URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [fwprop.c] - Rev 721
Go to most recent revision | Compare with Previous | Blame | View Log
/* RTL-based forward propagation pass for GNU compiler. Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc. Contributed by Paolo Bonzini and Steven Bosscher. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "diagnostic-core.h" #include "sparseset.h" #include "timevar.h" #include "rtl.h" #include "tm_p.h" #include "insn-config.h" #include "recog.h" #include "flags.h" #include "obstack.h" #include "basic-block.h" #include "output.h" #include "df.h" #include "target.h" #include "cfgloop.h" #include "tree-pass.h" #include "domwalk.h" #include "emit-rtl.h" /* This pass does simple forward propagation and simplification when an operand of an insn can only come from a single def. This pass uses df.c, so it is global. However, we only do limited analysis of available expressions. 1) The pass tries to propagate the source of the def into the use, and checks if the result is independent of the substituted value. For example, the high word of a (zero_extend:DI (reg:SI M)) is always zero, independent of the source register. In particular, we propagate constants into the use site. Sometimes RTL expansion did not put the constant in the same insn on purpose, to satisfy a predicate, and the result will fail to be recognized; but this happens rarely and in this case we can still create a REG_EQUAL note. For multi-word operations, this (set (subreg:SI (reg:DI 120) 0) (const_int 0)) (set (subreg:SI (reg:DI 120) 4) (const_int -1)) (set (subreg:SI (reg:DI 122) 0) (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0))) (set (subreg:SI (reg:DI 122) 4) (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4))) can be simplified to the much simpler (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119))) (set (subreg:SI (reg:DI 122) 4) (const_int -1)) This particular propagation is also effective at putting together complex addressing modes. We are more aggressive inside MEMs, in that all definitions are propagated if the use is in a MEM; if the result is a valid memory address we check address_cost to decide whether the substitution is worthwhile. 2) The pass propagates register copies. This is not as effective as the copy propagation done by CSE's canon_reg, which works by walking the instruction chain, it can help the other transformations. We should consider removing this optimization, and instead reorder the RTL passes, because GCSE does this transformation too. With some luck, the CSE pass at the end of rest_of_handle_gcse could also go away. 3) The pass looks for paradoxical subregs that are actually unnecessary. Things like this: (set (reg:QI 120) (subreg:QI (reg:SI 118) 0)) (set (reg:QI 121) (subreg:QI (reg:SI 119) 0)) (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0) (subreg:SI (reg:QI 121) 0))) are very common on machines that can only do word-sized operations. For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0), if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0), we can replace the paradoxical subreg with simply (reg:WIDE M). The above will simplify this to (set (reg:QI 120) (subreg:QI (reg:SI 118) 0)) (set (reg:QI 121) (subreg:QI (reg:SI 119) 0)) (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119))) where the first two insns are now dead. We used to use reaching definitions to find which uses have a single reaching definition (sounds obvious...), but this is too complex a problem in nasty testcases like PR33928. Now we use the multiple definitions problem in df-problems.c. The similarity between that problem and SSA form creation is taken further, in that fwprop does a dominator walk to create its chains; however, instead of creating a PHI function where multiple definitions meet I just punt and record only singleton use-def chains, which is all that is needed by fwprop. */ static int num_changes; DEF_VEC_P(df_ref); DEF_VEC_ALLOC_P(df_ref,heap); static VEC(df_ref,heap) *use_def_ref; static VEC(df_ref,heap) *reg_defs; static VEC(df_ref,heap) *reg_defs_stack; /* The MD bitmaps are trimmed to include only live registers to cut memory usage on testcases like insn-recog.c. Track live registers in the basic block and do not perform forward propagation if the destination is a dead pseudo occurring in a note. */ static bitmap local_md; static bitmap local_lr; /* Return