound0 = get_loop_upper_bound_for_array (ss, 0); if (expr->shape && get_rank (loop) > 1 && *loop_ubound0 == NULL_TREE) { /* We have a multidimensional parameter. */ for (s = ss; s; s = s->parent) { int n; for (n = 0; n < s->loop->dimen; n++) { s->loop->from[n] = gfc_index_zero_node; s->loop->to[n] = gfc_conv_mpz_to_tree (expr->shape[s->dim[n]], gfc_index_integer_kind); s->loop->to[n] = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, s->loop->to[n], gfc_index_one_node); } } } if (*loop_ubound0 == NULL_TREE) { mpz_t size; /* We should have a 1-dimensional, zero-based loop. */ gcc_assert (loop->parent == NULL && loop->nested == NULL); gcc_assert (loop->dimen == 1); gcc_assert (integer_zerop (loop->from[0])); /* Split the constructor size into a static part and a dynamic part. Allocate the static size up-front and record whether the dynamic size might be nonzero. */ mpz_init (size); dynamic = gfc_get_array_constructor_size (&size, c); mpz_sub_ui (size, size, 1); loop->to[0] = gfc_conv_mpz_to_tree (size, gfc_index_integer_kind); mpz_clear (size); } /* Special case constant array constructors. */ if (!dynamic) { unsigned HOST_WIDE_INT nelem = gfc_constant_array_constructor_p (c); if (nelem > 0) { tree size = constant_array_constructor_loop_size (loop); if (size && compare_tree_int (size, nelem) == 0) { trans_constant_array_constructor (ss, type); goto finish; } } } if (TREE_CODE (*loop_ubound0) == VAR_DECL) dynamic = true; gfc_trans_create_temp_array (&outer_loop->pre, &outer_loop->post, ss, type, NULL_TREE, dynamic, true, false, where); desc = ss_info->data.array.descriptor; offset = gfc_index_zero_node; offsetvar = gfc_create_var_np (gfc_array_index_type, "offset"); TREE_NO_WARNING (offsetvar) = 1; TREE_USED (offsetvar) = 0; gfc_trans_array_constructor_value (&outer_loop->pre, type, desc, c, &offset, &offsetvar, dynamic); /* If the array grows dynamically, the upper bound of the loop variable is determined by the array's final upper bound. */ if (dynamic) { tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, offsetvar, gfc_index_one_node); tmp = gfc_evaluate_now (tmp, &outer_loop->pre); gfc_conv_descriptor_ubound_set (&loop->pre, desc, gfc_rank_cst[0], tmp); if (*loop_ubound0 && TREE_CODE (*loop_ubound0) == VAR_DECL) gfc_add_modify (&outer_loop->pre, *loop_ubound0, tmp); else *loop_ubound0 = tmp; } if (TREE_USED (offsetvar)) pushdecl (offsetvar); else gcc_assert (INTEGER_CST_P (offset)); #if 0 /* Disable bound checking for now because it's probably broken. */ if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) { gcc_unreachable (); } #endif finish: /* Restore old values of globals. */ first_len = old_first_len; first_len_val = old_first_len_val; typespec_chararray_ctor = old_typespec_chararray_ctor; } /* INFO describes a GFC_SS_SECTION in loop LOOP, and this function is called after evaluating all of INFO's vector dimensions. Go through each such vector dimension and see if we can now fill in any missing loop bounds. */ static void set_vector_loop_bounds (gfc_ss * ss) { gfc_loopinfo *loop, *outer_loop; gfc_array_info *info; gfc_se se; tree tmp; tree desc; tree zero; int n; int dim; outer_loop = outermost_loop (ss->loop); info = &ss->info->data.array; for (; ss; ss = ss->parent) { loop = ss->loop; for (n = 0; n < loop->dimen; n++) { dim = ss->dim[n]; if (info->ref->u.ar.dimen_type[dim] != DIMEN_VECTOR || loop->to[n] != NULL) continue; /* Loop variable N indexes vector dimension DIM, and we don't yet know the upper bound of loop variable N. Set it to the difference between the vector's upper and lower bounds. */ gcc_assert (loop->from[n] == gfc_index_zero_node); gcc_assert (info->subscript[dim] && info->subscript[dim]->info->type == GFC_SS_VECTOR); gfc_init_se (&se, NULL); desc = info->subscript[dim]->info->data.array.descriptor; zero = gfc_rank_cst[0]; tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, gfc_conv_descriptor_ubound_get (desc, zero), gfc_conv_descriptor_lbound_get (desc, zero)); tmp = gfc_evaluate_now (tmp, &outer_loop->pre); loop->to[n] = tmp; } } } /* Add the pre and post chains for all the scalar expressions in a SS chain to loop. This is called after the loop parameters have been calculated, but before the actual scalarizing loops. */ static void gfc_add_loop_ss_code (gfc_loopinfo * loop, gfc_ss * ss, bool subscript, locus * where) { gfc_loopinfo *nested_loop, *outer_loop; gfc_se se; gfc_ss_info *ss_info; gfc_array_info *info; gfc_expr *expr; bool skip_nested = false; int n; outer_loop = outermost_loop (loop); /* TODO: This can generate bad code if there are ordering dependencies, e.g., a callee allocated function and an unknown size constructor. */ gcc_assert (ss != NULL); for (; ss != gfc_ss_terminator; ss = ss->loop_chain) { gcc_assert (ss); /* Cross loop arrays are handled from within the most nested loop. */ if (ss->nested_ss != NULL) continue; ss_info = ss->info; expr = ss_info->expr; info = &ss_info->data.array; switch (ss_info->type) { case GFC_SS_SCALAR: /* Scalar expression. Evaluate this now. This includes elemental dimension indices, but not array section bounds. */ gfc_init_se (&se, NULL); gfc_conv_expr (&se, expr); gfc_add_block_to_block (&outer_loop->pre, &se.pre); if (expr->ts.type != BT_CHARACTER) { /* Move the evaluation of scalar expressions outside the scalarization loop, except for WHERE assignments. */ if (subscript) se.expr = convert(gfc_array_index_type, se.expr); if (!ss_info->where) se.expr = gfc_evaluate_now (se.expr, &outer_loop->pre); gfc_add_block_to_block (&outer_loop->pre, &se.post); } else gfc_add_block_to_block (&outer_loop->post, &se.post); ss_info->data.scalar.value = se.expr; ss_info->string_length = se.string_length; break; case GFC_SS_REFERENCE: /* Scalar argument to elemental procedure. */ gfc_init_se (&se, NULL); if (ss_info->data.scalar.can_be_null_ref) { /* If the actual argument can be absent (in other words, it can be a NULL reference), don't try to evaluate it; pass instead the reference directly. */ gfc_conv_expr_reference (&se, expr); } else { /* Otherwise, evaluate the argument outside the loop and pass a reference to the value. */ gfc_conv_expr (&se, expr); } gfc_add_block_to_block (&outer_loop->pre, &se.pre); gfc_add_block_to_block (&outer_loop->post, &se.post); if (gfc_is_class_scalar_expr (expr)) /* This is necessary because the dynamic type will always be large than the declared type. In consequence, assigning the value to a temporary could segfault. OOP-TODO: see if this is generally correct or is the value has to be written to an allocated temporary, whose address is passed via ss_info. */ ss_info->data.scalar.value = se.expr; else ss_info->data.scalar.value = gfc_evaluate_now (se.expr, &outer_loop->pre); ss_info->string_length = se.string_length; break; case GFC_SS_SECTION: /* Add the expressions for scalar and vector subscripts. */ for (n = 0; n < GFC_MAX_DIMENSIONS; n++) if (info->subscript[n]) { gfc_add_loop_ss_code (loop, info->subscript[n], true, where); /* The recursive call will have taken care of the nested loops. No need to do it twice. */ skip_nested = true; } set_vector_loop_bounds (ss); break; case GFC_SS_VECTOR: /* Get the vector's descriptor and store it in SS. */ gfc_init_se (&se, NULL); gfc_conv_expr_descriptor (&se, expr, gfc_walk_expr (expr)); gfc_add_block_to_block (&outer_loop->pre, &se.pre); gfc_add_block_to_block (&outer_loop->post, &se.post); info->descriptor = se.expr; break; case GFC_SS_INTRINSIC: gfc_add_intrinsic_ss_code (loop, ss); break; case GFC_SS_FUNCTION: /* Array function return value. We call the function and save its result in a temporary for use inside the loop. */ gfc_init_se (&se, NULL); se.loop = loop; se.ss = ss; gfc_conv_expr (&se, expr); gfc_add_block_to_block (&outer_loop->pre, &se.pre); gfc_add_block_to_block (&outer_loop->post, &se.post); ss_info->string_length = se.string_length; break; case GFC_SS_CONSTRUCTOR: if (expr->ts.type == BT_CHARACTER && ss_info->string_length == NULL && expr->ts.u.cl && expr->ts.u.cl->length) { gfc_init_se (&se, NULL); gfc_conv_expr_type (&se, expr->ts.u.cl->length, gfc_charlen_type_node); ss_info->string_length = se.expr; gfc_add_block_to_block (&outer_loop->pre, &se.pre); gfc_add_block_to_block (&outer_loop->post, &se.post); } trans_array_constructor (ss, where); break; case GFC_SS_TEMP: case GFC_SS_COMPONENT: /* Do nothing. These are handled elsewhere. */ break; default: gcc_unreachable (); } } if (!skip_nested) for (nested_loop = loop->nested; nested_loop; nested_loop = nested_loop->next) gfc_add_loop_ss_code (nested_loop, nested_loop->ss, subscript, where); } /* Translate expressions for the descriptor and data pointer of a SS. */ /*GCC ARRAYS*/ static void gfc_conv_ss_descriptor (stmtblock_t * block, gfc_ss * ss, int base) { gfc_se se; gfc_ss_info *ss_info; gfc_array_info *info; tree tmp; ss_info = ss->info; info = &ss_info->data.array; /* Get the descriptor for the array to be scalarized. */ gcc_assert (ss_info->expr->expr_type == EXPR_VARIABLE); gfc_init_se (&se, NULL); se.descriptor_only = 1; gfc_conv_expr_lhs (&se, ss_info->expr); gfc_add_block_to_block (block, &se.pre); info->descriptor = se.expr; ss_info->string_length = se.string_length; if (base) { /* Also the data pointer. */ tmp = gfc_conv_array_data (se.expr); /* If this is a variable or address of a variable we use it directly. Otherwise we must evaluate it now to avoid breaking dependency analysis by pulling the expressions for elemental array indices inside the loop. */ if (!(DECL_P (tmp) || (TREE_CODE (tmp) == ADDR_EXPR && DECL_P (TREE_OPERAND (tmp, 0))))) tmp = gfc_evaluate_now (tmp, block); info->data = tmp; tmp = gfc_conv_array_offset (se.expr); info->offset = gfc_evaluate_now (tmp, block); /* Make absolutely sure that the saved_offset is indeed saved so that the variable is still accessible after the loops are translated. */ info->saved_offset = info->offset; } } /* Initialize a gfc_loopinfo structure. */ void gfc_init_loopinfo (gfc_loopinfo * loop) { int n; memset (loop, 0, sizeof (gfc_loopinfo)); gfc_init_block (&loop->pre); gfc_init_block (&loop->post); /* Initially scalarize in order and default to no loop reversal. */ for (n = 0; n < GFC_MAX_DIMENSIONS; n++) { loop->order[n] = n; loop->reverse[n] = GFC_INHIBIT_REVERSE; } loop->ss = gfc_ss_terminator; } /* Copies the loop variable info to a gfc_se structure. Does not copy the SS chain. */ void gfc_copy_loopinfo_to_se (gfc_se * se, gfc_loopinfo * loop) { se->loop = loop; } /* Return an expression for the data pointer of an array. */ tree gfc_conv_array_data (tree descriptor) { tree type; type = TREE_TYPE (descriptor); if (GFC_ARRAY_TYPE_P (type)) { if (TREE_CODE (type) == POINTER_TYPE) return descriptor; else { /* Descriptorless arrays. */ return gfc_build_addr_expr (NULL_TREE, descriptor); } } else return gfc_conv_descriptor_data_get (descriptor); } /* Return an expression for the base offset of an array. */ tree gfc_conv_array_offset (tree descriptor) { tree type; type = TREE_TYPE (descriptor); if (GFC_ARRAY_TYPE_P (type)) return GFC_TYPE_ARRAY_OFFSET (type); else return gfc_conv_descriptor_offset_get (descriptor); } /* Get an expression for the array stride. */ tree gfc_conv_array_stride (tree descriptor, int dim) { tree tmp; tree type; type = TREE_TYPE (descriptor); /* For descriptorless arrays use the array size. */ tmp = GFC_TYPE_ARRAY_STRIDE (type, dim); if (tmp != NULL_TREE) return tmp; tmp = gfc_conv_descriptor_stride_get (descriptor, gfc_rank_cst[dim]); return tmp; } /* Like gfc_conv_array_stride, but for the lower bound. */ tree gfc_conv_array_lbound (tree descriptor, int dim) { tree tmp; tree type; type = TREE_TYPE (descriptor); tmp = GFC_TYPE_ARRAY_LBOUND (type, dim); if (tmp != NULL_TREE) return tmp; tmp = gfc_conv_descriptor_lbound_get (descriptor, gfc_rank_cst[dim]); return tmp; } /* Like gfc_conv_array_stride, but for the upper bound. */ tree gfc_conv_array_ubound (tree descriptor, int dim) { tree tmp; tree type; type = TREE_TYPE (descriptor); tmp = GFC_TYPE_ARRAY_UBOUND (type, dim); if (tmp != NULL_TREE) return tmp; /* This should only ever happen when passing an assumed shape array as an actual parameter. The value will never be used. */ if (GFC_ARRAY_TYPE_P (TREE_TYPE (descriptor))) return gfc_index_zero_node; tmp = gfc_conv_descriptor_ubound_get (descriptor, gfc_rank_cst[dim]); return tmp; } /* Generate code to perform an array index bound check. */ static tree trans_array_bound_check (gfc_se * se, gfc_ss *ss, tree index, int n, locus * where, bool check_upper) { tree fault; tree tmp_lo, tmp_up; tree descriptor; char *msg; const char * name = NULL; if (!(gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)) return index; descriptor = ss->info->data.array.descriptor; index = gfc_evaluate_now (index, &se->pre); /* We find a name for the error message. */ name = ss->info->expr->symtree->n.sym->name; gcc_assert (name != NULL); if (TREE_CODE (descriptor) == VAR_DECL) name = IDENTIFIER_POINTER (DECL_NAME (descriptor)); /* If upper bound is present, include both bounds in the error message. */ if (check_upper) { tmp_lo = gfc_conv_array_lbound (descriptor, n); tmp_up = gfc_conv_array_ubound (descriptor, n); if (name) asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' " "outside of expected range (%%ld:%%ld)", n+1, name); else asprintf (&msg, "Index '%%ld' of dimension %d " "outside of expected range (%%ld:%%ld)", n+1); fault = fold_build2_loc (input_location, LT_EXPR, boolean_type_node, index, tmp_lo); gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg, fold_convert (long_integer_type_node, index), fold_convert (long_integer_type_node, tmp_lo), fold_convert (long_integer_type_node, tmp_up)); fault = fold_build2_loc (input_location, GT_EXPR, boolean_type_node, index, tmp_up); gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg, fold_convert (long_integer_type_node, index), fold_convert (long_integer_type_node, tmp_lo), fold_convert (long_integer_type_node, tmp_up)); free (msg); } else { tmp_lo = gfc_conv_array_lbound (descriptor, n); if (name) asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' " "below lower bound of %%ld", n+1, name); else asprintf (&msg, "Index '%%ld' of dimension %d " "below lower bound of %%ld", n+1); fault = fold_build2_loc (input_location, LT_EXPR, boolean_type_node, index, tmp_lo); gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg, fold_convert (long_integer_type_node, index), fold_convert (long_integer_type_node, tmp_lo)); free (msg); } return index; } /* Return the offset for an index. Performs bound checking for elemental dimensions. Single element references are processed separately. DIM is the array dimension, I is the loop dimension. */ static tree conv_array_index_offset (gfc_se * se, gfc_ss * ss, int dim, int i, gfc_array_ref * ar, tree stride) { gfc_array_info *info; tree index; tree desc; tree data; info = &ss->info->data.array; /* Get the index into the array for this dimension. */ if (ar) { gcc_assert (ar->type != AR_ELEMENT); switch (ar->dimen_type[dim]) { case DIMEN_THIS_IMAGE: gcc_unreachable (); break; case DIMEN_ELEMENT: /* Elemental dimension. */ gcc_assert (info->subscript[dim] && info->subscript[dim]->info->type == GFC_SS_SCALAR); /* We've already translated this value outside the loop. */ index = info->subscript[dim]->info->data.scalar.value; index = trans_array_bound_check (se, ss, index, dim, &ar->where, ar->as->type != AS_ASSUMED_SIZE || dim < ar->dimen - 1); break; case DIMEN_VECTOR: gcc_assert (info && se->loop); gcc_assert (info->subscript[dim] && info->subscript[dim]->info->type == GFC_SS_VECTOR); desc = info->subscript[dim]->info->data.array.descriptor; /* Get a zero-based index into the vector. */ index = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, se->loop->loopvar[i], se->loop->from[i]); /* Multiply the index by the stride. */ index = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, index, gfc_conv_array_stride (desc, 0)); /* Read the vector to get an index into info->descriptor. */ data = build_fold_indirect_ref_loc (input_location, gfc_conv_array_data (desc)); index = gfc_build_array_ref (data, index, NULL); index = gfc_evaluate_now (index, &se->pre); index = fold_convert (gfc_array_index_type, index); /* Do any bounds checking on the final info->descriptor index. */ index = trans_array_bound_check (se, ss, index, dim, &ar->where, ar->as->type != AS_ASSUMED_SIZE || dim < ar->dimen - 1); break; case DIMEN_RANGE: /* Scalarized dimension. */ gcc_assert (info && se->loop); /* Multiply the loop variable by the stride and delta. */ index = se->loop->loopvar[i]; if (!integer_onep (info->stride[dim])) index = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, index, info->stride[dim]); if (!integer_zerop (info->delta[dim])) index = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, index, info->delta[dim]); break; default: gcc_unreachable (); } } else { /* Temporary array or derived type component. */ gcc_assert (se->loop); index = se->loop->loopvar[se->loop->order[i]]; /* Pointer functions can have stride[0] different from unity. Use the stride returned by the function call and stored in the descriptor for the temporary. */ if (se->ss && se->ss->info->type == GFC_SS_FUNCTION && se->ss->info->expr && se->ss->info->expr->symtree && se->ss->info->expr->symtree->n.sym->result && se->ss->info->expr->symtree->n.sym->result->attr.pointer) stride = gfc_conv_descriptor_stride_get (info->descriptor, gfc_rank_cst[dim]); if (!integer_zerop (info->delta[dim])) index = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, index, info->delta[dim]); } /* Multiply by the stride. */ if (!integer_onep (stride)) index = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, index, stride); return index; } /* Build a scalarized array reference using the vptr 'size'. */ static bool build_class_array_ref (gfc_se *se, tree base, tree index) { tree type; tree size; tree offset; tree decl; tree tmp; gfc_expr *expr = se->ss->info->expr; gfc_ref *ref; gfc_ref *class_ref; gfc_typespec *ts; if (expr == NULL || expr->ts.type != BT_CLASS) return false; if (expr->symtree && expr->symtree->n.sym->ts.type == BT_CLASS) ts = &expr->symtree->n.sym->ts; else ts = NULL; class_ref = NULL; for (ref = expr->ref; ref; ref = ref->next) { if (ref->type == REF_COMPONENT && ref->u.c.component->ts.type == BT_CLASS && ref->next && ref->next->type == REF_COMPONENT && strcmp (ref->next->u.c.component->name, "_data") == 0 && ref->next->next && ref->next->next->type == REF_ARRAY && ref->next->next->u.ar.type != AR_ELEMENT) { ts = &ref->u.c.component->ts; class_ref = ref; break; } } if (ts == NULL) return false; if (class_ref == NULL) decl = expr->symtree->n.sym->backend_decl; else { /* Remove everything after the last class reference, convert the expression and then recover its tailend once more. */ gfc_se tmpse; ref = class_ref->next; class_ref->next = NULL; gfc_init_se (&tmpse, NULL); gfc_conv_expr (&tmpse, expr); decl = tmpse.expr; class_ref->next = ref; } size = gfc_vtable_size_get (decl); /* Build the address of the element. */ type = TREE_TYPE (TREE_TYPE (base)); size = fold_convert (TREE_TYPE (index), size); offset = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, index, size); tmp = gfc_build_addr_expr (pvoid_type_node, base); tmp = fold_build_pointer_plus_loc (input_location, tmp, offset); tmp = fold_convert (build_pointer_type (type), tmp); /* Return the element in the se expression. */ se->expr = build_fold_indirect_ref_loc (input_location, tmp); return true; } /* Build a scalarized reference to an array. */ static void gfc_conv_scalarized_array_ref (gfc_se * se, gfc_array_ref * ar) { gfc_array_info *info; tree decl = NULL_TREE; tree index; tree tmp; gfc_ss *ss; gfc_expr *expr; int n; ss = se->ss; expr = ss->info->expr; info = &ss->info->data.array; if (ar) n = se->loop->order[0]; else n = 0; index = conv_array_index_offset (se, ss, ss->dim[n], n, ar, info->stride0); /* Add the offset for this dimension to the stored offset for all other dimensions. */ if (!integer_zerop (info->offset)) index = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, index, info->offset); if (expr && is_subref_array (expr)) decl = expr->symtree->n.sym->backend_decl; tmp = build_fold_indirect_ref_loc (input_location, info->data); /* Use the vptr 'size' field to access a class the element of a class array. */ if (build_class_array_ref (se, tmp, index)) return; se->expr = gfc_build_array_ref (tmp, index, decl); } /* Translate access of temporary array. */ void gfc_conv_tmp_array_ref (gfc_se * se) { se->string_length = se->ss->info->string_length; gfc_conv_scalarized_array_ref (se, NULL); gfc_advance_se_ss_chain (se); } /* Add T to the offset pair *OFFSET, *CST_OFFSET. */ static void add_to_offset (tree *cst_offset, tree *offset, tree t) { if (TREE_CODE (t) == INTEGER_CST) *cst_offset = int_const_binop (PLUS_EXPR, *cst_offset, t); else { if (!integer_zerop (*offset)) *offset = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, *offset, t); else *offset = t; } } /* Build an array reference. se->expr already holds the array descriptor. This should be either a variable, indirect variable reference or component reference. For arrays which do not have a descriptor, se->expr will be the data pointer. a(i, j, k) = base[offset + i * stride[0] + j * stride[1] + k * stride[2]]*/ void gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar, gfc_symbol * sym, locus * where) { int n; tree offset, cst_offset; tree tmp; tree stride; gfc_se indexse; gfc_se tmpse; if (ar->dimen == 0) { gcc_assert (ar->codimen); if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (se->expr))) se->expr = build_fold_indirect_ref (gfc_conv_array_data (se->expr)); else { if (GFC_ARRAY_TYPE_P (TREE_TYPE (se->expr)) && TREE_CODE (TREE_TYPE (se->expr)) == POINTER_TYPE) se->expr = build_fold_indirect_ref_loc (input_location, se->expr); /* Use the actual tree type and not the wrapped coarray. */ if (!se->want_pointer) se->expr = fold_convert (TYPE_MAIN_VARIANT (TREE_TYPE (se->expr)), se->expr); } return; } /* Handle scalarized references separately. */ if (ar->type != AR_ELEMENT) { gfc_conv_scalarized_array_ref (se, ar); gfc_advance_se_ss_chain (se); return; } cst_offset = offset = gfc_index_zero_node; add_to_offset (&cst_offset, &offset, gfc_conv_array_offset (se->expr)); /* Calculate the offsets from all the dimensions. Make sure to associate the final offset so that we form a chain of loop invariant summands. */ for (n = ar->dimen - 1; n >= 0; n--) { /* Calculate the index for this dimension. */ gfc_init_se (&indexse, se); gfc_conv_expr_type (&indexse, ar->start[n], gfc_array_index_type); gfc_add_block_to_block (&se->pre, &indexse.pre); if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) { /* Check array bounds. */ tree cond; char *msg; /* Evaluate the indexse.expr only once. */ indexse.expr = save_expr (indexse.expr); /* Lower bound. */ tmp = gfc_conv_array_lbound (se->expr, n); if (sym->attr.temporary) { gfc_init_se (&tmpse, se); gfc_conv_expr_type (&tmpse, ar->as->lower[n], gfc_array_index_type); gfc_add_block_to_block (&se->pre, &tmpse.pre); tmp = tmpse.expr; } cond = fold_build2_loc (input_location, LT_EXPR, boolean_type_node, indexse.expr, tmp); asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' " "below lower bound of %%ld", n+1, sym->name); gfc_trans_runtime_check (true, false, cond, &se->pre, where, msg, fold_convert (long_integer_type_node, indexse.expr), fold_convert (long_integer_type_node, tmp)); free (msg); /* Upper bound, but not for the last dimension of assumed-size arrays. */ if (n < ar->dimen - 1 || ar->as->type != AS_ASSUMED_SIZE) { tmp = gfc_conv_array_ubound (se->expr, n); if (sym->attr.temporary) { gfc_init_se (&tmpse, se); gfc_conv_expr_type (&tmpse, ar->as->upper[n], gfc_array_index_type); gfc_add_block_to_block (&se->pre, &tmpse.pre); tmp = tmpse.expr; } cond = fold_build2_loc (input_location, GT_EXPR, boolean_type_node, indexse.expr, tmp); asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' " "above upper bound of %%ld", n+1, sym->name); gfc_trans_runtime_check (true, false, cond, &se->pre, where, msg, fold_convert (long_integer_type_node, indexse.expr), fold_convert (long_integer_type_node, tmp)); free (msg); } } /* Multiply the index by the stride. */ stride = gfc_conv_array_stride (se->expr, n); tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, indexse.expr, stride); /* And add it to the total. */ add_to_offset (&cst_offset, &offset, tmp); } if (!integer_zerop (cst_offset)) offset = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, offset, cst_offset); /* Access the calculated element. */ tmp = gfc_conv_array_data (se->expr); tmp = build_fold_indirect_ref (tmp); se->expr = gfc_build_array_ref (tmp, offset, sym->backend_decl); } /* Add the offset corresponding to array's ARRAY_DIM dimension and loop's LOOP_DIM dimension (if any) to array's offset. */ static void add_array_offset (stmtblock_t *pblock, gfc_loopinfo *loop, gfc_ss *ss, gfc_array_ref *ar, int array_dim, int loop_dim) { gfc_se se; gfc_array_info *info; tree stride, index; info = &ss->info->data.array; gfc_init_se (&se, NULL); se.loop = loop; se.expr = info->descriptor; stride = gfc_conv_array_stride (info->descriptor, array_dim); index = conv_array_index_offset (&se, ss, array_dim, loop_dim, ar, stride); gfc_add_block_to_block (pblock, &se.pre); info->offset = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, info->offset, index); info->offset = gfc_evaluate_now (info->offset, pblock); } /* Generate the code to be executed immediately before entering a scalarization loop. */ static void gfc_trans_preloop_setup (gfc_loopinfo * loop, int dim, int flag, stmtblock_t * pblock) { tree stride; gfc_ss_info *ss_info; gfc_array_info *info; gfc_ss_type ss_type; gfc_ss *ss, *pss; gfc_loopinfo *ploop; gfc_array_ref *ar; int i; /* This code will be executed before entering the scalarization loop for this dimension. */ for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) { ss_info = ss->info; if ((ss_info->useflags & flag) == 0) continue; ss_type = ss_info->type; if (ss_type != GFC_SS_SECTION && ss_type != GFC_SS_FUNCTION && ss_type != GFC_SS_CONSTRUCTOR && ss_type != GFC_SS_COMPONENT) continue; info = &ss_info->data.array; gcc_assert (dim < ss->dimen); gcc_assert (ss->dimen == loop->dimen); if (info->ref) ar = &info->ref->u.ar; else ar = NULL; if (dim == loop->dimen - 1 && loop->parent != NULL) { /* If we are in the outermost dimension of this loop, the previous dimension shall be in the parent loop. */ gcc_assert (ss->parent != NULL); pss = ss->parent; ploop = loop->parent; /* ss and ss->parent are about the same array. */ gcc_assert (ss_info == pss->info); } else { ploop = loop; pss = ss; } if (dim == loop->dimen - 1) i = 0; else i = dim + 1; /* For the time being, there is no loop reordering. */ gcc_assert (i == ploop->order[i]); i = ploop->order[i]; if (dim == loop->dimen - 1 && loop->parent == NULL) { stride = gfc_conv_array_stride (info->descriptor, innermost_ss (ss)->dim[i]); /* Calculate the stride of the innermost loop. Hopefully this will allow the backend optimizers to do their stuff more effectively. */ info->stride0 = gfc_evaluate_now (stride, pblock); /* For the outermost loop calculate the offset due to any elemental dimensions. It will have been initialized with the base offset of the array. */ if (info->ref) { for (i = 0; i < ar->dimen; i++) { if (ar->dimen_type[i] != DIMEN_ELEMENT) continue; add_array_offset (pblock, loop, ss, ar, i, /* unused */ -1); } } } else /* Add the offset for the previous loop dimension. */ add_array_offset (pblock, ploop, ss, ar, pss->dim[i], i); /* Remember this offset for the second loop. */ if (dim == loop->temp_dim - 1 && loop->parent == NULL) info->saved_offset = info->offset; } } /* Start a scalarized expression. Creates a scope and declares loop variables. */ void gfc_start_scalarized_body (gfc_loopinfo * loop, stmtblock_t * pbody) { int dim; int n; int flags; gcc_assert (!loop->array_parameter); for (dim = loop->dimen - 1; dim >= 0; dim--) { n = loop->order[dim]; gfc_start_block (&loop->code[n]); /* Create the loop variable. */ loop->loopvar[n] = gfc_create_var (gfc_array_index_type, "S"); if (dim < loop->temp_dim) flags = 3; else flags = 1; /* Calculate values that will be constant within this loop. */ gfc_trans_preloop_setup (loop, dim, flags, &loop->code[n]); } gfc_start_block (pbody); } /* Generates the actual loop code for a scalarization loop. */ void gfc_trans_scalarized_loop_end (gfc_loopinfo * loop, int n, stmtblock_t * pbody) { stmtblock_t block; tree cond; tree tmp; tree loopbody; tree exit_label; tree stmt; tree init; tree incr; if ((ompws_flags & (OMPWS_WORKSHARE_FLAG | OMPWS_SCALARIZER_WS)) == (OMPWS_WORKSHARE_FLAG | OMPWS_SCALARIZER_WS) && n == loop->dimen - 1) { /* We create an OMP_FOR construct for the outermost scalarized loop. */ init = make_tree_vec (1); cond = make_tree_vec (1); incr = make_tree_vec (1); /* Cycle statement is implemented with a goto. Exit statement must not be present for this loop. */ exit_label = gfc_build_label_decl (NULL_TREE); TREE_USED (exit_label) = 1; /* Label for cycle statements (if needed). */ tmp = build1_v (LABEL_EXPR, exit_label); gfc_add_expr_to_block (pbody, tmp); stmt = make_node (OMP_FOR); TREE_TYPE (stmt) = void_type_node; OMP_FOR_BODY (stmt) = loopbody = gfc_finish_block (pbody); OMP_FOR_CLAUSES (stmt) = build_omp_clause (input_location, OMP_CLAUSE_SCHEDULE); OMP_CLAUSE_SCHEDULE_KIND (OMP_FOR_CLAUSES (stmt)) = OMP_CLAUSE_SCHEDULE_STATIC; if (ompws_flags & OMPWS_NOWAIT) OMP_CLAUSE_CHAIN (OMP_FOR_CLAUSES (stmt)) = build_omp_clause (input_location, OMP_CLAUSE_NOWAIT); /* Initialize the loopvar. */ TREE_VEC_ELT (init, 0) = build2_v (MODIFY_EXPR, loop->loopvar[n], loop->from[n]); OMP_FOR_INIT (stmt) = init; /* The exit condition. */ TREE_VEC_ELT (cond, 0) = build2_loc (input_location, LE_EXPR, boolean_type_node, loop->loopvar[n], loop->to[n]); SET_EXPR_LOCATION (TREE_VEC_ELT (cond, 0), input_location); OMP_FOR_COND (stmt) = cond; /* Increment the loopvar. */ tmp = build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, loop->loopvar[n], gfc_index_one_node); TREE_VEC_ELT (incr, 0) = fold_build2_loc (input_location, MODIFY_EXPR, void_type_node, loop->loopvar[n], tmp); OMP_FOR_INCR (stmt) = incr; ompws_flags &= ~OMPWS_CURR_SINGLEUNIT; gfc_add_expr_to_block (&loop->code[n], stmt); } else { bool reverse_loop = (loop->reverse[n] == GFC_REVERSE_SET) && (loop->temp_ss == NULL); loopbody = gfc_finish_block (pbody); if (reverse_loop) { tmp = loop->from[n]; loop->from[n] = loop->to[n]; loop->to[n] = tmp; } /* Initialize the loopvar. */ if (loop->loopvar[n] != loop->from[n]) gfc_add_modify (&loop->code[n], loop->loopvar[n], loop->from[n]); exit_label = gfc_build_label_decl (NULL_TREE); /* Generate the loop body. */ gfc_init_block (&block); /* The exit condition. */ cond = fold_build2_loc (input_location, reverse_loop ? LT_EXPR : GT_EXPR, boolean_type_node, loop->loopvar[n], loop->to[n]); tmp = build1_v (GOTO_EXPR, exit_label); TREE_USED (exit_label) = 1; tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location)); gfc_add_expr_to_block (&block, tmp); /* The main body. */ gfc_add_expr_to_block (&block, loopbody); /* Increment the loopvar. */ tmp = fold_build2_loc (input_location, reverse_loop ? MINUS_EXPR : PLUS_EXPR, gfc_array_index_type, loop->loopvar[n], gfc_index_one_node); gfc_add_modify (&block, loop->loopvar[n], tmp); /* Build the loop. */ tmp = gfc_finish_block (&block); tmp = build1_v (LOOP_EXPR, tmp); gfc_add_expr_to_block (&loop->code[n], tmp); /* Add the exit label. */ tmp = build1_v (LABEL_EXPR, exit_label); gfc_add_expr_to_block (&loop->code[n], tmp); } } /* Finishes and generates the loops for a scalarized expression. */ void gfc_trans_scalarizing_loops (gfc_loopinfo * loop, stmtblock_t * body) { int dim; int n; gfc_ss *ss; stmtblock_t *pblock; tree tmp; pblock = body; /* Generate the loops. */ for (dim = 0; dim < loop->dimen; dim++) { n = loop->order[dim]; gfc_trans_scalarized_loop_end (loop, n, pblock); loop->loopvar[n] = NULL_TREE; pblock = &loop->code[n]; } tmp = gfc_finish_block (pblock); gfc_add_expr_to_block (&loop->pre, tmp); /* Clear all the used flags. */ for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) if (ss->parent == NULL) ss->info->useflags = 0; } /* Finish the main body of a scalarized expression, and start the secondary copying body. */ void gfc_trans_scalarized_loop_boundary (gfc_loopinfo * loop, stmtblock_t * body) { int dim; int n; stmtblock_t *pblock; gfc_ss *ss; pblock = body; /* We finish as many loops as are used by the temporary. */ for (dim = 0; dim < loop->temp_dim - 1; dim++) { n = loop->order[dim]; gfc_trans_scalarized_loop_end (loop, n, pblock); loop->loopvar[n] = NULL_TREE; pblock = &loop->code[n]; } /* We don't want to finish the outermost loop entirely. */ n = loop->order[loop->temp_dim - 1]; gfc_trans_scalarized_loop_end (loop, n, pblock); /* Restore the initial offsets. */ for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) { gfc_ss_type ss_type; gfc_ss_info *ss_info; ss_info = ss->info; if ((ss_info->useflags & 2) == 0) continue; ss_type = ss_info->type; if (ss_type != GFC_SS_SECTION && ss_type != GFC_SS_FUNCTION && ss_type != GFC_SS_CONSTRUCTOR && ss_type != GFC_SS_COMPONENT) continue; ss_info->data.array.offset = ss_info->data.array.saved_offset; } /* Restart all the inner loops we just finished. */ for (dim = loop->temp_dim - 2; dim >= 0; dim--) { n = loop->order[dim]; gfc_start_block (&loop->code[n]); loop->loopvar[n] = gfc_create_var (gfc_array_index_type, "Q"); gfc_trans_preloop_setup (loop, dim, 2, &loop->code[n]); } /* Start a block for the secondary copying code. */ gfc_start_block (body); } /* Precalculate (either lower or upper) bound of an array section. BLOCK: Block in which the (pre)calculation code will go. BOUNDS[DIM]: Where the bound value will be stored once evaluated. VALUES[DIM]: Specified bound (NULL <=> unspecified). DESC: Array descriptor from which the bound will be picked if unspecified (either lower or upper bound according to LBOUND). */ static void evaluate_bound (stmtblock_t *block, tree *bounds, gfc_expr ** values, tree desc, int dim, bool lbound) { gfc_se se; gfc_expr * input_val = values[dim]; tree *output = &bounds[dim]; if (input_val) { /* Specified section bound. */ gfc_init_se (&se, NULL); gfc_conv_expr_type (&se, input_val, gfc_array_index_type); gfc_add_block_to_block (block, &se.pre); *output = se.expr; } else { /* No specific bound specified so use the bound of the array. */ *output = lbound ? gfc_conv_array_lbound (desc, dim) : gfc_conv_array_ubound (desc, dim); } *output = gfc_evaluate_now (*output, block); } /* Calculate the lower bound of an array section. */ static void gfc_conv_section_startstride (gfc_loopinfo * loop, gfc_ss * ss, int dim) { gfc_expr *stride = NULL; tree desc; gfc_se se; gfc_array_info *info; gfc_array_ref *ar; gcc_assert (ss->info->type == GFC_SS_SECTION); info = &ss->info->data.array; ar = &info->ref->u.ar; if (ar->dimen_type[dim] == DIMEN_VECTOR) { /* We use a zero-based index to access the vector. */ info->start[dim] = gfc_index_zero_node; info->end[dim] = NULL; info->stride[dim] = gfc_index_one_node; return; } gcc_assert (ar->dimen_type[dim] == DIMEN_RANGE || ar->dimen_type[dim] == DIMEN_THIS_IMAGE); desc = info->descriptor; stride = ar->stride[dim]; /* Calculate the start of the range. For vector subscripts this will be the range of the vector. */ evaluate_bound (&loop->pre, info->start, ar->start, desc, dim, true); /* Similarly calculate the end. Although this is not used in the scalarizer, it is needed when checking bounds and where the end is an expression with side-effects. */ evaluate_bound (&loop->pre, info->end, ar->end, desc, dim, false); /* Calculate the stride. */ if (stride == NULL) info->stride[dim] = gfc_index_one_node; else { gfc_init_se (&se, NULL); gfc_conv_expr_type (&se, stride, gfc_array_index_type); gfc_add_block_to_block (&loop->pre, &se.pre); info->stride[dim] = gfc_evaluate_now (se.expr, &loop->pre); } } /* Calculates the range start and stride for a SS chain. Also gets the descriptor and data pointer. The range of vector subscripts is the size of the vector. Array bounds are also checked. */ void gfc_conv_ss_startstride (gfc_loopinfo * loop) { int n; tree tmp; gfc_ss *ss; tree desc; loop->dimen = 0; /* Determine the rank of the loop. */ for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) { switch (ss->info->type) { case GFC_SS_SECTION: case GFC_SS_CONSTRUCTOR: case GFC_SS_FUNCTION: case GFC_SS_COMPONENT: loop->dimen = ss->dimen; goto done; /* As usual, lbound and ubound are exceptions!. */ case GFC_SS_INTRINSIC: switch (ss->info->expr->value.function.isym->id) { case GFC_ISYM_LBOUND: case GFC_ISYM_UBOUND: case GFC_ISYM_LCOBOUND: case GFC_ISYM_UCOBOUND: case GFC_ISYM_THIS_IMAGE: loop->dimen = ss->dimen; goto done; default: break; } default: break; } } /* We should have determined the rank of the expression by now. If not, that's bad news. */ gcc_unreachable (); done: /* Loop over all the SS in the chain. */ for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) { gfc_ss_info *ss_info; gfc_array_info *info; gfc_expr *expr; ss_info = ss->info; expr = ss_info->expr; info = &ss_info->data.array; if (expr && expr->shape && !info->shape) info->shape = expr->shape; switch (ss_info->type) { case GFC_SS_SECTION: /* Get the descriptor for the array. If it is a cross loops array, we got the descriptor already in the outermost loop. */ if (ss->parent == NULL) gfc_conv_ss_descriptor (&loop->pre, ss, !loop->array_parameter); for (n = 0; n < ss->dimen; n++) gfc_conv_section_startstride (loop, ss, ss->dim[n]); break; case GFC_SS_INTRINSIC: switch (expr->value.function.isym->id) { /* Fall through to supply start and stride. */ case GFC_ISYM_LBOUND: case GFC_ISYM_UBOUND: case GFC_ISYM_LCOBOUND: case GFC_ISYM_UCOBOUND: case GFC_ISYM_THIS_IMAGE: break; default: continue; } case GFC_SS_CONSTRUCTOR: case GFC_SS_FUNCTION: for (n = 0; n < ss->dimen; n++) { int dim = ss->dim[n]; info->start[dim] = gfc_index_zero_node; info->end[dim] = gfc_index_zero_node; info->stride[dim] = gfc_index_one_node; } break; default: break; } } /* The rest is just runtime bound checking. */ if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) { stmtblock_t block; tree lbound, ubound; tree end; tree size[GFC_MAX_DIMENSIONS]; tree stride_pos, stride_neg, non_zerosized, tmp2, tmp3; gfc_array_info *info; char *msg; int dim; gfc_start_block (&block); for (n = 0; n < loop->dimen; n++) size[n] = NULL_TREE; for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) { stmtblock_t inner; gfc_ss_info *ss_info; gfc_expr *expr; locus *expr_loc; const char *expr_name; ss_info = ss->info; if (ss_info->type != GFC_SS_SECTION) continue; /* Catch allocatable lhs in f2003. */ if (gfc_option.flag_realloc_lhs && ss->is_alloc_lhs) continue; expr = ss_info->expr; expr_loc = &expr->where; expr_name = expr->symtree->name; gfc_start_block (&inner); /* TODO: range checking for mapped dimensions. */ info = &ss_info->data.array; /* This code only checks ranges. Elemental and vector dimensions are checked later. */ for (n = 0; n < loop->dimen; n++) { bool check_upper; dim = ss->dim[n]; if (info->ref->u.ar.dimen_type[dim] != DIMEN_RANGE) continue; if (dim == info->ref->u.ar.dimen - 1 && info->ref->u.ar.as->type == AS_ASSUMED_SIZE) check_upper = false; else check_upper = true; /* Zero stride is not allowed. */ tmp = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, info->stride[dim], gfc_index_zero_node); asprintf (&msg, "Zero stride is not allowed, for dimension %d " "of array '%s'", dim + 1, expr_name); gfc_trans_runtime_check (true, false, tmp, &inner, expr_loc, msg); free (msg); desc = info->descriptor; /* This is the run-time equivalent of resolve.c's check_dimension(). The logical is more readable there than it is here, with all the trees. */ lbound = gfc_conv_array_lbound (desc, dim); end = info->end[dim]; if (check_upper) ubound = gfc_conv_array_ubound (desc, dim); else ubound = NULL; /* non_zerosized is true when the selected range is not empty. */ stride_pos = fold_build2_loc (input_location, GT_EXPR, boolean_type_node, info->stride[dim], gfc_index_zero_node); tmp = fold_build2_loc (input_location, LE_EXPR, boolean_type_node, info->start[dim], end); stride_pos = fold_build2_loc (input_location, TRUTH_AND_EXPR, boolean_type_node, stride_pos, tmp); stride_neg = fold_build2_loc (input_location, LT_EXPR, boolean_type_node, info->stride[dim], gfc_index_zero_node); tmp = fold_build2_loc (input_location, GE_EXPR, boolean_type_node, info->start[dim], end); stride_neg = fold_build2_loc (input_location, TRUTH_AND_EXPR, boolean_type_node, stride_neg, tmp); non_zerosized = fold_build2_loc (input_location, TRUTH_OR_EXPR, boolean_type_node, stride_pos, stride_neg); /* Check the start of the range against the lower and upper bounds of the array, if the range is not empty. If upper bound is present, include both bounds in the error message. */ if (check_upper) { tmp = fold_build2_loc (input_location, LT_EXPR, boolean_type_node, info->start[dim], lbound); tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR, boolean_type_node, non_zerosized, tmp); tmp2 = fold_build2_loc (input_location, GT_EXPR, boolean_type_node, info->start[dim], ubound); tmp2 = fold_build2_loc (input_location, TRUTH_AND_EXPR, boolean_type_node, non_zerosized, tmp2); asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' " "outside of expected range (%%ld:%%ld)", dim + 1, expr_name); gfc_trans_runtime_check (true, false, tmp, &inner, expr_loc, msg, fold_convert (long_integer_type_node, info->start[dim]), fold_convert (long_integer_type_node, lbound), fold_convert (long_integer_type_node, ubound)); gfc_trans_runtime_check (true, false, tmp2, &inner, expr_loc, msg, fold_convert (long_integer_type_node, info->start[dim]), fold_convert (long_integer_type_node, lbound), fold_convert (long_integer_type_node, ubound)); free (msg); } else { tmp = fold_build2_loc (input_location, LT_EXPR, boolean_type_node, info->start[dim], lbound); tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR, boolean_type_node, non_zerosized, tmp); asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' " "below lower bound of %%ld", dim + 1, expr_name); gfc_trans_runtime_check (true, false, tmp, &inner, expr_loc, msg, fold_convert (long_integer_type_node, info->start[dim]), fold_convert (long_integer_type_node, lbound)); free (msg); } /* Compute the last element of the range, which is not necessarily "end" (think 0:5:3, which doesn't contain 5) and check it against both lower and upper bounds. */ tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, end, info->start[dim]); tmp = fold_build2_loc (input_location, TRUNC_MOD_EXPR, gfc_array_index_type, tmp, info->stride[dim]); tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, end, tmp); tmp2 = fold_build2_loc (input_location, LT_EXPR, boolean_type_node, tmp, lbound); tmp2 = fold_build2_loc (input_location, TRUTH_AND_EXPR, boolean_type_node, non_zerosized, tmp2); if (check_upper) { tmp3 = fold_build2_loc (input_location, GT_EXPR, boolean_type_node, tmp, ubound); tmp3 = fold_build2_loc (input_location, TRUTH_AND_EXPR, boolean_type_node, non_zerosized, tmp3); asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' " "outside of expected range (%%ld:%%ld)", dim + 1, expr_name); gfc_trans_runtime_check (true, false, tmp2, &inner, expr_loc, msg, fold_convert (long_integer_type_node, tmp), fold_convert (long_integer_type_node, ubound), fold_convert (long_integer_type_node, lbound)); gfc_trans_runtime_check (true, false, tmp3, &inner, expr_loc, msg, fold_convert (long_integer_type_node, tmp), fold_convert (long_integer_type_node, ubound), fold_convert (long_integer_type_node, lbound)); free (msg); } else { asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' " "below lower bound of %%ld", dim + 1, expr_name); gfc_trans_runtime_check (true, false, tmp2, &inner, expr_loc, msg, fold_convert (long_integer_type_node, tmp), fold_convert (long_integer_type_node, lbound)); free (msg); } /* Check the section sizes match. */ tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, end, info->start[dim]); tmp = fold_build2_loc (input_location, FLOOR_DIV_EXPR, gfc_array_index_type, tmp, info->stride[dim]); tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, gfc_index_one_node, tmp); tmp = fold_build2_loc (input_location, MAX_EXPR, gfc_array_index_type, tmp, build_int_cst (gfc_array_index_type, 0)); /* We remember the size of the first section, and check all the others against this. */ if (size[n]) { tmp3 = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, tmp, size[n]); asprintf (&msg, "Array bound mismatch for dimension %d " "of array '%s' (%%ld/%%ld)", dim + 1, expr_name); gfc_trans_runtime_check (true, false, tmp3, &inner, expr_loc, msg, fold_convert (long_integer_type_node, tmp), fold_convert (long_integer_type_node, size[n])); free (msg); } else size[n] = gfc_evaluate_now (tmp, &inner); } tmp = gfc_finish_block (&inner); /* For optional arguments, only check bounds if the argument is present. */ if (expr->symtree->n.sym->attr.optional || expr->symtree->n.sym->attr.not_always_present) tmp = build3_v (COND_EXPR, gfc_conv_expr_present (expr->symtree->n.sym), tmp, build_empty_stmt (input_location)); gfc_add_expr_to_block (&block, tmp); } tmp = gfc_finish_block (&block); gfc_add_expr_to_block (&loop->pre, tmp); } for (loop = loop->nested; loop; loop = loop->next) gfc_conv_ss_startstride (loop); } /* Return true if both symbols could refer to the same data object. Does not take account of aliasing due to equivalence statements. */ static int symbols_could_alias (gfc_symbol *lsym, gfc_symbol *rsym, bool lsym_pointer, bool lsym_target, bool rsym_pointer, bool rsym_target) { /* Aliasing isn't possible if the symbols have different base types. */ if (gfc_compare_types (&lsym->ts, &rsym->ts) == 0) return 0; /* Pointers can point to other pointers and target objects. */ if ((lsym_pointer && (rsym_pointer || rsym_target)) || (rsym_pointer && (lsym_pointer || lsym_target))) return 1; /* Special case: Argument association, cf. F90 12.4.1.6, F2003 12.4.1.7 and F2008 12.5.2.13 items 3b and 4b. The pointer case (a) is already checked above. */ if (lsym_target && rsym_target && ((lsym->attr.dummy && !lsym->attr.contiguous && (!lsym->attr.dimension || lsym->as->type == AS_ASSUMED_SHAPE)) || (rsym->attr.dummy && !rsym->attr.contiguous && (!rsym->attr.dimension || rsym->as->type == AS_ASSUMED_SHAPE)))) return 1; return 0; } /* Return true if the two SS could be aliased, i.e. both point to the same data object. */ /* TODO: resolve aliases based on frontend expressions. */ static int gfc_could_be_alias (gfc_ss * lss, gfc_ss * rss) { gfc_ref *lref; gfc_ref *rref; gfc_expr *lexpr, *rexpr; gfc_symbol *lsym; gfc_symbol *rsym; bool lsym_pointer, lsym_target, rsym_pointer, rsym_target; lexpr = lss->info->expr; rexpr = rss->info->expr; lsym = lexpr->symtree->n.sym; rsym = rexpr->symtree->n.sym; lsym_pointer = lsym->attr.pointer; lsym_target = lsym->attr.target; rsym_pointer = rsym->attr.pointer; rsym_target = rsym->attr.target; if (symbols_could_alias (lsym, rsym, lsym_pointer, lsym_target, rsym_pointer, rsym_target)) return 1; if (rsym->ts.type != BT_DERIVED && rsym->ts.type != BT_CLASS && lsym->ts.type != BT_DERIVED && lsym->ts.type != BT_CLASS) return 0; /* For derived types we must check all the component types. We can ignore array references as these will have the same base type as the previous component ref. */ for (lref = lexpr->ref; lref != lss->info->data.array.ref; lref = lref->next) { if (lref->type != REF_COMPONENT) continue; lsym_pointer = lsym_pointer || lref->u.c.sym->attr.pointer; lsym_target = lsym_target || lref->u.c.sym->attr.target; if (symbols_could_alias (lref->u.c.sym, rsym, lsym_pointer, lsym_target, rsym_pointer, rsym_target)) return 1; if ((lsym_pointer && (rsym_pointer || rsym_target)) || (rsym_pointer && (lsym_pointer || lsym_target))) { if (gfc_compare_types (&lref->u.c.component->ts, &rsym->ts)) return 1; } for (rref = rexpr->ref; rref != rss->info->data.array.ref; rref = rref->next) { if (rref->type != REF_COMPONENT) continue; rsym_pointer = rsym_pointer || rref->u.c.sym->attr.pointer; rsym_target = lsym_target || rref->u.c.sym->attr.target; if (symbols_could_alias (lref->u.c.sym, rref->u.c.sym, lsym_pointer, lsym_target, rsym_pointer, rsym_target)) return 1; if ((lsym_pointer && (rsym_pointer || rsym_target)) || (rsym_pointer && (lsym_pointer || lsym_target))) { if (gfc_compare_types (&lref->u.c.component->ts, &rref->u.c.sym->ts)) return 1; if (gfc_compare_types (&lref->u.c.sym->ts, &rref->u.c.component->ts)) return 1; if (gfc_compare_types (&lref->u.c.component->ts, &rref->u.c.component->ts)) return 1; } } } lsym_pointer = lsym->attr.pointer; lsym_target = lsym->attr.target; lsym_pointer = lsym->attr.pointer; lsym_target = lsym->attr.target; for (rref = rexpr->ref; rref != rss->info->data.array.ref; rref = rref->next) { if (rref->type != REF_COMPONENT) break; rsym_pointer = rsym_pointer || rref->u.c.sym->attr.pointer; rsym_target = lsym_target || rref->u.c.sym->attr.target; if (symbols_could_alias (rref->u.c.sym, lsym, lsym_pointer, lsym_target, rsym_pointer, rsym_target)) return 1; if ((lsym_pointer && (rsym_pointer || rsym_target)) || (rsym_pointer && (lsym_pointer || lsym_target))) { if (gfc_compare_types (&lsym->ts, &rref->u.c.component->ts)) return 1; } } return 0; } /* Resolve array data dependencies. Creates a temporary if required. */ /* TODO: Calc dependencies with gfc_expr rather than gfc_ss, and move to dependency.c. */ void gfc_conv_resolve_dependencies (gfc_loopinfo * loop, gfc_ss * dest, gfc_ss * rss) { gfc_ss *ss; gfc_ref *lref; gfc_ref *rref; gfc_expr *dest_expr; gfc_expr *ss_expr; int nDepend = 0; int i, j; loop->temp_ss = NULL; dest_expr = dest->info->expr; for (ss = rss; ss != gfc_ss_terminator; ss = ss->next) { if (ss->info->type != GFC_SS_SECTION) continue; ss_expr = ss->info->expr; if (dest_expr->symtree->n.sym != ss_expr->symtree->n.sym) { if (gfc_could_be_alias (dest, ss) || gfc_are_equivalenced_arrays (dest_expr, ss_expr)) { nDepend = 1; break; } } else { lref = dest_expr->ref; rref = ss_expr->ref; nDepend = gfc_dep_resolver (lref, rref, &loop->reverse[0]); if (nDepend == 1) break; for (i = 0; i < dest->dimen; i++) for (j = 0; j < ss->dimen; j++) if (i != j && dest->dim[i] == ss->dim[j]) { /* If we don't access array elements in the same order, there is a dependency. */ nDepend = 1; goto temporary; } #if 0 /* TODO : loop shifting. */ if (nDepend == 1) { /* Mark the dimensions for LOOP SHIFTING */ for (n = 0; n < loop->dimen; n++) { int dim = dest->data.info.dim[n]; if (lref->u.ar.dimen_type[dim] == DIMEN_VECTOR) depends[n] = 2; else if (! gfc_is_same_range (&lref->u.ar, &rref->u.ar, dim, 0)) depends[n] = 1; } /* Put all the dimensions with dependencies in the innermost loops. */ dim = 0; for (n = 0; n < loop->dimen; n++) { gcc_assert (loop->order[n] == n); if (depends[n]) loop->order[dim++] = n; } for (n = 0; n < loop->dimen; n++) { if (! depends[n]) loop->order[dim++] = n; } gcc_assert (dim == loop->dimen); break; } #endif } } temporary: if (nDepend == 1) { tree base_type = gfc_typenode_for_spec (&dest_expr->ts); if (GFC_ARRAY_TYPE_P (base_type) || GFC_DESCRIPTOR_TYPE_P (base_type)) base_type = gfc_get_element_type (base_type); loop->temp_ss = gfc_get_temp_ss (base_type, dest->info->string_length, loop->dimen); gfc_add_ss_to_loop (loop, loop->temp_ss); } else loop->temp_ss = NULL; } /* Browse through each array's information from the scalarizer and set the loop bounds according to the "best" one (per dimension), i.e. the one which provides the most information (constant bounds, shape, etc). */ static void set_loop_bounds (gfc_loopinfo *loop) { int n, dim, spec_dim; gfc_array_info *info; gfc_array_info *specinfo; gfc_ss *ss; tree tmp; gfc_ss **loopspec; bool dynamic[GFC_MAX_DIMENSIONS]; mpz_t *cshape; mpz_t i; loopspec = loop->specloop; mpz_init (i); for (n = 0; n < loop->dimen; n++) { loopspec[n] = NULL; dynamic[n] = false; /* We use one SS term, and use that to determine the bounds of the loop for this dimension. We try to pick the simplest term. */ for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) { gfc_ss_type ss_type; ss_type = ss->info->type; if (ss_type == GFC_SS_SCALAR || ss_type == GFC_SS_TEMP || ss_type == GFC_SS_REFERENCE) continue; info = &ss->info->data.array; dim = ss->dim[n]; if (loopspec[n] != NULL) { specinfo = &loopspec[n]->info->data.array; spec_dim = loopspec[n]->dim[n]; } else { /* Silence unitialized warnings. */ specinfo = NULL; spec_dim = 0; } if (info->shape) { gcc_assert (info->shape[dim]); /* The frontend has worked out the size for us. */ if (!loopspec[n] || !specinfo->shape || !integer_zerop (specinfo->start[spec_dim])) /* Prefer zero-based descriptors if possible. */ loopspec[n] = ss; continue; } if (ss_type == GFC_SS_CONSTRUCTOR) { gfc_constructor_base base; /* An unknown size constructor will always be rank one. Higher rank constructors will either have known shape, or still be wrapped in a call to reshape. */ gcc_assert (loop->dimen == 1); /* Always prefer to use the constructor bounds if the size can be determined at compile time. Prefer not to otherwise, since the general case involves realloc, and it's better to avoid that overhead if possible. */ base = ss->info->expr->value.constructor; dynamic[n] = gfc_get_array_constructor_size (&i, base); if (!dynamic[n] || !loopspec[n]) loopspec[n] = ss; continue; } /* TODO: Pick the best bound if we have a choice between a function and something else. */ if (ss_type == GFC_SS_FUNCTION) { loopspec[n] = ss; continue; } /* Avoid using an allocatable lhs in an assignment, since there might be a reallocation coming. */ if (loopspec[n] && ss->is_alloc_lhs) continue; if (ss_type != GFC_SS_SECTION) continue; if (!loopspec[n]) loopspec[n] = ss; /* Criteria for choosing a loop specifier (most important first): doesn't need realloc stride of one known stride known lower bound known upper bound */ else if ((loopspec[n]->info->type == GFC_SS_CONSTRUCTOR && dynamic[n]) || n >= loop->dimen) loopspec[n] = ss; else if (integer_onep (info->stride[dim]) && !integer_onep (specinfo->stride[spec_dim])) loopspec[n] = ss; else if (INTEGER_CST_P (info->stride[dim]) && !INTEGER_CST_P (specinfo->stride[spec_dim])) loopspec[n] = ss; else if (INTEGER_CST_P (info->start[dim]) && !INTEGER_CST_P (specinfo->start[spec_dim])) loopspec[n] = ss; /* We don't work out the upper bound. else if (INTEGER_CST_P (info->finish[n]) && ! INTEGER_CST_P (specinfo->finish[n])) loopspec[n] = ss; */ } /* We should have found the scalarization loop specifier. If not, that's bad news. */ gcc_assert (loopspec[n]); info = &loopspec[n]->info->data.array; dim = loopspec[n]->dim[n]; /* Set the extents of this range. */ cshape = info->shape; if (cshape && INTEGER_CST_P (info->start[dim]) && INTEGER_CST_P (info->stride[dim])) { loop->from[n] = info->start[dim]; mpz_set (i, cshape[get_array_ref_dim_for_loop_dim (loopspec[n], n)]); mpz_sub_ui (i, i, 1); /* To = from + (size - 1) * stride. */ tmp = gfc_conv_mpz_to_tree (i, gfc_index_integer_kind); if (!integer_onep (info->stride[dim])) tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, tmp, info->stride[dim]); loop->to[n] = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, loop->from[n], tmp); } else { loop->from[n] = info->start[dim]; switch (loopspec[n]->info->type) { case GFC_SS_CONSTRUCTOR: /* The upper bound is calculated when we expand the constructor. */ gcc_assert (loop->to[n] == NULL_TREE); break; case GFC_SS_SECTION: /* Use the end expression if it exists and is not constant, so that it is only evaluated once. */ loop->to[n] = info->end[dim]; break; case GFC_SS_FUNCTION: /* The loop bound will be set when we generate the call. */ gcc_assert (loop->to[n] == NULL_TREE); break; default: gcc_unreachable (); } } /* Transform everything so we have a simple incrementing variable. */ if (integer_onep (info->stride[dim])) info->delta[dim] = gfc_index_zero_node; else { /* Set the delta for this section. */ info->delta[dim] = gfc_evaluate_now (loop->from[n], &loop->pre); /* Number of iterations is (end - start + step) / step. with start = 0, this simplifies to last = end / step; for (i = 0; i<=last; i++){...}; */ tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, loop->to[n], loop->from[n]); tmp = fold_build2_loc (input_location, FLOOR_DIV_EXPR, gfc_array_index_type, tmp, info->stride[dim]); tmp = fold_build2_loc (input_location, MAX_EXPR, gfc_array_index_type, tmp, build_int_cst (gfc_array_index_type, -1)); loop->to[n] = gfc_evaluate_now (tmp, &loop->pre); /* Make the loop variable start at 0. */ loop->from[n] = gfc_index_zero_node; } } mpz_clear (i); for (loop = loop->nested; loop; loop = loop->next) set_loop_bounds (loop); } /* Initialize the scalarization loop. Creates the loop variables. Determines the range of the loop variables. Creates a temporary if required. Also generates code for scalar expressions which have been moved outside the loop. */ void gfc_conv_loop_setup (gfc_loopinfo * loop, locus * where) { gfc_ss *tmp_ss; tree tmp; set_loop_bounds (loop); /* Add all the scalar code that can be taken out of the loops. This may include calculating the loop bounds, so do it before allocating the temporary. */ gfc_add_loop_ss_code (loop, loop->ss, false, where); tmp_ss = loop->temp_ss; /* If we want a temporary then create it. */ if (tmp_ss != NULL) { gfc_ss_info *tmp_ss_info; tmp_ss_info = tmp_ss->info; gcc_assert (tmp_ss_info->type == GFC_SS_TEMP); gcc_assert (loop->parent == NULL); /* Make absolutely sure that this is a complete type. */ if (tmp_ss_info->string_length) tmp_ss_info->data.temp.type = gfc_get_character_type_len_for_eltype (TREE_TYPE (tmp_ss_info->data.temp.type), tmp_ss_info->string_length); tmp = tmp_ss_info->data.temp.type; memset (&tmp_ss_info->data.array, 0, sizeof (gfc_array_info)); tmp_ss_info->type = GFC_SS_SECTION; gcc_assert (tmp_ss->dimen != 0); gfc_trans_create_temp_array (&loop->pre, &loop->post, tmp_ss, tmp, NULL_TREE, false, true, false, where); } /* For array parameters we don't have loop variables, so don't calculate the translations. */ if (!loop->array_parameter) gfc_set_delta (loop); } /* Calculates how to transform from loop variables to array indices for each array: once loop bounds are chosen, sets the difference (DELTA field) between loop bounds and array reference bounds, for each array info. */ void gfc_set_delta (gfc_loopinfo *loop) { gfc_ss *ss, **loopspec; gfc_array_info *info; tree tmp; int n, dim; loopspec = loop->specloop; /* Calculate the translation from loop variables to array indices. */ for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) { gfc_ss_type ss_type; ss_type = ss->info->type; if (ss_type != GFC_SS_SECTION && ss_type != GFC_SS_COMPONENT && ss_type != GFC_SS_CONSTRUCTOR) continue; info = &ss->info->data.array; for (n = 0; n < ss->dimen; n++) { /* If we are specifying the range the delta is already set. */ if (loopspec[n] != ss) { dim = ss->dim[n]; /* Calculate the offset relative to the loop variable. First multiply by the stride. */ tmp = loop->from[n]; if (!integer_onep (info->stride[dim])) tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, tmp, info->stride[dim]); /* Then subtract this from our starting value. */ tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, info->start[dim], tmp); info->delta[dim] = gfc_evaluate_now (tmp, &loop->pre); } } } for (loop = loop->nested; loop; loop = loop->next) gfc_set_delta (loop); } /* Calculate the size of a given array dimension from the bounds. This is simply (ubound - lbound + 1) if this expression is positive or 0 if it is negative (pick either one if it is zero). Optionally (if or_expr is present) OR the (expression != 0) condition to it. */ tree gfc_conv_array_extent_dim (tree lbound, tree ubound, tree* or_expr) { tree res; tree cond; /* Calculate (ubound - lbound + 1). */ res = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, ubound, lbound); res = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, res, gfc_index_one_node); /* Check whether the size for this dimension is negative. */ cond = fold_build2_loc (input_location, LE_EXPR, boolean_type_node, res, gfc_index_zero_node); res = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type, cond, gfc_index_zero_node, res); /* Build OR expression. */ if (or_expr) *or_expr = fold_build2_loc (input_location, TRUTH_OR_EXPR, boolean_type_node, *or_expr, cond); return res; } /* For an array descriptor, get the total number of elements. This is just the product of the extents along from_dim to to_dim. */ static tree gfc_conv_descriptor_size_1 (tree desc, int from_dim, int to_dim) { tree res; int dim; res = gfc_index_one_node; for (dim = from_dim; dim < to_dim; ++dim) { tree lbound; tree ubound; tree extent; lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[dim]); ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[dim]); extent = gfc_conv_array_extent_dim (lbound, ubound, NULL); res = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, res, extent); } return res; } /* Full size of an array. */ tree gfc_conv_descriptor_size (tree desc, int rank) { return gfc_conv_descriptor_size_1 (desc, 0, rank); } /* Size of a coarray for all dimensions but the last. */ tree gfc_conv_descriptor_cosize (tree desc, int rank, int corank) { return gfc_conv_descriptor_size_1 (desc, rank, rank + corank - 1); } /* Fills in an array descriptor, and returns the size of the array. The size will be a simple_val, ie a variable or a constant. Also calculates the offset of the base. The pointer argument overflow, which should be of integer type, will increase in value if overflow occurs during the size calculation. Returns the size of the array. { stride = 1; offset = 0; for (n = 0; n < rank; n++) { a.lbound[n] = specified_lower_bound; offset = offset + a.lbond[n] * stride; size = 1 - lbound; a.ubound[n] = specified_upper_bound; a.stride[n] = stride; size = size >= 0 ? ubound + size : 0; //size = ubound + 1 - lbound overflow += size == 0 ? 