the only def in USE's use-def chain, or NULL if there is more than one def in the chain. */ static inline df_ref get_def_for_use (df_ref use) { return VEC_index (df_ref, use_def_ref, DF_REF_ID (use)); } /* Update the reg_defs vector with non-partial definitions in DEF_REC. TOP_FLAG says which artificials uses should be used, when DEF_REC is an artificial def vector. LOCAL_MD is modified as after a df_md_simulate_* function; we do more or less the same processing done there, so we do not use those functions. */ #define DF_MD_GEN_FLAGS \ (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER) static void process_defs (df_ref *def_rec, int top_flag) { df_ref def; while ((def = *def_rec++) != NULL) { df_ref curr_def = VEC_index (df_ref, reg_defs, DF_REF_REGNO (def)); unsigned int dregno; if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag) continue; dregno = DF_REF_REGNO (def); if (curr_def) VEC_safe_push (df_ref, heap, reg_defs_stack, curr_def); else { /* Do not store anything if "transitioning" from NULL to NULL. But otherwise, push a special entry on the stack to tell the leave_block callback that the entry in reg_defs was NULL. */ if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS) ; else VEC_safe_push (df_ref, heap, reg_defs_stack, def); } if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS) { bitmap_set_bit (local_md, dregno); VEC_replace (df_ref, reg_defs, dregno, NULL); } else { bitmap_clear_bit (local_md, dregno); VEC_replace (df_ref, reg_defs, dregno, def); } } } /* Fill the use_def_ref vector with values for the uses in USE_REC, taking reaching definitions info from LOCAL_MD and REG_DEFS. TOP_FLAG says which artificials uses should be used, when USE_REC is an artificial use vector. */ static void process_uses (df_ref *use_rec, int top_flag) { df_ref use; while ((use = *use_rec++) != NULL) if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag) { unsigned int uregno = DF_REF_REGNO (use); if (VEC_index (df_ref, reg_defs, uregno) && !bitmap_bit_p (local_md, uregno) && bitmap_bit_p (local_lr, uregno)) VEC_replace (df_ref, use_def_ref, DF_REF_ID (use), VEC_index (df_ref, reg_defs, uregno)); } } static void single_def_use_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED, basic_block bb) { int bb_index = bb->index; struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index); struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index); rtx insn; bitmap_copy (local_md, &md_bb_info->in); bitmap_copy (local_lr, &lr_bb_info->in); /* Push a marker for the leave_block callback. */ VEC_safe_push (df_ref, heap, reg_defs_stack, NULL); process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP); process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP); /* We don't call df_simulate_initialize_forwards, as it may overestimate the live registers if there are unused artificial defs. We prefer liveness to be underestimated. */ FOR_BB_INSNS (bb, insn) if (INSN_P (insn)) { unsigned int uid = INSN_UID (insn); process_uses (DF_INSN_UID_USES (uid), 0); process_uses (DF_INSN_UID_EQ_USES (uid), 0); process_defs (DF_INSN_UID_DEFS (uid), 0); df_simulate_one_insn_forwards (bb, insn, local_lr); } process_uses (df_get_artificial_uses (bb_index), 0); process_defs (df_get_artificial_defs (bb_index), 0); } /* Pop the definitions created in this basic block when leaving its dominated parts. */ static void single_def_use_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED, basic_block bb ATTRIBUTE_UNUSED) { df_ref saved_def; while ((saved_def = VEC_pop (df_ref, reg_defs_stack)) != NULL) { unsigned int dregno = DF_REF_REGNO (saved_def); /* See also process_defs. */ if (saved_def == VEC_index (df_ref, reg_defs, dregno)) VEC_replace (df_ref, reg_defs, dregno, NULL); else VEC_replace (df_ref, reg_defs, dregno, saved_def); } } /* Build a vector holding the reaching definitions of uses reached by a single dominating definition. */ static void build_single_def_use_links (void) { struct dom_walk_data walk_data; /* We use the multiple definitions problem to compute our restricted use-def chains. */ df_set_flags (DF_EQ_NOTES); df_md_add_problem (); df_note_add_problem (); df_analyze (); df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES); use_def_ref = VEC_alloc (df_ref, heap, DF_USES_TABLE_SIZE ()); VEC_safe_grow_cleared (df_ref, heap, use_def_ref, DF_USES_TABLE_SIZE ()); reg_defs = VEC_alloc (df_ref, heap, max_reg_num ()); VEC_safe_grow_cleared (df_ref, heap, reg_defs, max_reg_num ()); reg_defs_stack = VEC_alloc (df_ref, heap, n_basic_blocks * 10); local_md = BITMAP_ALLOC (NULL); local_lr = BITMAP_ALLOC (NULL); /* Walk the dominator tree looking for single reaching definitions dominating the uses. This is similar to how SSA form is built. */ walk_data.dom_direction = CDI_DOMINATORS; walk_data.initialize_block_local_data = NULL; walk_data.before_dom_children = single_def_use_enter_block; walk_data.after_dom_children = single_def_use_leave_block; init_walk_dominator_tree (&walk_data); walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR); fini_walk_dominator_tree (&walk_data); BITMAP_FREE (local_lr); BITMAP_FREE (local_md); VEC_free (df_ref, heap, reg_defs); VEC_free (df_ref, heap, reg_defs_stack); } /* Do not try to replace constant addresses or addresses of local and argument slots. These MEM expressions are made only once and inserted in many instructions, as well as being used to control symbol table output. It is not safe to clobber them. There are some uncommon cases where the address is already in a register for some reason, but we cannot take advantage of that because we have no easy way to unshare the MEM. In addition, looking up all stack addresses is costly. */ static bool can_simplify_addr (rtx addr) { rtx reg; if (CONSTANT_ADDRESS_P (addr)) return false; if (GET_CODE (addr) == PLUS) reg = XEXP (addr, 0); else reg = addr; return (!REG_P (reg) || (REGNO (reg) != FRAME_POINTER_REGNUM && REGNO (reg) != HARD_FRAME_POINTER_REGNUM && REGNO (reg) != ARG_POINTER_REGNUM)); } /* Returns a canonical version of X for the address, from the point of view, that all multiplications are represented as MULT instead of the multiply by a power of 2 being represented as ASHIFT. Every ASHIFT we find has been made by simplify_gen_binary and was not there before, so it is not shared. So we can do this in place. */ static void canonicalize_address (rtx x) { for (;;) switch (GET_CODE (x)) { case ASHIFT: if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)) && INTVAL (XEXP (x, 1)) >= 0) { HOST_WIDE_INT shift = INTVAL (XEXP (x, 1)); PUT_CODE (x, MULT); XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift, GET_MODE (x)); } x = XEXP (x, 0); break; case PLUS: if (GET_CODE (XEXP (x, 0)) == PLUS || GET_CODE (XEXP (x, 0)) == ASHIFT || GET_CODE (XEXP (x, 0)) == CONST) canonicalize_address (XEXP (x, 0)); x = XEXP (x, 1); break; case CONST: x = XEXP (x, 0); break; default: return; } } /* OLD is a memory address. Return whether it is good to use NEW instead, for a memory access in the given MODE. */ static bool should_replace_address (rtx old_rtx, rtx new_rtx, enum machine_mode mode, addr_space_t as, bool speed) { int gain; if (rtx_equal_p (old_rtx, new_rtx) || !memory_address_addr_space_p (mode, new_rtx, as)) return false; /* Copy propagation is always ok. */ if (REG_P (old_rtx) && REG_P (new_rtx)) return true; /* Prefer the new address if it is less expensive. */ gain = (address_cost (old_rtx, mode, as, speed) - address_cost (new_rtx, mode, as, speed)); /* If the addresses have equivalent cost, prefer the new address if it has the highest `set_src_cost'. That has the potential of eliminating the most insns without additional costs, and it is the same that cse.c used to do. */ if (gain == 0) gain = set_src_cost (new_rtx, speed) - set_src_cost (old_rtx, speed); return (gain > 0); } /* Flags for the last parameter of propagate_rtx_1. */ enum { /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true; if it is false, propagate_rtx_1 returns false if, for at least one occurrence OLD, it failed to collapse the result to a constant. For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may collapse to zero if replacing (reg:M B) with (reg:M A). PR_CAN_APPEAR is disregarded inside MEMs: in that case, propagate_rtx_1 just tries to make cheaper and valid memory addresses. */ PR_CAN_APPEAR = 1, /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement outside memory addresses. This is needed because propagate_rtx_1 does not do any analysis on memory; thus it is very conservative and in general it will fail if non-read-only MEMs are found in the source expression. PR_HANDLE_MEM is set when the source of the propagation was not another MEM. Then, it is safe not to treat non-read-only MEMs as ``opaque'' objects. */ PR_HANDLE_MEM = 2, /* Set when costs should be optimized for speed. */ PR_OPTIMIZE_FOR_SPEED = 4 }; /* Replace all occurrences of OLD in *PX with NEW and try to simplify the resulting expression. Replace *PX with a new RTL expression if an occurrence of OLD was found. This is only a wrapper around simplify-rtx.c: do not add any pattern matching code here. (The sole exception is the handling of LO_SUM, but that is because there is no simplify_gen_* function for LO_SUM). */ static bool propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags) { rtx x = *px, tem = NULL_RTX, op0, op1, op2; enum rtx_code code = GET_CODE (x); enum machine_mode mode = GET_MODE (x); enum machine_mode op_mode; bool can_appear = (flags & PR_CAN_APPEAR) != 0; bool valid_ops = true; if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x)) { /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether they have side effects or not). */ *px = (side_effects_p (x) ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx) : gen_rtx_SCRATCH (GET_MODE (x))); return false; } /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an address, and we are *not* inside one. */ if (x == old_rtx) { *px = new_rtx; return can_appear; } /* If this is an expression, try recursive substitution. */ switch (GET_RTX_CLASS (code)) { case RTX_UNARY: op0 = XEXP (x, 0); op_mode = GET_MODE (op0); valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags); if (op0 == XEXP (x, 0)) return true; tem = simplify_gen_unary (code, mode, op0, op_mode); break; case RTX_BIN_ARITH: case RTX_COMM_ARITH: op0 = XEXP (x, 0); op1 = XEXP (x, 1); valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags); valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags); if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1)) return true; tem = simplify_gen_binary (code, mode, op0, op1); break; case RTX_COMPARE: case RTX_COMM_COMPARE: op0 = XEXP (x, 0); op1 = XEXP (x, 1); op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1); valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags); valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags); if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1)) return true; tem = simplify_gen_relational (code, mode, op_mode, op0, op1); break; case RTX_TERNARY: case RTX_BITFIELD_OPS: op0 = XEXP (x, 0); op1 = XEXP (x, 1); op2 = XEXP (x, 2); op_mode = GET_MODE (op0); valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags); valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags); valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags); if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2)) return true; if (op_mode == VOIDmode) op_mode = GET_MODE (op0); tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2); break; case RTX_EXTRA: /* The only case we try to handle is a SUBREG. */ if (code == SUBREG) { op0 = XEXP (x, 0); valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags); if (op0 == XEXP (x, 0)) return true; tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x)); } break; case RTX_OBJ: if (code == MEM && x != new_rtx) { rtx new_op0; op0 = XEXP (x, 0); /* There are some addresses that we cannot work on. */ if (!can_simplify_addr (op0)) return true; op0 = new_op0 = targetm.delegitimize_address (op0); valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR); /* Dismiss transformation that we do not want to carry on. */ if (!valid_ops || new_op0 == op0 || !(GET_MODE (new_op0) == GET_MODE (op0) || GET_MODE (new_op0) == VOIDmode)) return true; canonicalize_address (new_op0); /* Copy propagations are always ok. Otherwise check the costs. */ if (!(REG_P (old_rtx) && REG_P (new_rtx)) && !should_replace_address (op0, new_op0, GET_MODE (x), MEM_ADDR_SPACE (x), flags & PR_OPTIMIZE_FOR_SPEED)) return true; tem = replace_equiv_address_nv (x, new_op0); } else if (code == LO_SUM) { op0 = XEXP (x, 0); op1 = XEXP (x, 1); /* The only simplification we do attempts to remove references to op0 or make it constant -- in both cases, op0's invalidity will not make the result invalid. */ propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR); valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags); if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1)) return true; /* (lo_sum (high x) x) -> x */ if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1)) tem = op1; else tem = gen_rtx_LO_SUM (mode, op0, op1); /* OP1 is likely not a legitimate address, otherwise