0: (MAX/size < stride ? 1: 0); stride = stride * size; } for (n = rank; n < rank+corank; n++) (Set lcobound/ucobound as above.) element_size = sizeof (array element); if (!rank) return element_size stride = (size_t) stride; overflow += element_size == 0 ? 0: (MAX/element_size < stride ? 1: 0); stride = stride * element_size; return (stride); } */ /*GCC ARRAYS*/ static tree gfc_array_init_size (tree descriptor, int rank, int corank, tree * poffset, gfc_expr ** lower, gfc_expr ** upper, stmtblock_t * pblock, stmtblock_t * descriptor_block, tree * overflow, tree expr3_elem_size, tree *nelems, gfc_expr *expr3) { tree type; tree tmp; tree size; tree offset; tree stride; tree element_size; tree or_expr; tree thencase; tree elsecase; tree cond; tree var; stmtblock_t thenblock; stmtblock_t elseblock; gfc_expr *ubound; gfc_se se; int n; type = TREE_TYPE (descriptor); stride = gfc_index_one_node; offset = gfc_index_zero_node; /* Set the dtype. */ tmp = gfc_conv_descriptor_dtype (descriptor); gfc_add_modify (descriptor_block, tmp, gfc_get_dtype (TREE_TYPE (descriptor))); or_expr = boolean_false_node; for (n = 0; n < rank; n++) { tree conv_lbound; tree conv_ubound; /* We have 3 possibilities for determining the size of the array: lower == NULL => lbound = 1, ubound = upper[n] upper[n] = NULL => lbound = 1, ubound = lower[n] upper[n] != NULL => lbound = lower[n], ubound = upper[n] */ ubound = upper[n]; /* Set lower bound. */ gfc_init_se (&se, NULL); if (lower == NULL) se.expr = gfc_index_one_node; else { gcc_assert (lower[n]); if (ubound) { gfc_conv_expr_type (&se, lower[n], gfc_array_index_type); gfc_add_block_to_block (pblock, &se.pre); } else { se.expr = gfc_index_one_node; ubound = lower[n]; } } gfc_conv_descriptor_lbound_set (descriptor_block, descriptor, gfc_rank_cst[n], se.expr); conv_lbound = se.expr; /* Work out the offset for this component. */ tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, se.expr, stride); offset = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, offset, tmp); /* Set upper bound. */ gfc_init_se (&se, NULL); gcc_assert (ubound); gfc_conv_expr_type (&se, ubound, gfc_array_index_type); gfc_add_block_to_block (pblock, &se.pre); gfc_conv_descriptor_ubound_set (descriptor_block, descriptor, gfc_rank_cst[n], se.expr); conv_ubound = se.expr; /* Store the stride. */ gfc_conv_descriptor_stride_set (descriptor_block, descriptor, gfc_rank_cst[n], stride); /* Calculate size and check whether extent is negative. */ size = gfc_conv_array_extent_dim (conv_lbound, conv_ubound, &or_expr); size = gfc_evaluate_now (size, pblock); /* Check whether multiplying the stride by the number of elements in this dimension would overflow. We must also check whether the current dimension has zero size in order to avoid division by zero. */ tmp = fold_build2_loc (input_location, TRUNC_DIV_EXPR, gfc_array_index_type, fold_convert (gfc_array_index_type, TYPE_MAX_VALUE (gfc_array_index_type)), size); cond = gfc_unlikely (fold_build2_loc (input_location, LT_EXPR, boolean_type_node, tmp, stride)); tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond, integer_one_node, integer_zero_node); cond = gfc_unlikely (fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, size, gfc_index_zero_node)); tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond, integer_zero_node, tmp); tmp = fold_build2_loc (input_location, PLUS_EXPR, integer_type_node, *overflow, tmp); *overflow = gfc_evaluate_now (tmp, pblock); /* Multiply the stride by the number of elements in this dimension. */ stride = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, stride, size); stride = gfc_evaluate_now (stride, pblock); } for (n = rank; n < rank + corank; n++) { ubound = upper[n]; /* Set lower bound. */ gfc_init_se (&se, NULL); if (lower == NULL || lower[n] == NULL) { gcc_assert (n == rank + corank - 1); se.expr = gfc_index_one_node; } else { if (ubound || n == rank + corank - 1) { gfc_conv_expr_type (&se, lower[n], gfc_array_index_type); gfc_add_block_to_block (pblock, &se.pre); } else { se.expr = gfc_index_one_node; ubound = lower[n]; } } gfc_conv_descriptor_lbound_set (descriptor_block, descriptor, gfc_rank_cst[n], se.expr); if (n < rank + corank - 1) { gfc_init_se (&se, NULL); gcc_assert (ubound); gfc_conv_expr_type (&se, ubound, gfc_array_index_type); gfc_add_block_to_block (pblock, &se.pre); gfc_conv_descriptor_ubound_set (descriptor_block, descriptor, gfc_rank_cst[n], se.expr); } } /* The stride is the number of elements in the array, so multiply by the size of an element to get the total size. Obviously, if there ia a SOURCE expression (expr3) we must use its element size. */ if (expr3_elem_size != NULL_TREE) tmp = expr3_elem_size; else if (expr3 != NULL) { if (expr3->ts.type == BT_CLASS) { gfc_se se_sz; gfc_expr *sz = gfc_copy_expr (expr3); gfc_add_vptr_component (sz); gfc_add_size_component (sz); gfc_init_se (&se_sz, NULL); gfc_conv_expr (&se_sz, sz); gfc_free_expr (sz); tmp = se_sz.expr; } else { tmp = gfc_typenode_for_spec (&expr3->ts); tmp = TYPE_SIZE_UNIT (tmp); } } else tmp = TYPE_SIZE_UNIT (gfc_get_element_type (type)); /* Convert to size_t. */ element_size = fold_convert (size_type_node, tmp); if (rank == 0) return element_size; *nelems = gfc_evaluate_now (stride, pblock); stride = fold_convert (size_type_node, stride); /* First check for overflow. Since an array of type character can have zero element_size, we must check for that before dividing. */ tmp = fold_build2_loc (input_location, TRUNC_DIV_EXPR, size_type_node, TYPE_MAX_VALUE (size_type_node), element_size); cond = gfc_unlikely (fold_build2_loc (input_location, LT_EXPR, boolean_type_node, tmp, stride)); tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond, integer_one_node, integer_zero_node); cond = gfc_unlikely (fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, element_size, build_int_cst (size_type_node, 0))); tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond, integer_zero_node, tmp); tmp = fold_build2_loc (input_location, PLUS_EXPR, integer_type_node, *overflow, tmp); *overflow = gfc_evaluate_now (tmp, pblock); size = fold_build2_loc (input_location, MULT_EXPR, size_type_node, stride, element_size); if (poffset != NULL) { offset = gfc_evaluate_now (offset, pblock); *poffset = offset; } if (integer_zerop (or_expr)) return size; if (integer_onep (or_expr)) return build_int_cst (size_type_node, 0); var = gfc_create_var (TREE_TYPE (size), "size"); gfc_start_block (&thenblock); gfc_add_modify (&thenblock, var, build_int_cst (size_type_node, 0)); thencase = gfc_finish_block (&thenblock); gfc_start_block (&elseblock); gfc_add_modify (&elseblock, var, size); elsecase = gfc_finish_block (&elseblock); tmp = gfc_evaluate_now (or_expr, pblock); tmp = build3_v (COND_EXPR, tmp, thencase, elsecase); gfc_add_expr_to_block (pblock, tmp); return var; } /* Initializes the descriptor and generates a call to _gfor_allocate. Does the work for an ALLOCATE statement. */ /*GCC ARRAYS*/ bool gfc_array_allocate (gfc_se * se, gfc_expr * expr, tree status, tree errmsg, tree errlen, tree label_finish, tree expr3_elem_size, tree *nelems, gfc_expr *expr3) { tree tmp; tree pointer; tree offset = NULL_TREE; tree token = NULL_TREE; tree size; tree msg; tree error = NULL_TREE; tree overflow; /* Boolean storing whether size calculation overflows. */ tree var_overflow = NULL_TREE; tree cond; tree set_descriptor; stmtblock_t set_descriptor_block; stmtblock_t elseblock; gfc_expr **lower; gfc_expr **upper; gfc_ref *ref, *prev_ref = NULL; bool allocatable, coarray, dimension; ref = expr->ref; /* Find the last reference in the chain. */ while (ref && ref->next != NULL) { gcc_assert (ref->type != REF_ARRAY || ref->u.ar.type == AR_ELEMENT || (ref->u.ar.dimen == 0 && ref->u.ar.codimen > 0)); prev_ref = ref; ref = ref->next; } if (ref == NULL || ref->type != REF_ARRAY) return false; if (!prev_ref) { allocatable = expr->symtree->n.sym->attr.allocatable; coarray = expr->symtree->n.sym->attr.codimension; dimension = expr->symtree->n.sym->attr.dimension; } else { allocatable = prev_ref->u.c.component->attr.allocatable; coarray = prev_ref->u.c.component->attr.codimension; dimension = prev_ref->u.c.component->attr.dimension; } if (!dimension) gcc_assert (coarray); /* Figure out the size of the array. */ switch (ref->u.ar.type) { case AR_ELEMENT: if (!coarray) { lower = NULL; upper = ref->u.ar.start; break; } /* Fall through. */ case AR_SECTION: lower = ref->u.ar.start; upper = ref->u.ar.end; break; case AR_FULL: gcc_assert (ref->u.ar.as->type == AS_EXPLICIT); lower = ref->u.ar.as->lower; upper = ref->u.ar.as->upper; break; default: gcc_unreachable (); break; } overflow = integer_zero_node; gfc_init_block (&set_descriptor_block); size = gfc_array_init_size (se->expr, ref->u.ar.as->rank, ref->u.ar.as->corank, &offset, lower, upper, &se->pre, &set_descriptor_block, &overflow, expr3_elem_size, nelems, expr3); if (dimension) { var_overflow = gfc_create_var (integer_type_node, "overflow"); gfc_add_modify (&se->pre, var_overflow, overflow); /* Generate the block of code handling overflow. */ msg = gfc_build_addr_expr (pchar_type_node, gfc_build_localized_cstring_const ("Integer overflow when calculating the amount of " "memory to allocate")); error = build_call_expr_loc (input_location, gfor_fndecl_runtime_error, 1, msg); } if (status != NULL_TREE) { tree status_type = TREE_TYPE (status); stmtblock_t set_status_block; gfc_start_block (&set_status_block); gfc_add_modify (&set_status_block, status, build_int_cst (status_type, LIBERROR_ALLOCATION)); error = gfc_finish_block (&set_status_block); } gfc_start_block (&elseblock); /* Allocate memory to store the data. */ if (POINTER_TYPE_P (TREE_TYPE (se->expr))) se->expr = build_fold_indirect_ref_loc (input_location, se->expr); pointer = gfc_conv_descriptor_data_get (se->expr); STRIP_NOPS (pointer); if (coarray && gfc_option.coarray == GFC_FCOARRAY_LIB) token = gfc_build_addr_expr (NULL_TREE, gfc_conv_descriptor_token (se->expr)); /* The allocatable variant takes the old pointer as first argument. */ if (allocatable) gfc_allocate_allocatable (&elseblock, pointer, size, token, status, errmsg, errlen, label_finish, expr); else gfc_allocate_using_malloc (&elseblock, pointer, size, status); if (dimension) { cond = gfc_unlikely (fold_build2_loc (input_location, NE_EXPR, boolean_type_node, var_overflow, integer_zero_node)); tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond, error, gfc_finish_block (&elseblock)); } else tmp = gfc_finish_block (&elseblock); gfc_add_expr_to_block (&se->pre, tmp); if (expr->ts.type == BT_CLASS) { tmp = build_int_cst (unsigned_char_type_node, 0); /* With class objects, it is best to play safe and null the memory because we cannot know if dynamic types have allocatable components or not. */ tmp = build_call_expr_loc (input_location, builtin_decl_explicit (BUILT_IN_MEMSET), 3, pointer, tmp, size); gfc_add_expr_to_block (&se->pre, tmp); } /* Update the array descriptors. */ if (dimension) gfc_conv_descriptor_offset_set (&set_descriptor_block, se->expr, offset); set_descriptor = gfc_finish_block (&set_descriptor_block); if (status != NULL_TREE) { cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, status, build_int_cst (TREE_TYPE (status), 0)); gfc_add_expr_to_block (&se->pre, fold_build3_loc (input_location, COND_EXPR, void_type_node, gfc_likely (cond), set_descriptor, build_empty_stmt (input_location))); } else gfc_add_expr_to_block (&se->pre, set_descriptor); if ((expr->ts.type == BT_DERIVED) && expr->ts.u.derived->attr.alloc_comp) { tmp = gfc_nullify_alloc_comp (expr->ts.u.derived, se->expr, ref->u.ar.as->rank); gfc_add_expr_to_block (&se->pre, tmp); } return true; } /* Deallocate an array variable. Also used when an allocated variable goes out of scope. */ /*GCC ARRAYS*/ tree gfc_array_deallocate (tree descriptor, tree pstat, tree errmsg, tree errlen, tree label_finish, gfc_expr* expr) { tree var; tree tmp; stmtblock_t block; bool coarray = gfc_is_coarray (expr); gfc_start_block (&block); /* Get a pointer to the data. */ var = gfc_conv_descriptor_data_get (descriptor); STRIP_NOPS (var); /* Parameter is the address of the data component. */ tmp = gfc_deallocate_with_status (coarray ? descriptor : var, pstat, errmsg, errlen, label_finish, false, expr, coarray); gfc_add_expr_to_block (&block, tmp); /* Zero the data pointer; only for coarrays an error can occur and then the allocation status may not be changed. */ tmp = fold_build2_loc (input_location, MODIFY_EXPR, void_type_node, var, build_int_cst (TREE_TYPE (var), 0)); if (pstat != NULL_TREE && coarray && gfc_option.coarray == GFC_FCOARRAY_LIB) { tree cond; tree stat = build_fold_indirect_ref_loc (input_location, pstat); cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, stat, build_int_cst (TREE_TYPE (stat), 0)); tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond, tmp, build_empty_stmt (input_location)); } gfc_add_expr_to_block (&block, tmp); return gfc_finish_block (&block); } /* Create an array constructor from an initialization expression. We assume the frontend already did any expansions and conversions. */ tree gfc_conv_array_initializer (tree type, gfc_expr * expr) { gfc_constructor *c; tree tmp; gfc_se se; HOST_WIDE_INT hi; unsigned HOST_WIDE_INT lo; tree index, range; VEC(constructor_elt,gc) *v = NULL; if (expr->expr_type == EXPR_VARIABLE && expr->symtree->n.sym->attr.flavor == FL_PARAMETER && expr->symtree->n.sym->value) expr = expr->symtree->n.sym->value; switch (expr->expr_type) { case EXPR_CONSTANT: case EXPR_STRUCTURE: /* A single scalar or derived type value. Create an array with all elements equal to that value. */ gfc_init_se (&se, NULL); if (expr->expr_type == EXPR_CONSTANT) gfc_conv_constant (&se, expr); else gfc_conv_structure (&se, expr, 1); tmp = TYPE_MAX_VALUE (TYPE_DOMAIN (type)); gcc_assert (tmp && INTEGER_CST_P (tmp)); hi = TREE_INT_CST_HIGH (tmp); lo = TREE_INT_CST_LOW (tmp); lo++; if (lo == 0) hi++; /* This will probably eat buckets of memory for large arrays. */ while (hi != 0 || lo != 0) { CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, se.expr); if (lo == 0) hi--; lo--; } break; case EXPR_ARRAY: /* Create a vector of all the elements. */ for (c = gfc_constructor_first (expr->value.constructor); c; c = gfc_constructor_next (c)) { if (c->iterator) { /* Problems occur when we get something like integer :: a(lots) = (/(i, i=1, lots)/) */ gfc_fatal_error ("The number of elements in the array constructor " "at %L requires an increase of the allowed %d " "upper limit. See -fmax-array-constructor " "option", &expr->where, gfc_option.flag_max_array_constructor); return NULL_TREE; } if (mpz_cmp_si (c->offset, 0) != 0) index = gfc_conv_mpz_to_tree (c->offset, gfc_index_integer_kind); else index = NULL_TREE; if (mpz_cmp_si (c->repeat, 1) > 0) { tree tmp1, tmp2; mpz_t maxval; mpz_init (maxval); mpz_add (maxval, c->offset, c->repeat); mpz_sub_ui (maxval, maxval, 1); tmp2 = gfc_conv_mpz_to_tree (maxval, gfc_index_integer_kind); if (mpz_cmp_si (c->offset, 0) != 0) { mpz_add_ui (maxval, c->offset, 1); tmp1 = gfc_conv_mpz_to_tree (maxval, gfc_index_integer_kind); } else tmp1 = gfc_conv_mpz_to_tree (c->offset, gfc_index_integer_kind); range = fold_build2 (RANGE_EXPR, gfc_array_index_type, tmp1, tmp2); mpz_clear (maxval); } else range = NULL; gfc_init_se (&se, NULL); switch (c->expr->expr_type) { case EXPR_CONSTANT: gfc_conv_constant (&se, c->expr); break; case EXPR_STRUCTURE: gfc_conv_structure (&se, c->expr, 1); break; default: /* Catch those occasional beasts that do not simplify for one reason or another, assuming that if they are standard defying the frontend will catch them. */ gfc_conv_expr (&se, c->expr); break; } if (range == NULL_TREE) CONSTRUCTOR_APPEND_ELT (v, index, se.expr); else { if (index != NULL_TREE) CONSTRUCTOR_APPEND_ELT (v, index, se.expr); CONSTRUCTOR_APPEND_ELT (v, range, se.expr); } } break; case EXPR_NULL: return gfc_build_null_descriptor (type); default: gcc_unreachable (); } /* Create a constructor from the list of elements. */ tmp = build_constructor (type, v); TREE_CONSTANT (tmp) = 1; return tmp; } /* Generate code to evaluate non-constant coarray cobounds. */ void gfc_trans_array_cobounds (tree type, stmtblock_t * pblock, const gfc_symbol *sym) { int dim; tree ubound; tree lbound; gfc_se se; gfc_array_spec *as; as = sym->as; for (dim = as->rank; dim < as->rank + as->corank; dim++) { /* Evaluate non-constant array bound expressions. */ lbound = GFC_TYPE_ARRAY_LBOUND (type, dim); if (as->lower[dim] && !INTEGER_CST_P (lbound)) { gfc_init_se (&se, NULL); gfc_conv_expr_type (&se, as->lower[dim], gfc_array_index_type); gfc_add_block_to_block (pblock, &se.pre); gfc_add_modify (pblock, lbound, se.expr); } ubound = GFC_TYPE_ARRAY_UBOUND (type, dim); if (as->upper[dim] && !INTEGER_CST_P (ubound)) { gfc_init_se (&se, NULL); gfc_conv_expr_type (&se, as->upper[dim], gfc_array_index_type); gfc_add_block_to_block (pblock, &se.pre); gfc_add_modify (pblock, ubound, se.expr); } } } /* Generate code to evaluate non-constant array bounds. Sets *poffset and returns the size (in elements) of the array. */ static tree gfc_trans_array_bounds (tree type, gfc_symbol * sym, tree * poffset, stmtblock_t * pblock) { gfc_array_spec *as; tree size; tree stride; tree offset; tree ubound; tree lbound; tree tmp; gfc_se se; int dim; as = sym->as; size = gfc_index_one_node; offset = gfc_index_zero_node; for (dim = 0; dim < as->rank; dim++) { /* Evaluate non-constant array bound expressions. */ lbound = GFC_TYPE_ARRAY_LBOUND (type, dim); if (as->lower[dim] && !INTEGER_CST_P (lbound)) { gfc_init_se (&se, NULL); gfc_conv_expr_type (&se, as->lower[dim], gfc_array_index_type); gfc_add_block_to_block (pblock, &se.pre); gfc_add_modify (pblock, lbound, se.expr); } ubound = GFC_TYPE_ARRAY_UBOUND (type, dim); if (as->upper[dim] && !INTEGER_CST_P (ubound)) { gfc_init_se (&se, NULL); gfc_conv_expr_type (&se, as->upper[dim], gfc_array_index_type); gfc_add_block_to_block (pblock, &se.pre); gfc_add_modify (pblock, ubound, se.expr); } /* The offset of this dimension. offset = offset - lbound * stride. */ tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, lbound, size); offset = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, offset, tmp); /* The size of this dimension, and the stride of the next. */ if (dim + 1 < as->rank) stride = GFC_TYPE_ARRAY_STRIDE (type, dim + 1); else stride = GFC_TYPE_ARRAY_SIZE (type); if (ubound != NULL_TREE && !(stride && INTEGER_CST_P (stride))) { /* Calculate stride = size * (ubound + 1 - lbound). */ tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, gfc_index_one_node, lbound); tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, ubound, tmp); tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, size, tmp); if (stride) gfc_add_modify (pblock, stride, tmp); else stride = gfc_evaluate_now (tmp, pblock); /* Make sure that negative size arrays are translated to being zero size. */ tmp = fold_build2_loc (input_location, GE_EXPR, boolean_type_node, stride, gfc_index_zero_node); tmp = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type, tmp, stride, gfc_index_zero_node); gfc_add_modify (pblock, stride, tmp); } size = stride; } gfc_trans_array_cobounds (type, pblock, sym); gfc_trans_vla_type_sizes (sym, pblock); *poffset = offset; return size; } /* Generate code to initialize/allocate an array variable. */ void gfc_trans_auto_array_allocation (tree decl, gfc_symbol * sym, gfc_wrapped_block * block) { stmtblock_t init; tree type; tree tmp = NULL_TREE; tree size; tree offset; tree space; tree inittree; bool onstack; gcc_assert (!