there would have been no LO_SUM. We want it to disappear if it is invalid, return false in that case. */ return memory_address_p (mode, tem); } else if (code == REG) { if (rtx_equal_p (x, old_rtx)) { *px = new_rtx; return can_appear; } } break; default: break; } /* No change, no trouble. */ if (tem == NULL_RTX) return true; *px = tem; /* The replacement we made so far is valid, if all of the recursive replacements were valid, or we could simplify everything to a constant. */ return valid_ops || can_appear || CONSTANT_P (tem); } /* for_each_rtx traversal function that returns 1 if BODY points to a non-constant mem. */ static int varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED) { rtx x = *body; return MEM_P (x) && !MEM_READONLY_P (x); } /* Replace all occurrences of OLD in X with NEW and try to simplify the resulting expression (in mode MODE). Return a new expression if it is a constant, otherwise X. Simplifications where occurrences of NEW collapse to a constant are always accepted. All simplifications are accepted if NEW is a pseudo too. Otherwise, we accept simplifications that have a lower or equal cost. */ static rtx propagate_rtx (rtx x, enum machine_mode mode, rtx old_rtx, rtx new_rtx, bool speed) { rtx tem; bool collapsed; int flags; if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER) return NULL_RTX; flags = 0; if (REG_P (new_rtx) || CONSTANT_P (new_rtx)) flags |= PR_CAN_APPEAR; if (!for_each_rtx (&new_rtx, varying_mem_p, NULL)) flags |= PR_HANDLE_MEM; if (speed) flags |= PR_OPTIMIZE_FOR_SPEED; tem = x; collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags); if (tem == x || !collapsed) return NULL_RTX; /* gen_lowpart_common will not be able to process VOIDmode entities other than CONST_INTs. */ if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem)) return NULL_RTX; if (GET_MODE (tem) == VOIDmode) tem = rtl_hooks.gen_lowpart_no_emit (mode, tem); else gcc_assert (GET_MODE (tem) == mode); return tem; } /* Return true if the register from reference REF is killed between FROM to (but not including) TO. */ static bool local_ref_killed_between_p (df_ref ref, rtx from, rtx to) { rtx insn; for (insn = from; insn != to; insn = NEXT_INSN (insn)) { df_ref *def_rec; if (!INSN_P (insn)) continue; for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++) { df_ref def = *def_rec; if (DF_REF_REGNO (ref) == DF_REF_REGNO (def)) return true; } } return false; } /* Check if the given DEF is available in INSN. This would require full computation of available expressions; we check only restricted conditions: - if DEF is the sole definition of its register, go ahead; - in the same basic block, we check for no definitions killing the definition of DEF_INSN; - if USE's basic block has DEF's basic block as the sole predecessor, we check if the definition is killed after DEF_INSN or before TARGET_INSN insn, in their respective basic blocks. */ static bool use_killed_between (df_ref use, rtx def_insn, rtx target_insn) { basic_block def_bb = BLOCK_FOR_INSN (def_insn); basic_block target_bb = BLOCK_FOR_INSN (target_insn); int regno; df_ref def; /* We used to have a def reaching a use that is _before_ the def, with the def not dominating the use even though the use and def are in the same basic block, when a register may be used uninitialized in a loop. This should not happen anymore since we do not use reaching definitions, but still we test for such cases and assume that DEF is not available. */ if (def_bb == target_bb ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn) : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb)) return true; /* Check if the reg in USE has only one definition. We already know that this definition reaches use, or we wouldn't be here. However, this is invalid for hard registers because if they are live at the beginning of the function it does not mean that we have an uninitialized access. */ regno = DF_REF_REGNO (use); def = DF_REG_DEF_CHAIN (regno); if (def && DF_REF_NEXT_REG (def) == NULL && regno >= FIRST_PSEUDO_REGISTER) return false; /* Check locally if we are in the same basic block. */ if (def_bb == target_bb) return local_ref_killed_between_p (use, def_insn, target_insn); /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */ if (single_pred_p (target_bb) && single_pred (target_bb) == def_bb) { df_ref x; /* See if USE is killed between DEF_INSN and the last insn in the basic block containing DEF_INSN. */ x = df_bb_regno_last_def_find (def_bb, regno); if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn)) return true; /* See if USE is killed between TARGET_INSN and the first insn in the basic block containing TARGET_INSN. */ x = df_bb_regno_first_def_find (target_bb, regno); if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn)) return true; return false; } /* Otherwise assume the worst case. */ return true; } /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This would require full computation of available expressions; we check only restricted conditions, see use_killed_between. */ static bool all_uses_available_at (rtx def_insn, rtx target_insn) { df_ref *use_rec; struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn); rtx def_set = single_set (def_insn); gcc_assert (def_set); /* If target_insn comes right after def_insn, which is very common for addresses, we can use a quicker test. */ if (NEXT_INSN (def_insn) == target_insn && REG_P (SET_DEST (def_set))) { rtx def_reg = SET_DEST (def_set); /* If the insn uses the reg that it defines, the substitution is invalid. */ for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++) { df_ref use = *use_rec; if (rtx_equal_p (DF_REF_REG (use), def_reg)) return false; } for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++) { df_ref use = *use_rec; if (rtx_equal_p (DF_REF_REG (use), def_reg)) return false; } } else { rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX; /* Look at all the uses of DEF_INSN, and see if they are not killed between DEF_INSN and TARGET_INSN. */ for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++) { df_ref use = *use_rec; if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg)) return false; if (use_killed_between (use, def_insn, target_insn)) return false; } for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++) { df_ref use = *use_rec; if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg)) return false; if (use_killed_between (use, def_insn, target_insn)) return false; } } return true; } static df_ref *active_defs; #ifdef ENABLE_CHECKING static sparseset active_defs_check; #endif /* Fill the ACTIVE_DEFS array with the use->def link for the registers mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK too, for checking purposes. */ static void register_active_defs (df_ref *use_rec) { while (*use_rec) { df_ref use = *use_rec++; df_ref def = get_def_for_use (use); int regno = DF_REF_REGNO (use); #ifdef ENABLE_CHECKING sparseset_set_bit (active_defs_check, regno); #endif active_defs[regno] = def; } } /* Build the use->def links that we use to update the dataflow info for new uses. Note that building the links is very cheap and if it were done earlier, they could be used to rule out invalid propagations (in addition to what is done in all_uses_available_at). I'm not doing this yet, though. */ static void update_df_init (rtx def_insn, rtx insn) { #ifdef ENABLE_CHECKING sparseset_clear (active_defs_check); #endif register_active_defs (DF_INSN_USES (def_insn)); register_active_defs (DF_INSN_USES (insn)); register_active_defs (DF_INSN_EQ_USES (insn)); } /* Update the USE_DEF_REF array for the given use, using the active definitions in the ACTIVE_DEFS array to match pseudos to their def. */ static inline void update_uses (df_ref *use_rec) { while (*use_rec) { df_ref use = *use_rec++; int regno = DF_REF_REGNO (use); /* Set up the use-def chain. */ if (DF_REF_ID (use) >= (int) VEC_length (df_ref, use_def_ref)) VEC_safe_grow_cleared (df_ref, heap, use_def_ref, DF_REF_ID (use) + 1); #ifdef ENABLE_CHECKING gcc_assert (sparseset_bit_p (active_defs_check, regno)); #endif VEC_replace (df_ref, use_def_ref, DF_REF_ID (use), active_defs[regno]); } } /* Update the USE_DEF_REF array for the uses in INSN. Only update note uses if NOTES_ONLY is true. */ static void update_df (rtx insn, rtx note) { struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn); if (note) { df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE); df_notes_rescan (insn); } else { df_uses_create (&PATTERN (insn), insn, 0); df_insn_rescan (insn); update_uses (DF_INSN_INFO_USES (insn_info)); } update_uses (DF_INSN_INFO_EQ_USES (insn_info)); } /* Try substituting NEW into LOC, which originated from forward propagation of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are substituting the whole SET_SRC, so we can set a