(sym->attr.pointer || sym->attr.allocatable)); /* Do nothing for USEd variables. */ if (sym->attr.use_assoc) return; type = TREE_TYPE (decl); gcc_assert (GFC_ARRAY_TYPE_P (type)); onstack = TREE_CODE (type) != POINTER_TYPE; gfc_init_block (&init); /* Evaluate character string length. */ if (sym->ts.type == BT_CHARACTER && onstack && !INTEGER_CST_P (sym->ts.u.cl->backend_decl)) { gfc_conv_string_length (sym->ts.u.cl, NULL, &init); gfc_trans_vla_type_sizes (sym, &init); /* Emit a DECL_EXPR for this variable, which will cause the gimplifier to allocate storage, and all that good stuff. */ tmp = fold_build1_loc (input_location, DECL_EXPR, TREE_TYPE (decl), decl); gfc_add_expr_to_block (&init, tmp); } if (onstack) { gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE); return; } type = TREE_TYPE (type); gcc_assert (!sym->attr.use_assoc); gcc_assert (!TREE_STATIC (decl)); gcc_assert (!sym->module); if (sym->ts.type == BT_CHARACTER && !INTEGER_CST_P (sym->ts.u.cl->backend_decl)) gfc_conv_string_length (sym->ts.u.cl, NULL, &init); size = gfc_trans_array_bounds (type, sym, &offset, &init); /* Don't actually allocate space for Cray Pointees. */ if (sym->attr.cray_pointee) { if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL) gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset); gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE); return; } if (gfc_option.flag_stack_arrays) { gcc_assert (TREE_CODE (TREE_TYPE (decl)) == POINTER_TYPE); space = build_decl (sym->declared_at.lb->location, VAR_DECL, create_tmp_var_name ("A"), TREE_TYPE (TREE_TYPE (decl))); gfc_trans_vla_type_sizes (sym, &init); } else { /* The size is the number of elements in the array, so multiply by the size of an element to get the total size. */ tmp = TYPE_SIZE_UNIT (gfc_get_element_type (type)); size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, size, fold_convert (gfc_array_index_type, tmp)); /* Allocate memory to hold the data. */ tmp = gfc_call_malloc (&init, TREE_TYPE (decl), size); gfc_add_modify (&init, decl, tmp); /* Free the temporary. */ tmp = gfc_call_free (convert (pvoid_type_node, decl)); space = NULL_TREE; } /* Set offset of the array. */ if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL) gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset); /* Automatic arrays should not have initializers. */ gcc_assert (!sym->value); inittree = gfc_finish_block (&init); if (space) { tree addr; pushdecl (space); /* Don't create new scope, emit the DECL_EXPR in exactly the scope where also space is located. */ gfc_init_block (&init); tmp = fold_build1_loc (input_location, DECL_EXPR, TREE_TYPE (space), space); gfc_add_expr_to_block (&init, tmp); addr = fold_build1_loc (sym->declared_at.lb->location, ADDR_EXPR, TREE_TYPE (decl), space); gfc_add_modify (&init, decl, addr); gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE); tmp = NULL_TREE; } gfc_add_init_cleanup (block, inittree, tmp); } /* Generate entry and exit code for g77 calling convention arrays. */ void gfc_trans_g77_array (gfc_symbol * sym, gfc_wrapped_block * block) { tree parm; tree type; locus loc; tree offset; tree tmp; tree stmt; stmtblock_t init; gfc_save_backend_locus (&loc); gfc_set_backend_locus (&sym->declared_at); /* Descriptor type. */ parm = sym->backend_decl; type = TREE_TYPE (parm); gcc_assert (GFC_ARRAY_TYPE_P (type)); gfc_start_block (&init); if (sym->ts.type == BT_CHARACTER && TREE_CODE (sym->ts.u.cl->backend_decl) == VAR_DECL) gfc_conv_string_length (sym->ts.u.cl, NULL, &init); /* Evaluate the bounds of the array. */ gfc_trans_array_bounds (type, sym, &offset, &init); /* Set the offset. */ if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL) gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset); /* Set the pointer itself if we aren't using the parameter directly. */ if (TREE_CODE (parm) != PARM_DECL) { tmp = convert (TREE_TYPE (parm), GFC_DECL_SAVED_DESCRIPTOR (parm)); gfc_add_modify (&init, parm, tmp); } stmt = gfc_finish_block (&init); gfc_restore_backend_locus (&loc); /* Add the initialization code to the start of the function. */ if (sym->attr.optional || sym->attr.not_always_present) { tmp = gfc_conv_expr_present (sym); stmt = build3_v (COND_EXPR, tmp, stmt, build_empty_stmt (input_location)); } gfc_add_init_cleanup (block, stmt, NULL_TREE); } /* Modify the descriptor of an array parameter so that it has the correct lower bound. Also move the upper bound accordingly. If the array is not packed, it will be copied into a temporary. For each dimension we set the new lower and upper bounds. Then we copy the stride and calculate the offset for this dimension. We also work out what the stride of a packed array would be, and see it the two match. If the array need repacking, we set the stride to the values we just calculated, recalculate the offset and copy the array data. Code is also added to copy the data back at the end of the function. */ void gfc_trans_dummy_array_bias (gfc_symbol * sym, tree tmpdesc, gfc_wrapped_block * block) { tree size; tree type; tree offset; locus loc; stmtblock_t init; tree stmtInit, stmtCleanup; tree lbound; tree ubound; tree dubound; tree dlbound; tree dumdesc; tree tmp; tree stride, stride2; tree stmt_packed; tree stmt_unpacked; tree partial; gfc_se se; int n; int checkparm; int no_repack; bool optional_arg; /* Do nothing for pointer and allocatable arrays. */ if (sym->attr.pointer || sym->attr.allocatable) return; if (sym->attr.dummy && gfc_is_nodesc_array (sym)) { gfc_trans_g77_array (sym, block); return; } gfc_save_backend_locus (&loc); gfc_set_backend_locus (&sym->declared_at); /* Descriptor type. */ type = TREE_TYPE (tmpdesc); gcc_assert (GFC_ARRAY_TYPE_P (type)); dumdesc = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc); dumdesc = build_fold_indirect_ref_loc (input_location, dumdesc); gfc_start_block (&init); if (sym->ts.type == BT_CHARACTER && TREE_CODE (sym->ts.u.cl->backend_decl) == VAR_DECL) gfc_conv_string_length (sym->ts.u.cl, NULL, &init); checkparm = (sym->as->type == AS_EXPLICIT && (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)); no_repack = !(GFC_DECL_PACKED_ARRAY (tmpdesc) || GFC_DECL_PARTIAL_PACKED_ARRAY (tmpdesc)); if (GFC_DECL_PARTIAL_PACKED_ARRAY (tmpdesc)) { /* For non-constant shape arrays we only check if the first dimension is contiguous. Repacking higher dimensions wouldn't gain us anything as we still don't know the array stride. */ partial = gfc_create_var (boolean_type_node, "partial"); TREE_USED (partial) = 1; tmp = gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[0]); tmp = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, tmp, gfc_index_one_node); gfc_add_modify (&init, partial, tmp); } else partial = NULL_TREE; /* The naming of stmt_unpacked and stmt_packed may be counter-intuitive here, however I think it does the right thing. */ if (no_repack) { /* Set the first stride. */ stride = gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[0]); stride = gfc_evaluate_now (stride, &init); tmp = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, stride, gfc_index_zero_node); tmp = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type, tmp, gfc_index_one_node, stride); stride = GFC_TYPE_ARRAY_STRIDE (type, 0); gfc_add_modify (&init, stride, tmp); /* Allow the user to disable array repacking. */ stmt_unpacked = NULL_TREE; } else { gcc_assert (integer_onep (GFC_TYPE_ARRAY_STRIDE (type, 0))); /* A library call to repack the array if necessary. */ tmp = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc); stmt_unpacked = build_call_expr_loc (input_location, gfor_fndecl_in_pack, 1, tmp); stride = gfc_index_one_node; if (gfc_option.warn_array_temp) gfc_warning ("Creating array temporary at %L", &loc); } /* This is for the case where the array data is used directly without calling the repack function. */ if (no_repack || partial != NULL_TREE) stmt_packed = gfc_conv_descriptor_data_get (dumdesc); else stmt_packed = NULL_TREE; /* Assign the data pointer. */ if (stmt_packed != NULL_TREE && stmt_unpacked != NULL_TREE) { /* Don't repack unknown shape arrays when the first stride is 1. */ tmp = fold_build3_loc (input_location, COND_EXPR, TREE_TYPE (stmt_packed), partial, stmt_packed, stmt_unpacked); } else tmp = stmt_packed != NULL_TREE ? stmt_packed : stmt_unpacked; gfc_add_modify (&init, tmpdesc, fold_convert (type, tmp)); offset = gfc_index_zero_node; size = gfc_index_one_node; /* Evaluate the bounds of the array. */ for (n = 0; n < sym->as->rank; n++) { if (checkparm || !sym->as->upper[n]) { /* Get the bounds of the actual parameter. */ dubound = gfc_conv_descriptor_ubound_get (dumdesc, gfc_rank_cst[n]); dlbound = gfc_conv_descriptor_lbound_get (dumdesc, gfc_rank_cst[n]); } else { dubound = NULL_TREE; dlbound = NULL_TREE; } lbound = GFC_TYPE_ARRAY_LBOUND (type, n); if (!INTEGER_CST_P (lbound)) { gfc_init_se (&se, NULL); gfc_conv_expr_type (&se, sym->as->lower[n], gfc_array_index_type); gfc_add_block_to_block (&init, &se.pre); gfc_add_modify (&init, lbound, se.expr); } ubound = GFC_TYPE_ARRAY_UBOUND (type, n); /* Set the desired upper bound. */ if (sym->as->upper[n]) { /* We know what we want the upper bound to be. */ if (!INTEGER_CST_P (ubound)) { gfc_init_se (&se, NULL); gfc_conv_expr_type (&se, sym->as->upper[n], gfc_array_index_type); gfc_add_block_to_block (&init, &se.pre); gfc_add_modify (&init, ubound, se.expr); } /* Check the sizes match. */ if (checkparm) { /* Check (ubound(a) - lbound(a) == ubound(b) - lbound(b)). */ char * msg; tree temp; temp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, ubound, lbound); temp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, gfc_index_one_node, temp); stride2 = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, dubound, dlbound); stride2 = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, gfc_index_one_node, stride2); tmp = fold_build2_loc (input_location, NE_EXPR, gfc_array_index_type, temp, stride2); asprintf (&msg, "Dimension %d of array '%s' has extent " "%%ld instead of %%ld", n+1, sym->name); gfc_trans_runtime_check (true, false, tmp, &init, &loc, msg, fold_convert (long_integer_type_node, temp), fold_convert (long_integer_type_node, stride2)); free (msg); } } else { /* For assumed shape arrays move the upper bound by the same amount as the lower bound. */ tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, dubound, dlbound); tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, tmp, lbound); gfc_add_modify (&init, ubound, tmp); } /* The offset of this dimension. offset = offset - lbound * stride. */ tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, lbound, stride); offset = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, offset, tmp); /* The size of this dimension, and the stride of the next. */ if (n + 1 < sym->as->rank) { stride = GFC_TYPE_ARRAY_STRIDE (type, n + 1); if (no_repack || partial != NULL_TREE) stmt_unpacked = gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[n+1]); /* Figure out the stride if not a known constant. */ if (!INTEGER_CST_P (stride)) { if (no_repack) stmt_packed = NULL_TREE; else { /* Calculate stride = size * (ubound + 1 - lbound). */ tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, gfc_index_one_node, lbound); tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, ubound, tmp); size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, size, tmp); stmt_packed = size; } /* Assign the stride. */ if (stmt_packed != NULL_TREE && stmt_unpacked != NULL_TREE) tmp = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type, partial, stmt_unpacked, stmt_packed); else tmp = (stmt_packed != NULL_TREE) ? stmt_packed : stmt_unpacked; gfc_add_modify (&init, stride, tmp); } } else { stride = GFC_TYPE_ARRAY_SIZE (type); if (stride && !INTEGER_CST_P (stride)) { /* Calculate size = stride * (ubound + 1 - lbound). */ tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, gfc_index_one_node, lbound); tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, ubound, tmp); tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, GFC_TYPE_ARRAY_STRIDE (type, n), tmp); gfc_add_modify (&init, stride, tmp); } } } gfc_trans_array_cobounds (type, &init, sym); /* Set the offset. */ if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL) gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset); gfc_trans_vla_type_sizes (sym, &init); stmtInit = gfc_finish_block (&init); /* Only do the entry/initialization code if the arg is present. */ dumdesc = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc); optional_arg = (sym->attr.optional || (sym->ns->proc_name->attr.entry_master && sym->attr.dummy)); if (optional_arg) { tmp = gfc_conv_expr_present (sym); stmtInit = build3_v (COND_EXPR, tmp, stmtInit, build_empty_stmt (input_location)); } /* Cleanup code. */ if (no_repack) stmtCleanup = NULL_TREE; else { stmtblock_t cleanup; gfc_start_block (&cleanup); if (sym->attr.intent != INTENT_IN) { /* Copy the data back. */ tmp = build_call_expr_loc (input_location, gfor_fndecl_in_unpack, 2, dumdesc, tmpdesc); gfc_add_expr_to_block (&cleanup, tmp); } /* Free the temporary. */ tmp = gfc_call_free (tmpdesc); gfc_add_expr_to_block (&cleanup, tmp); stmtCleanup = gfc_finish_block (&cleanup); /* Only do the cleanup if the array was repacked. */ tmp = build_fold_indirect_ref_loc (input_location, dumdesc); tmp = gfc_conv_descriptor_data_get (tmp); tmp = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, tmp, tmpdesc); stmtCleanup = build3_v (COND_EXPR, tmp, stmtCleanup, build_empty_stmt (input_location)); if (optional_arg) { tmp = gfc_conv_expr_present (sym); stmtCleanup = build3_v (COND_EXPR, tmp, stmtCleanup, build_empty_stmt (input_location)); } } /* We don't need to free any memory allocated by internal_pack as it will be freed at the end of the function by pop_context. */ gfc_add_init_cleanup (block, stmtInit, stmtCleanup); gfc_restore_backend_locus (&loc); } /* Calculate the overall offset, including subreferences. */ static void gfc_get_dataptr_offset (stmtblock_t *block, tree parm, tree desc, tree offset, bool subref, gfc_expr *expr) { tree tmp; tree field; tree stride; tree index; gfc_ref *ref; gfc_se start; int n; /* If offset is NULL and this is not a subreferenced array, there is nothing to do. */ if (offset == NULL_TREE) { if (subref) offset = gfc_index_zero_node; else return; } tmp = gfc_conv_array_data (desc); tmp = build_fold_indirect_ref_loc (input_location, tmp); tmp = gfc_build_array_ref (tmp, offset, NULL); /* Offset the data pointer for pointer assignments from arrays with subreferences; e.g. my_integer => my_type(:)%integer_component. */ if (subref) { /* Go past the array reference. */ for (ref = expr->ref; ref; ref = ref->next) if (ref->type == REF_ARRAY && ref->u.ar.type != AR_ELEMENT) { ref = ref->next; break; } /* Calculate the offset for each subsequent subreference. */ for (; ref; ref = ref->next) { switch (ref->type) { case REF_COMPONENT: field = ref->u.c.component->backend_decl; gcc_assert (field && TREE_CODE (field) == FIELD_DECL); tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), tmp, field, NULL_TREE); break; case REF_SUBSTRING: gcc_assert (TREE_CODE (TREE_TYPE (tmp)) == ARRAY_TYPE); gfc_init_se (&start, NULL); gfc_conv_expr_type (&start, ref->u.ss.start, gfc_charlen_type_node); gfc_add_block_to_block (block, &start.pre); tmp = gfc_build_array_ref (tmp, start.expr, NULL); break; case REF_ARRAY: gcc_assert (TREE_CODE (TREE_TYPE (tmp)) == ARRAY_TYPE && ref->u.ar.type == AR_ELEMENT); /* TODO - Add bounds checking. */ stride = gfc_index_one_node; index = gfc_index_zero_node; for (n = 0; n < ref->u.ar.dimen; n++) { tree itmp; tree jtmp; /* Update the index. */ gfc_init_se (&start, NULL); gfc_conv_expr_type (&start, ref->u.ar.start[n], gfc_array_index_type); itmp = gfc_evaluate_now (start.expr, block); gfc_init_se (&start, NULL); gfc_conv_expr_type (&start, ref->u.ar.as->lower[n], gfc_array_index_type); jtmp = gfc_evaluate_now (start.expr, block); itmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, itmp, jtmp); itmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, itmp, stride); index = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, itmp, index); index = gfc_evaluate_now (index, block); /* Update the stride. */ gfc_init_se (&start, NULL); gfc_conv_expr_type (&start, ref->u.ar.as->upper[n], gfc_array_index_type); itmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, start.expr, jtmp); itmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, gfc_index_one_node, itmp); stride = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, stride, itmp); stride = gfc_evaluate_now (stride, block); } /* Apply the index to obtain the array element. */ tmp = gfc_build_array_ref (tmp, index, NULL); break; default: gcc_unreachable (); break; } } } /* Set the target data pointer. */ offset = gfc_build_addr_expr (gfc_array_dataptr_type (desc), tmp); gfc_conv_descriptor_data_set (block, parm, offset); } /* gfc_conv_expr_descriptor needs the string length an expression so that the size of the temporary can be obtained. This is done by adding up the string lengths of all the elements in the expression. Function with non-constant expressions have their string lengths mapped onto the actual arguments using the interface mapping machinery in trans-expr.c. */ static void get_array_charlen (gfc_expr *expr, gfc_se *se) { gfc_interface_mapping mapping; gfc_formal_arglist *formal; gfc_actual_arglist *arg; gfc_se tse; if (expr->ts.u.cl->length && gfc_is_constant_expr (expr->ts.u.cl->length)) { if (!expr->ts.u.cl->backend_decl) gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre); return; } switch (expr->expr_type) { case EXPR_OP: get_array_charlen (expr->value.op.op1, se); /* For parentheses the expression ts.u.cl is identical. */ if (expr->value.op.op == INTRINSIC_PARENTHESES) return; expr->ts.u.cl->backend_decl = gfc_create_var (gfc_charlen_type_node, "sln"); if (expr->value.op.op2) { get_array_charlen (expr->value.op.op2, se); gcc_assert (expr->value.op.op == INTRINSIC_CONCAT); /* Add the string lengths and assign them to the expression string length backend declaration. */ gfc_add_modify (&se->pre, expr->ts.u.cl->backend_decl, fold_build2_loc (input_location, PLUS_EXPR, gfc_charlen_type_node, expr->value.op.op1->ts.u.cl->backend_decl, expr->value.op.op2->ts.u.cl->backend_decl)); } else gfc_add_modify (&se->pre, expr->ts.u.cl->backend_decl, expr->value.op.op1->ts.u.cl->backend_decl); break; case EXPR_FUNCTION: if (expr->value.function.esym == NULL || expr->ts.u.cl->length->expr_type == EXPR_CONSTANT) { gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre); break; } /* Map expressions involving the dummy arguments onto the actual argument expressions. */ gfc_init_interface_mapping (&mapping); formal = expr->symtree->n.sym->formal; arg = expr->value.function.actual; /* Set se = NULL in the calls to the interface mapping, to suppress any backend stuff. */ for (; arg != NULL; arg = arg->next, formal = formal ? formal->next : NULL) { if (!arg->expr) continue; if (formal->sym) gfc_add_interface_mapping (&mapping, formal->sym, NULL, arg->expr); } gfc_init_se (&tse, NULL); /* Build the expression for the character length and convert it. */ gfc_apply_interface_mapping (&mapping, &tse, expr->ts.u.cl->length); gfc_add_block_to_block (&se->pre, &tse.pre); gfc_add_block_to_block (&se->post, &tse.post); tse.expr = fold_convert (gfc_charlen_type_node, tse.expr); tse.expr = fold_build2_loc (input_location, MAX_EXPR, gfc_charlen_type_node, tse.expr, build_int_cst (gfc_charlen_type_node, 0)); expr->ts.u.cl->backend_decl = tse.expr; gfc_free_interface_mapping (&mapping); break; default: gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre); break; } } /* Helper function to check dimensions. */ static bool transposed_dims (gfc_ss *ss) { int n; for (n = 0; n < ss->dimen; n++) if (ss->dim[n] != n) return true; return false; } /* Convert an array for passing as an actual argument. Expressions and vector subscripts are evaluated and stored in a temporary, which is then passed. For whole arrays the descriptor is passed. For array sections a modified copy of the descriptor is passed, but using the original data. This function is also used for array pointer assignments, and there are three cases: - se->want_pointer && !se->direct_byref EXPR is an actual argument. On exit, se->expr contains a pointer to the array descriptor. - !se->want_pointer && !se->direct_byref EXPR is an actual argument to an intrinsic function or the left-hand side of a pointer assignment. On exit, se->expr contains the descriptor for EXPR. - !se->want_pointer && se->direct_byref EXPR is the right-hand side of a pointer assignment and se->expr is the descriptor for the previously-evaluated left-hand side. The function creates an assignment from EXPR to se->expr. The se->force_tmp flag disables the non-copying descriptor optimization that is used for transpose. It may be used in cases where there is an alias between the transpose argument and another argument in the same function call. */ void gfc_conv_expr_descriptor (gfc_se * se, gfc_expr * expr, gfc_ss * ss) { gfc_ss_type ss_type; gfc_ss_info *ss_info; gfc_loopinfo loop; gfc_array_info *info; int need_tmp; int n; tree tmp; tree desc; stmtblock_t block; tree start; tree offset; int full; bool subref_array_target = false; gfc_expr *arg, *ss_expr; gcc_assert (ss != NULL); gcc_assert (ss != gfc_ss_terminator); ss_info = ss->info; ss_type = ss_info->type; ss_expr = ss_info->expr; /* Special