REG_EQUAL note if the new insn is not recognized. Return whether the substitution was performed. */ static bool try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx def_insn, bool set_reg_equal) { rtx insn = DF_REF_INSN (use); rtx set = single_set (insn); rtx note = NULL_RTX; bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)); int old_cost = 0; bool ok; update_df_init (def_insn, insn); /* forward_propagate_subreg may be operating on an instruction with multiple sets. If so, assume the cost of the new instruction is not greater than the old one. */ if (set) old_cost = set_src_cost (SET_SRC (set), speed); if (dump_file) { fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn)); print_inline_rtx (dump_file, *loc, 2); fprintf (dump_file, "\n with "); print_inline_rtx (dump_file, new_rtx, 2); fprintf (dump_file, "\n"); } validate_unshare_change (insn, loc, new_rtx, true); if (!verify_changes (0)) { if (dump_file) fprintf (dump_file, "Changes to insn %d not recognized\n", INSN_UID (insn)); ok = false; } else if (DF_REF_TYPE (use) == DF_REF_REG_USE && set && set_src_cost (SET_SRC (set), speed) > old_cost) { if (dump_file) fprintf (dump_file, "Changes to insn %d not profitable\n", INSN_UID (insn)); ok = false; } else { if (dump_file) fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn)); ok = true; } if (ok) { confirm_change_group (); num_changes++; } else { cancel_changes (0); /* Can also record a simplified value in a REG_EQUAL note, making a new one if one does not already exist. */ if (set_reg_equal) { if (dump_file) fprintf (dump_file, " Setting REG_EQUAL note\n"); note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx)); } } if ((ok || note) && !CONSTANT_P (new_rtx)) update_df (insn, note); return ok; } /* For the given single_set INSN, containing SRC known to be a ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN is redundant due to the register being set by a LOAD_EXTEND_OP load from memory. */ static bool free_load_extend (rtx src, rtx insn) { rtx reg; df_ref *use_vec; df_ref use = 0, def; reg = XEXP (src, 0); #ifdef LOAD_EXTEND_OP if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src)) #endif return false; for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++) { use = *use_vec; if (!DF_REF_IS_ARTIFICIAL (use) && DF_REF_TYPE (use) == DF_REF_REG_USE && DF_REF_REG (use) == reg) break; } if (!use) return false; def = get_def_for_use (use); if (!def) return false; if (DF_REF_IS_ARTIFICIAL (def)) return false; if (NONJUMP_INSN_P (DF_REF_INSN (def))) { rtx patt = PATTERN (DF_REF_INSN (def)); if (GET_CODE (patt) == SET && GET_CODE (SET_SRC (patt)) == MEM && rtx_equal_p (SET_DEST (patt), reg)) return true; } return false; } /* If USE is a subreg, see if it can be replaced by a pseudo. */ static bool forward_propagate_subreg (df_ref use, rtx def_insn, rtx def_set) { rtx use_reg = DF_REF_REG (use); rtx use_insn, src; /* Only consider subregs... */ enum machine_mode use_mode = GET_MODE (use_reg); if (GET_CODE (use_reg) != SUBREG || !REG_P (SET_DEST (def_set))) return false; /* If this is a paradoxical SUBREG... */ if (GET_MODE_SIZE (use_mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg)))) { /* If this is a paradoxical SUBREG, we have no idea what value the extra bits would have. However, if the operand is equivalent to a SUBREG whose operand is the same as our mode, and all the modes are within a word, we can just use the inner operand because these SUBREGs just say how to treat the register. */ use_insn = DF_REF_INSN (use); src = SET_SRC (def_set); if (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src)) && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER && GET_MODE (SUBREG_REG (src)) == use_mode && subreg_lowpart_p (src) && all_uses_available_at (def_insn, use_insn)) return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src), def_insn, false); } /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG is the low part of the reg being extended then just use the inner operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will be removed due to it matching a LOAD_EXTEND_OP load from memory, or due to the operation being a no-op when applied to registers. For example, if we have: A: (set (reg:DI X) (sign_extend:DI (reg:SI Y))) B: (... (subreg:SI (reg:DI X)) ...) and mode_rep_extended says that Y is already sign-extended, the backend will typically allow A to be combined with