case things we know we can pass easily. */ switch (expr->expr_type) { case EXPR_VARIABLE: /* If we have a linear array section, we can pass it directly. Otherwise we need to copy it into a temporary. */ gcc_assert (ss_type == GFC_SS_SECTION); gcc_assert (ss_expr == expr); info = &ss_info->data.array; /* Get the descriptor for the array. */ gfc_conv_ss_descriptor (&se->pre, ss, 0); desc = info->descriptor; subref_array_target = se->direct_byref && is_subref_array (expr); need_tmp = gfc_ref_needs_temporary_p (expr->ref) && !subref_array_target; if (se->force_tmp) need_tmp = 1; if (need_tmp) full = 0; else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc))) { /* Create a new descriptor if the array doesn't have one. */ full = 0; } else if (info->ref->u.ar.type == AR_FULL) full = 1; else if (se->direct_byref) full = 0; else full = gfc_full_array_ref_p (info->ref, NULL); if (full && !transposed_dims (ss)) { if (se->direct_byref && !se->byref_noassign) { /* Copy the descriptor for pointer assignments. */ gfc_add_modify (&se->pre, se->expr, desc); /* Add any offsets from subreferences. */ gfc_get_dataptr_offset (&se->pre, se->expr, desc, NULL_TREE, subref_array_target, expr); } else if (se->want_pointer) { /* We pass full arrays directly. This means that pointers and allocatable arrays should also work. */ se->expr = gfc_build_addr_expr (NULL_TREE, desc); } else { se->expr = desc; } if (expr->ts.type == BT_CHARACTER) se->string_length = gfc_get_expr_charlen (expr); return; } break; case EXPR_FUNCTION: /* We don't need to copy data in some cases. */ arg = gfc_get_noncopying_intrinsic_argument (expr); if (arg) { /* This is a call to transpose... */ gcc_assert (expr->value.function.isym->id == GFC_ISYM_TRANSPOSE); /* ... which has already been handled by the scalarizer, so that we just need to get its argument's descriptor. */ gfc_conv_expr_descriptor (se, expr->value.function.actual->expr, ss); return; } /* A transformational function return value will be a temporary array descriptor. We still need to go through the scalarizer to create the descriptor. Elemental functions ar handled as arbitrary expressions, i.e. copy to a temporary. */ if (se->direct_byref) { gcc_assert (ss_type == GFC_SS_FUNCTION && ss_expr == expr); /* For pointer assignments pass the descriptor directly. */ if (se->ss == NULL) se->ss = ss; else gcc_assert (se->ss == ss); se->expr = gfc_build_addr_expr (NULL_TREE, se->expr); gfc_conv_expr (se, expr); return; } if (ss_expr != expr || ss_type != GFC_SS_FUNCTION) { if (ss_expr != expr) /* Elemental function. */ gcc_assert ((expr->value.function.esym != NULL && expr->value.function.esym->attr.elemental) || (expr->value.function.isym != NULL && expr->value.function.isym->elemental) || gfc_inline_intrinsic_function_p (expr)); else gcc_assert (ss_type == GFC_SS_INTRINSIC); need_tmp = 1; if (expr->ts.type == BT_CHARACTER && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT) get_array_charlen (expr, se); info = NULL; } else { /* Transformational function. */ info = &ss_info->data.array; need_tmp = 0; } break; case EXPR_ARRAY: /* Constant array constructors don't need a temporary. */ if (ss_type == GFC_SS_CONSTRUCTOR && expr->ts.type != BT_CHARACTER && gfc_constant_array_constructor_p (expr->value.constructor)) { need_tmp = 0; info = &ss_info->data.array; } else { need_tmp = 1; info = NULL; } break; default: /* Something complicated. Copy it into a temporary. */ need_tmp = 1; info = NULL; break; } /* If we are creating a temporary, we don't need to bother about aliases anymore. */ if (need_tmp) se->force_tmp = 0; gfc_init_loopinfo (&loop); /* Associate the SS with the loop. */ gfc_add_ss_to_loop (&loop, ss); /* Tell the scalarizer not to bother creating loop variables, etc. */ if (!need_tmp) loop.array_parameter = 1; else /* The right-hand side of a pointer assignment mustn't use a temporary. */ gcc_assert (!se->direct_byref); /* Setup the scalarizing loops and bounds. */ gfc_conv_ss_startstride (&loop); if (need_tmp) { if (expr->ts.type == BT_CHARACTER && !expr->ts.u.cl->backend_decl) get_array_charlen (expr, se); /* Tell the scalarizer to make a temporary. */ loop.temp_ss = gfc_get_temp_ss (gfc_typenode_for_spec (&expr->ts), ((expr->ts.type == BT_CHARACTER) ? expr->ts.u.cl->backend_decl : NULL), loop.dimen); se->string_length = loop.temp_ss->info->string_length; gcc_assert (loop.temp_ss->dimen == loop.dimen); gfc_add_ss_to_loop (&loop, loop.temp_ss); } gfc_conv_loop_setup (&loop, & expr->where); if (need_tmp) { /* Copy into a temporary and pass that. We don't need to copy the data back because expressions and vector subscripts must be INTENT_IN. */ /* TODO: Optimize passing function return values. */ gfc_se lse; gfc_se rse; /* Start the copying loops. */ gfc_mark_ss_chain_used (loop.temp_ss, 1); gfc_mark_ss_chain_used (ss, 1); gfc_start_scalarized_body (&loop, &block); /* Copy each data element. */ gfc_init_se (&lse, NULL); gfc_copy_loopinfo_to_se (&lse, &loop); gfc_init_se (&rse, NULL); gfc_copy_loopinfo_to_se (&rse, &loop); lse.ss = loop.temp_ss; rse.ss = ss; gfc_conv_scalarized_array_ref (&lse, NULL); if (expr->ts.type == BT_CHARACTER) { gfc_conv_expr (&rse, expr); if (POINTER_TYPE_P (TREE_TYPE (rse.expr))) rse.expr = build_fold_indirect_ref_loc (input_location, rse.expr); } else gfc_conv_expr_val (&rse, expr); gfc_add_block_to_block (&block, &rse.pre); gfc_add_block_to_block (&block, &lse.pre); lse.string_length = rse.string_length; tmp = gfc_trans_scalar_assign (&lse, &rse, expr->ts, true, expr->expr_type == EXPR_VARIABLE || expr->expr_type == EXPR_ARRAY, true); gfc_add_expr_to_block (&block, tmp); /* Finish the copying loops. */ gfc_trans_scalarizing_loops (&loop, &block); desc = loop.temp_ss->info->data.array.descriptor; } else if (expr->expr_type == EXPR_FUNCTION && !transposed_dims (ss)) { desc = info->descriptor; se->string_length = ss_info->string_length; } else { /* We pass sections without copying to a temporary. Make a new descriptor and point it at the section we want. The loop variable limits will be the limits of the section. A function may decide to repack the array to speed up access, but we're not bothered about that here. */ int dim, ndim, codim; tree parm; tree parmtype; tree stride; tree from; tree to; tree base; ndim = info->ref ? info->ref->u.ar.dimen : ss->dimen; if (se->want_coarray) { gfc_array_ref *ar = &info->ref->u.ar; codim = gfc_get_corank (expr); for (n = 0; n < codim - 1; n++) { /* Make sure we are not lost somehow. */ gcc_assert (ar->dimen_type[n + ndim] == DIMEN_THIS_IMAGE); /* Make sure the call to gfc_conv_section_startstride won't generate unnecessary code to calculate stride. */ gcc_assert (ar->stride[n + ndim] == NULL); gfc_conv_section_startstride (&loop, ss, n + ndim); loop.from[n + loop.dimen] = info->start[n + ndim]; loop.to[n + loop.dimen] = info->end[n + ndim]; } gcc_assert (n == codim - 1); evaluate_bound (&loop.pre, info->start, ar->start, info->descriptor, n + ndim, true); loop.from[n + loop.dimen] = info->start[n + ndim]; } else codim = 0; /* Set the string_length for a character array. */ if (expr->ts.type == BT_CHARACTER) se->string_length = gfc_get_expr_charlen (expr); desc = info->descriptor; if (se->direct_byref && !se->byref_noassign) { /* For pointer assignments we fill in the destination. */ parm = se->expr; parmtype = TREE_TYPE (parm); } else { /* Otherwise make a new one. */ parmtype = gfc_get_element_type (TREE_TYPE (desc)); parmtype = gfc_get_array_type_bounds (parmtype, loop.dimen, codim, loop.from, loop.to, 0, GFC_ARRAY_UNKNOWN, false); parm = gfc_create_var (parmtype, "parm"); } offset = gfc_index_zero_node; /* The following can be somewhat confusing. We have two descriptors, a new one and the original array. {parm, parmtype, dim} refer to the new one. {desc, type, n, loop} refer to the original, which maybe a descriptorless array. The bounds of the scalarization are the bounds of the section. We don't have to worry about numeric overflows when calculating the offsets because all elements are within the array data. */ /* Set the dtype. */ tmp = gfc_conv_descriptor_dtype (parm); gfc_add_modify (&loop.pre, tmp, gfc_get_dtype (parmtype)); /* Set offset for assignments to pointer only to zero if it is not the full array. */ if (se->direct_byref && info->ref && info->ref->u.ar.type != AR_FULL) base = gfc_index_zero_node; else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc))) base = gfc_evaluate_now (gfc_conv_array_offset (desc), &loop.pre); else base = NULL_TREE; for (n = 0; n < ndim; n++) { stride = gfc_conv_array_stride (desc, n); /* Work out the offset. */ if (info->ref && info->ref->u.ar.dimen_type[n] == DIMEN_ELEMENT) { gcc_assert (info->subscript[n] && info->subscript[n]->info->type == GFC_SS_SCALAR); start = info->subscript[n]->info->data.scalar.value; } else { /* Evaluate and remember the start of the section. */ start = info->start[n]; stride = gfc_evaluate_now (stride, &loop.pre); } tmp = gfc_conv_array_lbound (desc, n); tmp = fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE (tmp), start, tmp); tmp = fold_build2_loc (input_location, MULT_EXPR, TREE_TYPE (tmp), tmp, stride); offset = fold_build2_loc (input_location, PLUS_EXPR, TREE_TYPE (tmp), offset, tmp); if (info->ref && info->ref->u.ar.dimen_type[n] == DIMEN_ELEMENT) { /* For elemental dimensions, we only need the offset. */ continue; } /* Vector subscripts need copying and are handled elsewhere. */ if (info->ref) gcc_assert (info->ref->u.ar.dimen_type[n] == DIMEN_RANGE); /* look for the corresponding scalarizer dimension: dim. */ for (dim = 0; dim < ndim; dim++) if (ss->dim[dim] == n) break; /* loop exited early: the DIM being looked for has been found. */ gcc_assert (dim < ndim); /* Set the new lower bound. */ from = loop.from[dim]; to = loop.to[dim]; /* If we have an array section or are assigning make sure that the lower bound is 1. References to the full array should otherwise keep the original bounds. */ if ((!info->ref || info->ref->u.ar.type != AR_FULL) && !integer_onep (from)) { tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, gfc_index_one_node, from); to = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, to, tmp); from = gfc_index_one_node; } gfc_conv_descriptor_lbound_set (&loop.pre, parm, gfc_rank_cst[dim], from); /* Set the new upper bound. */ gfc_conv_descriptor_ubound_set (&loop.pre, parm, gfc_rank_cst[dim], to); /* Multiply the stride by the section stride to get the total stride. */ stride = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, stride, info->stride[n]); if (se->direct_byref && info->ref && info->ref->u.ar.type != AR_FULL) { base = fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE (base), base, stride); } else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc))) { tmp = gfc_conv_array_lbound (desc, n); tmp = fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE (base), tmp, loop.from[dim]); tmp = fold_build2_loc (input_location, MULT_EXPR, TREE_TYPE (base), tmp, gfc_conv_array_stride (desc, n)); base = fold_build2_loc (input_location, PLUS_EXPR, TREE_TYPE (base), tmp, base); } /* Store the new stride. */ gfc_conv_descriptor_stride_set (&loop.pre, parm, gfc_rank_cst[dim], stride); } for (n = loop.dimen; n < loop.dimen + codim; n++) { from = loop.from[n]; to = loop.to[n]; gfc_conv_descriptor_lbound_set (&loop.pre, parm, gfc_rank_cst[n], from); if (n < loop.dimen + codim - 1) gfc_conv_descriptor_ubound_set (&loop.pre, parm, gfc_rank_cst[n], to); } if (se->data_not_needed) gfc_conv_descriptor_data_set (&loop.pre, parm, gfc_index_zero_node); else /* Point the data pointer at the 1st element in the section. */ gfc_get_dataptr_offset (&loop.pre, parm, desc, offset, subref_array_target, expr); if ((se->direct_byref || GFC_ARRAY_TYPE_P (TREE_TYPE (desc))) && !se->data_not_needed) { /* Set the offset. */ gfc_conv_descriptor_offset_set (&loop.pre, parm, base); } else { /* Only the callee knows what the correct offset it, so just set it to zero here. */ gfc_conv_descriptor_offset_set (&loop.pre, parm, gfc_index_zero_node); } desc = parm; } if (!se->direct_byref || se->byref_noassign) { /* Get a pointer to the new descriptor. */ if (se->want_pointer) se->expr = gfc_build_addr_expr (NULL_TREE, desc); else se->expr = desc; } gfc_add_block_to_block (&se->pre, &loop.pre); gfc_add_block_to_block (&se->post, &loop.post); /* Cleanup the scalarizer. */ gfc_cleanup_loop (&loop); } /* Helper function for gfc_conv_array_parameter if array size needs to be computed. */ static void array_parameter_size (tree desc, gfc_expr *expr, tree *size) { tree elem; if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc))) *size = GFC_TYPE_ARRAY_SIZE (TREE_TYPE (desc)); else if (expr->rank > 1) *size = build_call_expr_loc (input_location, gfor_fndecl_size0, 1, gfc_build_addr_expr (NULL, desc)); else { tree ubound = gfc_conv_descriptor_ubound_get (desc, gfc_index_zero_node); tree lbound = gfc_conv_descriptor_lbound_get (desc, gfc_index_zero_node); *size = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, ubound, lbound); *size = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, *size, gfc_index_one_node); *size = fold_build2_loc (input_location, MAX_EXPR, gfc_array_index_type, *size, gfc_index_zero_node); } elem = TYPE_SIZE_UNIT (gfc_get_element_type (TREE_TYPE (desc))); *size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, *size, fold_convert (gfc_array_index_type, elem)); } /* Convert an array for passing as an actual parameter. */ /* TODO: Optimize passing g77 arrays. */ void gfc_conv_array_parameter (gfc_se * se, gfc_expr * expr, gfc_ss * ss, bool g77, const gfc_symbol *fsym, const char *proc_name, tree *size) { tree ptr; tree desc; tree tmp = NULL_TREE; tree stmt; tree parent = DECL_CONTEXT (current_function_decl); bool full_array_var; bool this_array_result; bool contiguous; bool no_pack; bool array_constructor; bool good_allocatable; bool ultimate_ptr_comp; bool ultimate_alloc_comp; gfc_symbol *sym; stmtblock_t block; gfc_ref *ref; ultimate_ptr_comp = false; ultimate_alloc_comp = false; for (ref = expr->ref; ref; ref = ref->next) { if (ref->next == NULL) break; if (ref->type == REF_COMPONENT) { ultimate_ptr_comp = ref->u.c.component->attr.pointer; ultimate_alloc_comp = ref->u.c.component->attr.allocatable; } } full_array_var = false; contiguous = false; if (expr->expr_type == EXPR_VARIABLE && ref && !ultimate_ptr_comp) full_array_var = gfc_full_array_ref_p (ref, &contiguous); sym = full_array_var ? expr->symtree->n.sym : NULL; /* The symbol should have an array specification. */ gcc_assert (!sym || sym->as || ref->u.ar.as); if (expr->expr_type == EXPR_ARRAY && expr->ts.type == BT_CHARACTER) { get_array_ctor_strlen (&se->pre, expr->value.constructor, &tmp); expr->ts.u.cl->backend_decl = tmp; se->string_length = tmp; } /* Is this the result of the enclosing procedure? */ this_array_result = (full_array_var && sym->attr.flavor == FL_PROCEDURE); if (this_array_result && (sym->backend_decl != current_function_decl) && (sym->backend_decl != parent)) this_array_result = false; /* Passing address of the array if it is not pointer or assumed-shape. */ if (full_array_var && g77 && !this_array_result) { tmp = gfc_get_symbol_decl (sym); if (sym->ts.type == BT_CHARACTER) se->string_length = sym->ts.u.cl->backend_decl; if (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS) { gfc_conv_expr_descriptor (se, expr, ss); se->expr = gfc_conv_array_data (se->expr); return; } if (!sym->attr.pointer && sym->as && sym->as->type != AS_ASSUMED_SHAPE && !sym->attr.allocatable) { /* Some variables are declared directly, others are declared as pointers and allocated on the heap. */ if (sym->attr.dummy || POINTER_TYPE_P (TREE_TYPE (tmp))) se->expr = tmp; else se->expr = gfc_build_addr_expr (NULL_TREE, tmp); if (size) array_parameter_size (tmp, expr, size); return; } if (sym->attr.allocatable) { if (sym->attr.dummy || sym->attr.result) { gfc_conv_expr_descriptor (se, expr, ss); tmp = se->expr; } if (size) array_parameter_size (tmp, expr, size); se->expr = gfc_conv_array_data (tmp); return; } } /* A convenient reduction in scope. */ contiguous = g77 && !this_array_result && contiguous; /* There is no need to pack and unpack the array, if it is contiguous and not a deferred- or assumed-shape array, or if it is simply contiguous. */ no_pack = ((sym && sym->as && !sym->attr.pointer && sym->as->type != AS_DEFERRED && sym->as->type != AS_ASSUMED_SHAPE) || (ref && ref->u.ar.as && ref->u.ar.as->type != AS_DEFERRED && ref->u.ar.as->type != AS_ASSUMED_SHAPE) || gfc_is_simply_contiguous (expr, false)); no_pack = contiguous && no_pack; /* Array constructors are always contiguous and do not need packing. */ array_constructor = g77 && !this_array_result && expr->expr_type == EXPR_ARRAY; /* Same is true of contiguous sections from allocatable variables. */ good_allocatable = contiguous && expr->symtree && expr->symtree->n.sym->attr.allocatable; /* Or ultimate allocatable components. */ ultimate_alloc_comp = contiguous && ultimate_alloc_comp; if (no_pack || array_constructor || good_allocatable || ultimate_alloc_comp) { gfc_conv_expr_descriptor (se, expr, ss); if (expr->ts.type == BT_CHARACTER) se->string_length = expr->ts.u.cl->backend_decl; if (size) array_parameter_size (se->expr, expr, size); se->expr = gfc_conv_array_data (se->expr); return; } if (this_array_result) { /* Result of the enclosing function. */ gfc_conv_expr_descriptor (se, expr, ss); if (size) array_parameter_size (se->expr, expr, size); se->expr = gfc_build_addr_expr (NULL_TREE, se->expr); if (g77 && TREE_TYPE (TREE_TYPE (se->expr)) != NULL_TREE && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (TREE_TYPE (se->expr)))) se->expr = gfc_conv_array_data (build_fold_indirect_ref_loc (input_location, se->expr)); return; } else { /* Every other type of array. */ se->want_pointer = 1; gfc_conv_expr_descriptor (se, expr, ss); if (size) array_parameter_size (build_fold_indirect_ref_loc (input_location, se->expr), expr, size); } /* Deallocate the allocatable components of structures that are not variable. */ if ((expr->ts.type == BT_DERIVED || expr->ts.type == BT_CLASS) && expr->ts.u.derived->attr.alloc_comp && expr->expr_type != EXPR_VARIABLE) { tmp = build_fold_indirect_ref_loc (input_location, se->expr); tmp = gfc_deallocate_alloc_comp (expr->ts.u.derived, tmp, expr->rank); /* The components shall be deallocated before their containing entity. */ gfc_prepend_expr_to_block (&se->post, tmp); } if (g77 || (fsym && fsym->attr.contiguous && !gfc_is_simply_contiguous (expr, false))) { tree origptr = NULL_TREE; desc = se->expr; /* For contiguous arrays, save the original value of the descriptor. */ if (!g77) { origptr = gfc_create_var (pvoid_type_node, "origptr"); tmp = build_fold_indirect_ref_loc (input_location, desc); tmp = gfc_conv_array_data (tmp); tmp = fold_build2_loc (input_location, MODIFY_EXPR, TREE_TYPE (origptr), origptr, fold_convert (TREE_TYPE (origptr), tmp)); gfc_add_expr_to_block (&se->pre, tmp); } /* Repack the array. */ if (gfc_option.warn_array_temp) { if (fsym) gfc_warning ("Creating array temporary at %L for argument '%s'", &expr->where, fsym->name); else gfc_warning ("Creating array temporary at %L", &expr->where); } ptr = build_call_expr_loc (input_location, gfor_fndecl_in_pack, 1, desc); if (fsym && fsym->attr.optional && sym && sym->attr.optional) { tmp = gfc_conv_expr_present (sym); ptr = build3_loc (input_location, COND_EXPR, TREE_TYPE (se->expr), tmp, fold_convert (TREE_TYPE (se->expr), ptr), fold_convert (TREE_TYPE (se->expr), null_pointer_node)); } ptr = gfc_evaluate_now (ptr, &se->pre); /* Use the packed data for the actual argument, except for contiguous arrays, where the descriptor's data component is set. */ if (g77) se->expr = ptr; else { tmp = build_fold_indirect_ref_loc (input_location, desc); gfc_conv_descriptor_data_set (&se->pre, tmp, ptr); } if (gfc_option.rtcheck & GFC_RTCHECK_ARRAY_TEMPS) { char * msg; if (fsym && proc_name) asprintf (&msg, "An array temporary was created for argument " "'%s' of procedure '%s'", fsym->name, proc_name); else asprintf (&msg, "An array temporary was created"); tmp = build_fold_indirect_ref_loc (input_location, desc); tmp = gfc_conv_array_data (tmp); tmp = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, fold_convert (TREE_TYPE (tmp), ptr), tmp); if (fsym && fsym->attr.optional && sym && sym->attr.optional) tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR, boolean_type_node, gfc_conv_expr_present (sym), tmp); gfc_trans_runtime_check (false, true, tmp, &se->pre, &expr->where, msg); free (msg); } gfc_start_block (&block); /* Copy the data back. */ if (fsym == NULL || fsym->attr.intent != INTENT_IN) { tmp = build_call_expr_loc (input_location, gfor_fndecl_in_unpack, 2, desc, ptr); gfc_add_expr_to_block (&block, tmp); } /* Free the temporary. */ tmp = gfc_call_free (convert (pvoid_type_node, ptr)); gfc_add_expr_to_block (&block, tmp); stmt = gfc_finish_block (&block); gfc_init_block (&block); /* Only if it was repacked. This code needs to be executed before the loop cleanup code. */ tmp = build_fold_indirect_ref_loc (input_location, desc); tmp = gfc_conv_array_data (tmp); tmp = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, fold_convert (TREE_TYPE (tmp), ptr), tmp); if (fsym && fsym->attr.optional && sym && sym->attr.optional) tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR, boolean_type_node, gfc_conv_expr_present (sym), tmp); tmp = build3_v (COND_EXPR, tmp, stmt, build_empty_stmt (input_location)); gfc_add_expr_to_block (&block, tmp); gfc_add_block_to_block (&block, &se->post); gfc_init_block (&se->post); /* Reset the descriptor pointer. */ if (!g77) { tmp = build_fold_indirect_ref_loc (input_location, desc); gfc_conv_descriptor_data_set (&se->post, tmp, origptr); } gfc_add_block_to_block (&se->post, &block); } } /* Generate code to deallocate an array, if it is allocated. */ tree gfc_trans_dealloc_allocated (tree descriptor, bool coarray) { tree tmp; tree var; stmtblock_t block; gfc_start_block (&block); var = gfc_conv_descriptor_data_get (descriptor); STRIP_NOPS (var); /* Call array_deallocate with an int * present in the second argument. Although it is ignored here, it's presence ensures that arrays that are already deallocated are ignored. */ tmp = gfc_deallocate_with_status (coarray ? descriptor : var, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, true, NULL, coarray); gfc_add_expr_to_block (&block, tmp); /* Zero the data pointer. */ tmp = fold_build2_loc (input_location, MODIFY_EXPR, void_type_node, var, build_int_cst (TREE_TYPE (var), 0)); gfc_add_expr_to_block (&block, tmp); return gfc_finish_block (&block); } /* This helper function calculates the size in words of a full array. */ static tree get_full_array_size (stmtblock_t *block, tree decl, int rank) { tree idx; tree nelems; tree tmp; idx = gfc_rank_cst[rank - 1]; nelems = gfc_conv_descriptor_ubound_get (decl, idx); tmp = gfc_conv_descriptor_lbound_get (decl, idx); tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, nelems, tmp); tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, tmp, gfc_index_one_node); tmp = gfc_evaluate_now (tmp, block); nelems = gfc_conv_descriptor_stride_get (decl, idx); tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, nelems, tmp); return gfc_evaluate_now (tmp, block); } /* Allocate dest to the same size as src, and copy src -> dest. If no_malloc is set, only the copy is done. */ static tree duplicate_allocatable (tree dest, tree src, tree type, int rank, bool no_malloc) { tree tmp; tree size; tree nelems; tree null_cond; tree null_data; stmtblock_t block; /* If the source is null, set the destination to null. Then, allocate memory to the destination. */ gfc_init_block (&block); if (rank == 0) { tmp = null_pointer_node; tmp = fold_build2_loc (input_location, MODIFY_EXPR, type, dest, tmp); gfc_add_expr_to_block (&block, tmp); null_data = gfc_finish_block (&block); gfc_init_block (&block); size = TYPE_SIZE_UNIT (TREE_TYPE (type)); if (!no_malloc) { tmp = gfc_call_malloc (&block, type, size); tmp = fold_build2_loc (input_location, MODIFY_EXPR, void_type_node, dest, fold_convert (type, tmp)); gfc_add_expr_to_block (&block, tmp); } tmp = builtin_decl_explicit (BUILT_IN_MEMCPY); tmp = build_call_expr_loc (input_location, tmp, 3, dest, src, size); } else { gfc_conv_descriptor_data_set (&block, dest, null_pointer_node); null_data = gfc_finish_block (&block); gfc_init_block (&block); nelems = get_full_array_size (&block, src, rank); tmp = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (gfc_get_element_type (type))); size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, nelems, tmp); if (!no_malloc) { tmp = TREE_TYPE (gfc_conv_descriptor_data_get (src)); tmp = gfc_call_malloc (&block, tmp, size); gfc_conv_descriptor_data_set (&block, dest, tmp); } /* We know the temporary and the value will be the same length, so can use memcpy. */ tmp = builtin_decl_explicit (BUILT_IN_MEMCPY); tmp = build_call_expr_loc (input_location, tmp, 3, gfc_conv_descriptor_data_get (dest), gfc_conv_descriptor_data_get (src), size); } gfc_add_expr_to_block (&block, tmp); tmp = gfc_finish_block (&block); /* Null the destination if the source is null; otherwise do the allocate and copy. */ if (rank == 0) null_cond = src; else null_cond = gfc_conv_descriptor_data_get (src); null_cond = convert (pvoid_type_node, null_cond); null_cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, null_cond, null_pointer_node); return build3_v (COND_EXPR, null_cond, tmp, null_data); } /* Allocate dest to the same size as src, and copy data src -> dest. */ tree gfc_duplicate_allocatable (tree dest, tree src, tree type, int rank) { return duplicate_allocatable (dest, src, type, rank, false); } /* Copy data src -> dest. */ tree gfc_copy_allocatable_data (tree dest, tree src, tree type, int rank) { return duplicate_allocatable (dest, src, type, rank, true); } /* Recursively traverse an object of derived type, generating code to deallocate, nullify or copy allocatable components. This is the work horse function for the functions named in this enum. */ enum {DEALLOCATE_ALLOC_COMP = 1, NULLIFY_ALLOC_COMP, COPY_ALLOC_COMP, COPY_ONLY_ALLOC_COMP}; static tree structure_alloc_comps (gfc_symbol * der_type, tree decl, tree dest, int rank, int purpose) { gfc_component *c; gfc_loopinfo loop; stmtblock_t fnblock; stmtblock_t loopbody; stmtblock_t tmpblock; tree decl_type; tree tmp; tree comp; tree dcmp; tree nelems; tree index; tree var; tree cdecl; tree ctype; tree vref, dref; tree null_cond = NULL_TREE; bool called_dealloc_with_status; gfc_init_block (&fnblock); decl_type = TREE_TYPE (decl); if ((POINTER_TYPE_P (decl_type) && rank != 0) || (TREE_CODE (decl_type) == REFERENCE_TYPE && rank == 0)) decl = build_fold_indirect_ref_loc (input_location, decl); /* Just in case in gets dereferenced. */ decl_type = TREE_TYPE (decl); /* If this an array of derived types with allocatable components build a loop and recursively call this function. */ if (TREE_CODE (decl_type) == ARRAY_TYPE || GFC_DESCRIPTOR_TYPE_P (decl_type)) { tmp = gfc_conv_array_data (decl); var = build_fold_indirect_ref_loc (input_location, tmp); /* Get the number of elements - 1 and set the counter. */ if (GFC_DESCRIPTOR_TYPE_P (decl_type)) { /* Use the descriptor for an allocatable array. Since this is a full array reference, we only need the descriptor information from dimension = rank. */ tmp = get_full_array_size (&fnblock, decl, rank); tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, tmp, gfc_index_one_node); null_cond = gfc_conv_descriptor_data_get (decl); null_cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, null_cond, build_int_cst (TREE_TYPE (null_cond), 0)); } else { /* Otherwise use the TYPE_DOMAIN information. */ tmp = array_type_nelts (decl_type); tmp = fold_convert (gfc_array_index_type, tmp); } /* Remember that this is, in fact, the no. of elements - 1. */ nelems = gfc_evaluate_now (tmp, &fnblock); index = gfc_create_var (gfc_array_index_type, "S"); /* Build the body of the loop. */ gfc_init_block (&loopbody); vref = gfc_build_array_ref (var, index, NULL); if (purpose == COPY_ALLOC_COMP) { if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (dest))) { tmp = gfc_duplicate_allocatable (dest, decl, decl_type, rank); gfc_add_expr_to_block (&fnblock, tmp); } tmp = build_fold_indirect_ref_loc (input_location, gfc_conv_array_data (dest)); dref = gfc_build_array_ref (tmp, index, NULL); tmp = structure_alloc_comps (der_type, vref, dref, rank, purpose); } else if (purpose == COPY_ONLY_ALLOC_COMP) { tmp = build_fold_indirect_ref_loc (input_location, gfc_conv_array_data (dest)); dref = gfc_build_array_ref (tmp, index, NULL); tmp = structure_alloc_comps (der_type, vref, dref, rank, COPY_ALLOC_COMP); } else tmp = structure_alloc_comps (der_type, vref, NULL_TREE, rank, purpose); gfc_add_expr_to_block (&loopbody, tmp); /* Build the loop and return. */ gfc_init_loopinfo (&loop); loop.dimen = 1; loop.from[0] = gfc_index_zero_node; loop.loopvar[0] = index; loop.to[0] = nelems; gfc_trans_scalarizing_loops (&loop, &loopbody); gfc_add_block_to_block (&fnblock, &loop.pre); tmp = gfc_finish_block (&fnblock); if (null_cond != NULL_TREE) tmp = build3_v (COND_EXPR, null_cond, tmp, build_empty_stmt (input_location)); return tmp; } /* Otherwise, act on the components or recursively call self to act on a chain of components. */ for (c = der_type->components; c; c = c->next) { bool cmp_has_alloc_comps = (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS) && c->ts.u.derived->attr.alloc_comp; cdecl = c->backend_decl; ctype = TREE_TYPE (cdecl); switch (purpose) { case DEALLOCATE_ALLOC_COMP: /* gfc_deallocate_scalar_with_status calls gfc_deallocate_alloc_comp (ie. this function) so generate all the calls and suppress the recursion from here, if necessary. */ called_dealloc_with_status = false; gfc_init_block (&tmpblock); if (c->attr.allocatable && (c->attr.dimension || c->attr.codimension)) { comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, decl, cdecl, NULL_TREE); tmp = gfc_trans_dealloc_allocated (comp, c->attr.codimension); gfc_add_expr_to_block (&tmpblock, tmp); } else if (c->attr.allocatable) { /* Allocatable scalar components. */ comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, decl, cdecl, NULL_TREE); tmp = gfc_deallocate_scalar_with_status (comp, NULL, true, NULL, c->ts); gfc_add_expr_to_block (&tmpblock, tmp); called_dealloc_with_status = true; tmp = fold_build2_loc (input_location, MODIFY_EXPR, void_type_node, comp, build_int_cst (TREE_TYPE (comp), 0)); gfc_add_expr_to_block (&tmpblock, tmp); } else if (c->ts.type == BT_CLASS && CLASS_DATA (c)->attr.allocatable) { /* Allocatable CLASS components. */ comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, decl, cdecl, NULL_TREE); /* Add reference to '_data' component. */ tmp = CLASS_DATA (c)->backend_decl; comp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (tmp), comp, tmp, NULL_TREE); if (GFC_DESCRIPTOR_TYPE_P(TREE_TYPE (comp))) tmp = gfc_trans_dealloc_allocated (comp, CLASS_DATA (c)->attr.codimension); else { tmp = gfc_deallocate_scalar_with_status (comp, NULL, true, NULL, CLASS_DATA (c)->ts); gfc_add_expr_to_block (&tmpblock, tmp); called_dealloc_with_status = true; tmp = fold_build2_loc (input_location, MODIFY_EXPR, void_type_node, comp, build_int_cst (TREE_TYPE (comp), 0)); } gfc_add_expr_to_block (&tmpblock, tmp); } if (cmp_has_alloc_comps && !c->attr.pointer && !called_dealloc_with_status) { /* Do not deallocate the components of ultimate pointer components or iteratively call self if call has been made to gfc_trans_dealloc_allocated */ comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, decl, cdecl, NULL_TREE); rank = c->as ? c->as->rank : 0; tmp = structure_alloc_comps (c->ts.u.derived, comp, NULL_TREE, rank, purpose); gfc_add_expr_to_block (&fnblock, tmp); } /* Now add the deallocation of this component. */ gfc_add_block_to_block (&fnblock, &tmpblock); break; case NULLIFY_ALLOC_COMP: if (c->attr.pointer) continue; else if (c->attr.allocatable && (c->attr.dimension|| c->attr.codimension)) { comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, decl, cdecl, NULL_TREE); gfc_conv_descriptor_data_set (&fnblock, comp, null_pointer_node); } else if (c->attr.allocatable) { /* Allocatable scalar components. */ comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, decl, cdecl, NULL_TREE); tmp = fold_build2_loc (input_location, MODIFY_EXPR, void_type_node, comp, build_int_cst (TREE_TYPE (comp), 0)); gfc_add_expr_to_block (&fnblock, tmp); } else if (c->ts.type == BT_CLASS && CLASS_DATA (c)->attr.allocatable) { /* Allocatable CLASS components. */ comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, decl, cdecl, NULL_TREE); /* Add reference to '_data' component. */ tmp = CLASS_DATA (c)->backend_decl; comp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (tmp), comp, tmp, NULL_TREE); if (GFC_DESCRIPTOR_TYPE_P(TREE_TYPE (comp))) gfc_conv_descriptor_data_set (&fnblock, comp, null_pointer_node); else { tmp = fold_build2_loc (input_location, MODIFY_EXPR, void_type_node, comp, build_int_cst (TREE_TYPE (comp), 0)); gfc_add_expr_to_block (&fnblock, tmp); } } else if (cmp_has_alloc_comps) { comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, decl, cdecl, NULL_TREE); rank = c->as ? c->as->rank : 0; tmp = structure_alloc_comps (c->ts.u.derived, comp, NULL_TREE, rank, purpose); gfc_add_expr_to_block (&fnblock, tmp); } break; case COPY_ALLOC_COMP: if (c->attr.pointer) continue; /* We need source and destination components. */ comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, decl, cdecl, NULL_TREE); dcmp = fold_build3_loc (input_location, COMPONENT_REF, ctype, dest, cdecl, NULL_TREE); dcmp = fold_convert (TREE_TYPE (comp), dcmp); if (c->ts.type == BT_CLASS && CLASS_DATA (c)->attr.allocatable) { tree ftn_tree; tree size; tree dst_data; tree src_data; tree null_data; dst_data = gfc_class_data_get (dcmp); src_data = gfc_class_data_get (comp); size = fold_convert (size_type_node, gfc_vtable_size_get (comp)); if (CLASS_DATA (c)->attr.dimension) { nelems = gfc_conv_descriptor_size (src_data, CLASS_DATA (c)->as->rank); src_data = gfc_conv_descriptor_data_get (src_data); dst_data = gfc_conv_descriptor_data_get (dst_data); } else nelems = build_int_cst (size_type_node, 1); gfc_init_block (&tmpblock); /* We need to use CALLOC as _copy might try to free allocatable components of the destination. */ ftn_tree = builtin_decl_explicit (BUILT_IN_CALLOC); tmp = build_call_expr_loc (input_location, ftn_tree, 2, nelems, size); gfc_add_modify (&tmpblock, dst_data, fold_convert (TREE_TYPE (dst_data), tmp)); tmp = gfc_copy_class_to_class (comp, dcmp, nelems); gfc_add_expr_to_block (&tmpblock, tmp); tmp = gfc_finish_block (&tmpblock); gfc_init_block (&tmpblock); gfc_add_modify (&tmpblock, dst_data, fold_convert (TREE_TYPE (dst_data), null_pointer_node)); null_data = gfc_finish_block (&tmpblock); null_cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, src_data, null_pointer_node); gfc_add_expr_to_block (&fnblock, build3_v (COND_EXPR, null_cond, tmp, null_data)); continue; } if (c->attr.allocatable && !cmp_has_alloc_comps) { rank = c->as ? c->as->rank : 0; tmp = gfc_duplicate_allocatable (dcmp, comp, ctype, rank); gfc_add_expr_to_block (&fnblock, tmp); } if (cmp_has_alloc_comps) { rank = c->as ? c->as->rank : 0; tmp = fold_convert (TREE_TYPE (dcmp), comp); gfc_add_modify (&fnblock, dcmp, tmp); tmp = structure_alloc_comps (c->ts.u.derived, comp, dcmp, rank, purpose); gfc_add_expr_to_block (&fnblock, tmp); } break; default: gcc_unreachable (); break; } } return gfc_finish_block (&fnblock); } /* Recursively traverse an object of derived type, generating code to nullify allocatable components. */ tree gfc_nullify_alloc_comp (gfc_symbol * der_type, tree decl, int rank) { return structure_alloc_comps (der_type, decl, NULL_TREE, rank, NULLIFY_ALLOC_COMP); } /* Recursively traverse an object of derived type, generating code to deallocate allocatable components. */ tree gfc_deallocate_alloc_comp (gfc_symbol * der_type, tree decl, int rank) { return structure_alloc_comps (der_type, decl, NULL_TREE, rank, DEALLOCATE_ALLOC_COMP); } /* Recursively traverse an object of derived type, generating code to copy it and its allocatable components. */ tree gfc_copy_alloc_comp (gfc_symbol * der_type, tree decl, tree dest, int rank) { return structure_alloc_comps (der_type, decl, dest, rank, COPY_ALLOC_COMP); } /* Recursively traverse an object of derived type, generating code to copy only its allocatable components. */ tree gfc_copy_only_alloc_comp (gfc_symbol * der_type, tree decl, tree dest, int rank) { return structure_alloc_comps (der_type, decl, dest, rank, COPY_ONLY_ALLOC_COMP); } /* Returns the value of LBOUND for an expression. This could be broken out from gfc_conv_intrinsic_bound but this seemed to be simpler. This is called by gfc_alloc_allocatable_for_assignment. */ static tree get_std_lbound (gfc_expr *expr, tree desc, int dim, bool assumed_size) { tree lbound; tree ubound; tree stride; tree cond, cond1, cond3, cond4; tree tmp; gfc_ref *ref; if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))) { tmp = gfc_rank_cst[dim]; lbound = gfc_conv_descriptor_lbound_get (desc, tmp); ubound = gfc_conv_descriptor_ubound_get (desc, tmp); stride = gfc_conv_descriptor_stride_get (desc, tmp); cond1 = fold_build2_loc (input_location, GE_EXPR, boolean_type_node, ubound, lbound); cond3 = fold_build2_loc (input_location, GE_EXPR, boolean_type_node, stride, gfc_index_zero_node); cond3 = fold_build2_loc (input_location, TRUTH_AND_EXPR, boolean_type_node, cond3, cond1); cond4 = fold_build2_loc (input_location, LT_EXPR, boolean_type_node, stride, gfc_index_zero_node); if (assumed_size) cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, tmp, build_int_cst (gfc_array_index_type, expr->rank - 1)); else cond = boolean_false_node; cond1 = fold_build2_loc (input_location, TRUTH_OR_EXPR, boolean_type_node, cond3, cond4); cond = fold_build2_loc (input_location, TRUTH_OR_EXPR, boolean_type_node, cond, cond1); return fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type, cond, lbound, gfc_index_one_node); } if (expr->expr_type == EXPR_FUNCTION) { /* A conversion function, so use the argument. */ gcc_assert (expr->value.function.isym && expr->value.function.isym->conversion); expr = expr->value.function.actual->expr; } if (expr->expr_type == EXPR_VARIABLE) { tmp = TREE_TYPE (expr->symtree->n.sym->backend_decl); for (ref = expr->ref; ref; ref = ref->next) { if (ref->type == REF_COMPONENT && ref->u.c.component->as && ref->next && ref->next->u.ar.type == AR_FULL) tmp = TREE_TYPE (ref->u.c.component->backend_decl); } return GFC_TYPE_ARRAY_LBOUND(tmp, dim); } return gfc_index_one_node; } /* Returns true if an expression represents an lhs that can be reallocated on assignment. */ bool gfc_is_reallocatable_lhs (gfc_expr *expr) { gfc_ref * ref; if (!expr->ref) return false; /* An allocatable variable. */ if (expr->symtree->n.sym->attr.allocatable && expr->ref && expr->ref->type == REF_ARRAY && expr->ref->u.ar.type == AR_FULL) return true; /* All that can be left are allocatable components. */ if ((expr->symtree->n.sym->ts.type != BT_DERIVED && expr->symtree->n.sym->ts.type != BT_CLASS) || !expr->symtree->n.sym->ts.u.derived->attr.alloc_comp) return false; /* Find a component ref followed by an array reference. */ for (ref = expr->ref; ref; ref = ref->next) if (ref->next && ref->type == REF_COMPONENT && ref->next->type == REF_ARRAY && !ref->next->next) break; if (!ref) return false; /* Return true if valid reallocatable lhs. */ if (ref->u.c.component->attr.allocatable && ref->next->u.ar.type == AR_FULL) return true; return false; } /* Allocate the lhs of an assignment to an allocatable array, otherwise reallocate it. */ tree gfc_alloc_allocatable_for_assignment (gfc_loopinfo *loop, gfc_expr *expr1, gfc_expr *expr2) { stmtblock_t realloc_block; stmtblock_t alloc_block; stmtblock_t fblock; gfc_ss *rss; gfc_ss *lss; gfc_array_info *linfo; tree realloc_expr; tree alloc_expr; tree size1; tree size2; tree array1; tree cond; tree tmp; tree tmp2; tree lbound; tree ubound; tree desc; tree desc2; tree offset; tree jump_label1; tree jump_label2; tree neq_size; tree lbd; int n; int dim; gfc_array_spec * as; /* x = f(...) with x allocatable. In this case, expr1 is the rhs. Find the lhs expression in the loop chain and set expr1 and expr2 accordingly. */ if (expr1->expr_type == EXPR_FUNCTION && expr2 == NULL) { expr2 = expr1; /* Find the ss for the lhs. */ lss = loop->ss; for (; lss && lss != gfc_ss_terminator; lss = lss->loop_chain) if (lss->info->expr && lss->info->expr->expr_type == EXPR_VARIABLE) break; if (lss == gfc_ss_terminator) return NULL_TREE; expr1 = lss->info->expr; } /* Bail out if this is not a valid allocate on assignment. */ if (!gfc_is_reallocatable_lhs (expr1) || (expr2 && !expr2->rank)) return NULL_TREE; /* Find the ss for the lhs. */ lss = loop->ss; for (; lss && lss != gfc_ss_terminator; lss = lss->loop_chain) if (lss->info->expr == expr1) break; if (lss == gfc_ss_terminator) return NULL_TREE; linfo = &lss->info->data.array; /* Find an ss for the rhs. For operator expressions, we see the ss's for the operands. Any one of these will do. */ rss = loop->ss; for (; rss && rss != gfc_ss_terminator; rss = rss->loop_chain) if (rss->info->expr != expr1 && rss != loop->temp_ss) break; if (expr2 && rss == gfc_ss_terminator) return NULL_TREE; gfc_start_block (&fblock); /* Since the lhs is allocatable, this must be a descriptor type. Get the data and array size. */ desc = linfo->descriptor; gcc_assert (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))); array1 = gfc_conv_descriptor_data_get (desc); /* 7.4.1.3 "If variable is an allocated allocatable variable, it is deallocated if expr is an array of different shape or any of the corresponding length type parameter values of variable and expr differ." This assures F95 compatibility. */ jump_label1 = gfc_build_label_decl (NULL_TREE); jump_label2 = gfc_build_label_decl (NULL_TREE); /* Allocate if data is NULL. */ cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, array1, build_int_cst (TREE_TYPE (array1), 0)); tmp = build3_v (COND_EXPR, cond, build1_v (GOTO_EXPR, jump_label1), build_empty_stmt (input_location)); gfc_add_expr_to_block (&fblock, tmp); /* Get arrayspec if expr is a full array. */ if (expr2 && expr2->expr_type == EXPR_FUNCTION && expr2->value.function.isym && expr2->value.function.isym->conversion) { /* For conversion functions, take the arg. */ gfc_expr *arg = expr2->value.function.actual->expr; as = gfc_get_full_arrayspec_from_expr (arg); } else if (expr2) as = gfc_get_full_arrayspec_from_expr (expr2); else as = NULL; /* If the lhs shape is not the same as the rhs jump to setting the bounds and doing the reallocation....... */ for (n = 0; n < expr1->rank; n++) { /* Check the shape. */ lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[n]); ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[n]); tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, loop->to[n], loop->from[n]); tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, tmp, lbound); tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, tmp, ubound); cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, tmp, gfc_index_zero_node); tmp = build3_v (COND_EXPR, cond, build1_v (GOTO_EXPR, jump_label1), build_empty_stmt (input_location)); gfc_add_expr_to_block (&fblock, tmp); } /* ....else jump past the (re)alloc code. */ tmp = build1_v (GOTO_EXPR, jump_label2); gfc_add_expr_to_block (&fblock, tmp); /* Add the label to start automatic (re)allocation. */ tmp = build1_v (LABEL_EXPR, jump_label1); gfc_add_expr_to_block (&fblock, tmp); size1 = gfc_conv_descriptor_size (desc, expr1->rank); /* Get the rhs size. Fix both sizes. */ if (expr2) desc2 = rss->info->data.array.descriptor; else desc2 = NULL_TREE; size2 = gfc_index_one_node; for (n = 0; n < expr2->rank; n++) { tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, loop->to[n], loop->from[n]); tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, tmp, gfc_index_one_node); size2 = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, tmp, size2); } size1 = gfc_evaluate_now (size1, &fblock); size2 = gfc_evaluate_now (size2, &fblock); cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, size1, size2); neq_size = gfc_evaluate_now (cond, &fblock); /* Now modify the lhs descriptor and the associated scalarizer variables. F2003 7.4.1.3: "If variable is or becomes an unallocated allocatable variable, then it is allocated with each deferred type parameter equal to the corresponding type parameters of expr , with the shape of expr , and with each lower bound equal to the corresponding element of LBOUND(expr)." Reuse size1 to keep a dimension-by-dimension track of the stride of the new array. */ size1 = gfc_index_one_node; offset = gfc_index_zero_node; for (n = 0; n < expr2->rank; n++) { tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, loop->to[n], loop->from[n]); tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, tmp, gfc_index_one_node); lbound = gfc_index_one_node; ubound = tmp; if (as) { lbd = get_std_lbound (expr2, desc2, n, as->type == AS_ASSUMED_SIZE); ubound = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, ubound, lbound); ubound = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, ubound, lbd); lbound = lbd; } gfc_conv_descriptor_lbound_set (&fblock, desc, gfc_rank_cst[n], lbound); gfc_conv_descriptor_ubound_set (&fblock, desc, gfc_rank_cst[n], ubound); gfc_conv_descriptor_stride_set (&fblock, desc, gfc_rank_cst[n], size1); lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[n]); tmp2 = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, lbound, size1); offset = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, offset, tmp2); size1 = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, tmp, size1); } /* Set the lhs descriptor and scalarizer offsets. For rank > 1, the array offset is saved and the info.offset is used for a running offset. Use the saved_offset instead. */ tmp = gfc_conv_descriptor_offset (desc); gfc_add_modify (&fblock, tmp, offset); if (linfo->saved_offset && TREE_CODE (linfo->saved_offset) == VAR_DECL) gfc_add_modify (&fblock, linfo->saved_offset, tmp); /* Now set the deltas for the lhs. */ for (n = 0; n < expr1->rank; n++) { tmp = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[n]); dim = lss->dim[n]; tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, tmp, loop->from[dim]); if (linfo->delta[dim] && TREE_CODE (linfo->delta[dim]) == VAR_DECL) gfc_add_modify (&fblock, linfo->delta[dim], tmp); } /* Get the new lhs size in bytes. */ if (expr1->ts.type == BT_CHARACTER && expr1->ts.deferred) { tmp = expr2->ts.u.cl->backend_decl; gcc_assert (expr1->ts.u.cl->backend_decl); tmp = fold_convert (TREE_TYPE (expr1->ts.u.cl->backend_decl), tmp); gfc_add_modify (&fblock, expr1->ts.u.cl->backend_decl, tmp); } else if (expr1->ts.type == BT_CHARACTER && expr1->ts.u.cl->backend_decl) { tmp = TYPE_SIZE_UNIT (TREE_TYPE (gfc_typenode_for_spec (&expr1->ts))); tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, tmp, expr1->ts.u.cl->backend_decl); } else tmp = TYPE_SIZE_UNIT (gfc_typenode_for_spec (&expr1->ts)); tmp = fold_convert (gfc_array_index_type, tmp); size2 = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, tmp, size2); size2 = fold_convert (size_type_node, size2); size2 = gfc_evaluate_now (size2, &fblock); /* Realloc expression. Note that the scalarizer uses desc.data in the array reference - (*desc.data)[<element>]. */ gfc_init_block (&realloc_block); tmp = build_call_expr_loc (input_location, builtin_decl_explicit (BUILT_IN_REALLOC), 2, fold_convert (pvoid_type_node, array1), size2); gfc_conv_descriptor_data_set (&realloc_block, desc, tmp); realloc_expr = gfc_finish_block (&realloc_block); /* Only reallocate if sizes are different. */ tmp = build3_v (COND_EXPR, neq_size, realloc_expr, build_empty_stmt (input_location)); realloc_expr = tmp; /* Malloc expression. */ gfc_init_block (&alloc_block); tmp = build_call_expr_loc (input_location, builtin_decl_explicit (BUILT_IN_MALLOC), 1, size2); gfc_conv_descriptor_data_set (&alloc_block, desc, tmp); tmp = gfc_conv_descriptor_dtype (desc); gfc_add_modify (&alloc_block, tmp, gfc_get_dtype (TREE_TYPE (desc))); alloc_expr = gfc_finish_block (&alloc_block); /* Malloc if not allocated; realloc otherwise. */ tmp = build_int_cst (TREE_TYPE (array1), 0); cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, array1, tmp); tmp = build3_v (COND_EXPR, cond, alloc_expr, realloc_expr); gfc_add_expr_to_block (&fblock, tmp); /* Make sure that the scalarizer data pointer is updated. */ if (linfo->data && TREE_CODE (linfo->data) == VAR_DECL) { tmp = gfc_conv_descriptor_data_get (desc); gfc_add_modify (&fblock, linfo->data, tmp); } /* Add the exit label. */ tmp = build1_v (LABEL_EXPR, jump_label2); gfc_add_expr_to_block (&fblock, tmp); return gfc_finish_block (&fblock); } /* NULLIFY an allocatable/pointer array on function entry, free it on exit. Do likewise, recursively if necessary, with the allocatable components of derived types. */ void gfc_trans_deferred_array (gfc_symbol * sym, gfc_wrapped_block * block) { tree type; tree tmp; tree descriptor; stmtblock_t init; stmtblock_t cleanup; locus loc; int rank; bool sym_has_alloc_comp; sym_has_alloc_comp = (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS) && sym->ts.u.derived->attr.alloc_comp; /* Make sure the frontend gets these right. */ if (!(sym->attr.pointer || sym->attr.allocatable || sym_has_alloc_comp)) fatal_error ("Possible front-end bug: Deferred array size without pointer, " "allocatable attribute or derived type without allocatable " "components."); gfc_save_backend_locus (&loc); gfc_set_backend_locus (&sym->declared_at); gfc_init_block (&init); gcc_assert (TREE_CODE (sym->backend_decl) == VAR_DECL || TREE_CODE (sym->backend_decl) == PARM_DECL); if (sym->ts.type == BT_CHARACTER && !INTEGER_CST_P (sym->ts.u.cl->backend_decl)) { gfc_conv_string_length (sym->ts.u.cl, NULL, &init); gfc_trans_vla_type_sizes (sym, &init); } /* Dummy, use associated and result variables don't need anything special. */ if (sym->attr.dummy || sym->attr.use_assoc || sym->attr.result) { gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE); gfc_restore_backend_locus (&loc); return; } descriptor = sym->backend_decl; /* Although static, derived types with default initializers and allocatable components must not be nulled wholesale; instead they are treated component by component. */ if (TREE_STATIC (descriptor) && !sym_has_alloc_comp) { /* SAVEd variables are not freed on exit. */ gfc_trans_static_array_pointer (sym); gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE); gfc_restore_backend_locus (&loc); return; } /* Get the descriptor type. */ type = TREE_TYPE (sym->backend_decl); if (sym_has_alloc_comp && !(sym->attr.pointer || sym->attr.allocatable)) { if (!sym->attr.save && !(TREE_STATIC (sym->backend_decl) && sym->attr.is_main_program)) { if (sym->value == NULL || !gfc_has_default_initializer (sym->ts.u.derived)) { rank = sym->as ? sym->as->rank : 0; tmp = gfc_nullify_alloc_comp (sym->ts.u.derived, descriptor, rank); gfc_add_expr_to_block (&init, tmp); } else gfc_init_default_dt (sym, &init, false); } } else if (!GFC_DESCRIPTOR_TYPE_P (type)) { /* If the backend_decl is not a descriptor, we must have a pointer to one. */ descriptor = build_fold_indirect_ref_loc (input_location, sym->backend_decl); type = TREE_TYPE (descriptor); } /* NULLIFY the data pointer. */ if (GFC_DESCRIPTOR_TYPE_P (type) && !sym->attr.save) gfc_conv_descriptor_data_set (&init, descriptor, null_pointer_node); gfc_restore_backend_locus (&loc); gfc_init_block (&cleanup); /* Allocatable arrays need to be freed when they go out of scope. The allocatable components of pointers must not be touched. */ if (sym_has_alloc_comp && !(sym->attr.function || sym->attr.result) && !sym->attr.pointer && !sym->attr.save) { int rank; rank = sym->as ? sym->as->rank : 0; tmp = gfc_deallocate_alloc_comp (sym->ts.u.derived, descriptor, rank); gfc_add_expr_to_block (&cleanup, tmp); } if (sym->attr.allocatable && (sym->attr.dimension || sym->attr.codimension) && !sym->attr.save && !sym->attr.result) { tmp = gfc_trans_dealloc_allocated (sym->backend_decl, sym->attr.codimension); gfc_add_expr_to_block (&cleanup, tmp); } gfc_add_init_cleanup (block, gfc_finish_block (&init), gfc_finish_block (&cleanup)); } /************ Expression Walking Functions ******************/ /* Walk a variable reference. Possible extension - multiple component subscripts. x(:,:) = foo%a(:)%b(:) Transforms to forall (i=..., j=...) x(i,j) = foo%a(j)%b(i) end forall This adds a fair amount of complexity because you need to deal with more than one ref. Maybe handle in a similar manner to vector subscripts. Maybe not worth the effort. */ static gfc_ss * gfc_walk_variable_expr (gfc_ss * ss, gfc_expr * expr) { gfc_ref *ref; for (ref = expr->ref; ref; ref = ref->next) if (ref->type == REF_ARRAY && ref->u.ar.type != AR_ELEMENT) break; return gfc_walk_array_ref (ss, expr, ref); } gfc_ss * gfc_walk_array_ref (gfc_ss * ss, gfc_expr * expr, gfc_ref * ref) { gfc_array_ref *ar; gfc_ss *newss; int n; for (; ref; ref = ref->next) { if (ref->type == REF_SUBSTRING) { ss = gfc_get_scalar_ss (ss, ref->u.ss.start); ss = gfc_get_scalar_ss (ss, ref->u.ss.end); } /* We're only interested in array sections from now on. */ if (ref->type != REF_ARRAY) continue; ar = &ref->u.ar; switch (ar->type) { case AR_ELEMENT: for (n = ar->dimen - 1; n >= 0; n--) ss = gfc_get_scalar_ss (ss, ar->start[n]); break; case AR_FULL: newss = gfc_get_array_ss (ss, expr, ar->as->rank, GFC_SS_SECTION); newss->info->data.array.ref = ref; /* Make sure array is the same as array(:,:), this way we don't need to special case all the time. */ ar->dimen = ar->as->rank; for (n = 0; n < ar->dimen; n++) { ar->dimen_type[n] = DIMEN_RANGE; gcc_assert (ar->start[n] == NULL); gcc_assert (ar->end[n] == NULL); gcc_assert (ar->stride[n] == NULL); } ss = newss; break; case AR_SECTION: newss = gfc_get_array_ss (ss, expr, 0, GFC_SS_SECTION); newss->info->data.array.ref = ref; /* We add SS chains for all the subscripts in the section. */ for (n = 0; n < ar->dimen; n++) { gfc_ss *indexss; switch (ar->dimen_type[n]) { case DIMEN_ELEMENT: /* Add SS for elemental (scalar) subscripts. */ gcc_assert (ar->start[n]); indexss = gfc_get_scalar_ss (gfc_ss_terminator, ar->start[n]); indexss->loop_chain = gfc_ss_terminator; newss->info->data.array.subscript[n] = indexss; break; case DIMEN_RANGE: /* We don't add anything for sections, just remember this dimension for later. */ newss->dim[newss->dimen] = n; newss->dimen++; break; case DIMEN_VECTOR: /* Create a GFC_SS_VECTOR index in which we can store the vector's descriptor. */ indexss = gfc_get_array_ss (gfc_ss_terminator, ar->start[n], 1, GFC_SS_VECTOR); indexss->loop_chain = gfc_ss_terminator; newss->info->data.array.subscript[n] = indexss; newss->dim[newss->dimen] = n; newss->dimen++; break; default: /* We should know what sort of section it is by now. */ gcc_unreachable (); } } /* We should have at least one non-elemental dimension, unless we are creating a descriptor for a (scalar) coarray. */ gcc_assert (newss->dimen > 0 || newss->info->data.array.ref->u.ar.as->corank > 0); ss = newss; break; default: /* We should know what sort of section it is by now. */ gcc_unreachable (); } } return ss; } /* Walk an expression operator. If only one operand of a binary expression is scalar, we must also add the scalar term to the SS chain. */ static gfc_ss * gfc_walk_op_expr (gfc_ss * ss, gfc_expr * expr) { gfc_ss *head; gfc_ss *head2; head = gfc_walk_subexpr (ss, expr->value.op.op1); if (expr->value.op.op2 == NULL) head2 = head; else head2 = gfc_walk_subexpr (head, expr->value.op.op2); /* All operands are scalar. Pass back and let the caller deal with it. */ if (head2 == ss) return head2; /* All operands require scalarization. */ if (head != ss && (expr->value.op.op2 == NULL || head2 != head)) return head2; /* One of the operands needs scalarization, the other is scalar. Create a gfc_ss for the scalar expression. */ if (head == ss) { /* First operand is scalar. We build the chain in reverse order, so add the scalar SS after the second operand. */ head = head2; while (head && head->next != ss) head = head->next; /* Check we haven't somehow broken the chain. */ gcc_assert (head); head->next = gfc_get_scalar_ss (ss, expr->value.op.op1); } else /* head2 == head */ { gcc_assert (head2 == head); /* Second operand is scalar. */ head2 = gfc_get_scalar_ss (head2, expr->value.op.op2); } return head2; } /* Reverse a SS chain. */ gfc_ss * gfc_reverse_ss (gfc_ss * ss) { gfc_ss *next; gfc_ss *head; gcc_assert (ss != NULL); head = gfc_ss_terminator; while (ss != gfc_ss_terminator) { next = ss->next; /* Check we didn't somehow break the chain. */ gcc_assert (next != NULL); ss->next = head; head = ss; ss = next; } return (head); } /* Given an expression refering to a procedure, return the symbol of its interface. We can't get the procedure symbol directly as we have to handle the case of (deferred) type-bound procedures. */ gfc_symbol * gfc_get_proc_ifc_for_expr (gfc_expr *procedure_ref) { gfc_symbol *sym; gfc_ref *ref; if (procedure_ref == NULL) return NULL; /* Normal procedure case. */ sym = procedure_ref->symtree->n.sym; /* Typebound procedure case. */ for (ref = procedure_ref->ref; ref; ref = ref->next) { if (ref->type == REF_COMPONENT && ref->u.c.component->attr.proc_pointer) sym = ref->u.c.component->ts.interface; else sym = NULL; } return sym; } /* Walk the arguments of an elemental function. PROC_EXPR is used to check whether an argument is permitted to be absent. If it is NULL, we don't do the check and the argument is assumed to be present. */ gfc_ss * gfc_walk_elemental_function_args (gfc_ss * ss, gfc_actual_arglist *arg, gfc_symbol *proc_ifc, gfc_ss_type type) { gfc_formal_arglist *dummy_arg; int scalar; gfc_ss *head; gfc_ss *tail; gfc_ss *newss; head = gfc_ss_terminator; tail = NULL; if (proc_ifc) dummy_arg = proc_ifc->formal; else dummy_arg = NULL; scalar = 1; for (; arg; arg = arg->next) { if (!arg->expr || arg->expr->expr_type == EXPR_NULL) continue; newss = gfc_walk_subexpr (head, arg->expr); if (newss == head) { /* Scalar argument. */ gcc_assert (type == GFC_SS_SCALAR || type == GFC_SS_REFERENCE); newss = gfc_get_scalar_ss (head, arg->expr); newss->info->type = type; if (dummy_arg != NULL && dummy_arg->sym->attr.optional && arg->expr->expr_type == EXPR_VARIABLE && (gfc_expr_attr (arg->expr).optional || gfc_expr_attr (arg->expr).allocatable || gfc_expr_attr (arg->expr).pointer)) newss->info->data.scalar.can_be_null_ref = true; } else scalar = 0; head = newss; if (!tail) { tail = head; while (tail->next != gfc_ss_terminator) tail = tail->next; } if (dummy_arg != NULL) dummy_arg = dummy_arg->next; } if (scalar) { /* If all the arguments are scalar we don't need the argument SS. */ gfc_free_ss_chain (head); /* Pass it back. */ return ss; } /* Add it onto the existing chain. */ tail->next = ss; return head; } /* Walk a function call. Scalar functions are passed back, and taken out of scalarization loops. For elemental functions we walk their arguments. The result of functions returning arrays is stored in a temporary outside the loop, so that the function is only called once. Hence we do not need to walk their arguments. */ static gfc_ss * gfc_walk_function_expr (gfc_ss * ss, gfc_expr * expr) { gfc_intrinsic_sym *isym; gfc_symbol *sym; gfc_component *comp = NULL; isym = expr->value.function.isym; /* Handle intrinsic functions separately. */ if (isym) return gfc_walk_intrinsic_function (ss, expr, isym); sym = expr->value.function.esym; if (!sym) sym = expr->symtree->n.sym; /* A function that returns arrays. */ gfc_is_proc_ptr_comp (expr, &comp); if ((!comp && gfc_return_by_reference (sym) && sym->result->attr.dimension) || (comp && comp->attr.dimension)) return gfc_get_array_ss (ss, expr, expr->rank, GFC_SS_FUNCTION); /* Walk the parameters of an elemental function. For now we always pass by reference. */ if (sym->attr.elemental || (comp && comp->attr.elemental)) return gfc_walk_elemental_function_args (ss, expr->value.function.actual, gfc_get_proc_ifc_for_expr (expr), GFC_SS_REFERENCE); /* Scalar functions are OK as these are evaluated outside the scalarization loop. Pass back and let the caller deal with it. */ return ss; } /* An array temporary is constructed for array constructors. */ static gfc_ss * gfc_walk_array_constructor (gfc_ss * ss, gfc_expr * expr) { return gfc_get_array_ss (ss, expr, expr->rank, GFC_SS_CONSTRUCTOR); } /* Walk an expression. Add walked expressions to the head of the SS chain. A wholly scalar expression will not be added. */ gfc_ss * gfc_walk_subexpr (gfc_ss * ss, gfc_expr * expr) { gfc_ss *head; switch (expr->expr_type) { case EXPR_VARIABLE: head = gfc_walk_variable_expr (ss, expr); return head; case EXPR_OP: head = gfc_walk_op_expr (ss, expr); return head; case EXPR_FUNCTION: head = gfc_walk_function_expr (ss, expr); return head; case EXPR_CONSTANT: case EXPR_NULL: case EXPR_STRUCTURE: /* Pass back and let the caller deal with it. */ break; case EXPR_ARRAY: head = gfc_walk_array_constructor (ss, expr); return head; case EXPR_SUBSTRING: /* Pass back and let the caller deal with it. */ break; default: internal_error ("bad expression type during walk (%d)", expr->expr_type); } return ss; } /* Entry point for expression walking. A return value equal to the passed chain means this is a scalar expression. It is up to the caller to take whatever action is necessary to translate these. */ gfc_ss * gfc_walk_expr (gfc_expr * expr) { gfc_ss *res; res = gfc_walk_subexpr (gfc_ss_terminator, expr); return gfc_reverse_ss (res); }
Go to most recent revision | Compare with Previous | Blame | View Log