the definition of Y or, failing that, allow A to be deleted after reload through register tying. Introducing more uses of Y prevents both optimisations. */ else if (subreg_lowpart_p (use_reg)) { use_insn = DF_REF_INSN (use); src = SET_SRC (def_set); if ((GET_CODE (src) == ZERO_EXTEND || GET_CODE (src) == SIGN_EXTEND) && REG_P (XEXP (src, 0)) && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER && GET_MODE (XEXP (src, 0)) == use_mode && !free_load_extend (src, def_insn) && (targetm.mode_rep_extended (use_mode, GET_MODE (src)) != (int) GET_CODE (src)) && all_uses_available_at (def_insn, use_insn)) return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0), def_insn, false); } return false; } /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */ static bool forward_propagate_asm (df_ref use, rtx def_insn, rtx def_set, rtx reg) { rtx use_insn = DF_REF_INSN (use), src, use_pat, asm_operands, new_rtx, *loc; int speed_p, i; df_ref *use_vec; gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0); src = SET_SRC (def_set); use_pat = PATTERN (use_insn); /* In __asm don't replace if src might need more registers than reg, as that could increase register pressure on the __asm. */ use_vec = DF_INSN_USES (def_insn); if (use_vec[0] && use_vec[1]) return false; update_df_init (def_insn, use_insn); speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)); asm_operands = NULL_RTX; switch (GET_CODE (use_pat)) { case ASM_OPERANDS: asm_operands = use_pat; break; case SET: if (MEM_P (SET_DEST (use_pat))) { loc = &SET_DEST (use_pat); new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p); if (new_rtx) validate_unshare_change (use_insn, loc, new_rtx, true); } asm_operands = SET_SRC (use_pat); break; case PARALLEL: for (i = 0; i < XVECLEN (use_pat, 0); i++) if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET) { if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i)))) { loc = &SET_DEST (XVECEXP (use_pat, 0, i)); new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p); if (new_rtx) validate_unshare_change (use_insn, loc, new_rtx, true); } asm_operands = SET_SRC (XVECEXP (use_pat, 0, i)); } else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS) asm_operands = XVECEXP (use_pat, 0, i); break; default: gcc_unreachable (); } gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS); for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++) { loc = &ASM_OPERANDS_INPUT (asm_operands, i); new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p); if (new_rtx) validate_unshare_change (use_insn, loc, new_rtx, true); } if (num_changes_pending () == 0 || !apply_change_group ()) return false; update_df (use_insn, NULL); num_changes++; return true; } /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the result. */ static bool forward_propagate_and_simplify (df_ref use, rtx def_insn, rtx def_set) { rtx use_insn = DF_REF_INSN (use); rtx use_set = single_set (use_insn); rtx src, reg, new_rtx, *loc; bool set_reg_equal; enum machine_mode mode; int asm_use = -1; if (INSN_CODE (use_insn) < 0) asm_use = asm_noperands (PATTERN (use_insn)); if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn)) return false; /* Do not propagate into PC, CC0, etc. */ if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode) return false; /* If def and use are subreg, check if they match. */ reg = DF_REF_REG (use); if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG) { if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg)) return false; } /* Check if the def had a subreg, but the use has the whole reg. */ else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG) return false; /* Check if the use has a subreg, but the def had the whole reg. Unlike the previous case, the optimization is possible and often useful indeed. */ else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set))) reg = SUBREG_REG (reg); /* Make sure that we can treat REG as having the same mode as the source of DEF_SET. */ if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg)) return false; /* Check if the substitution is valid (last, because it's the most expensive check!). */ src = SET_SRC (def_set); if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn)) return false; /* Check if the def is loading something from the constant pool; in this case we would undo optimization such as compress_float_constant. Still, we can set a REG_EQUAL note. */ if (MEM_P (src) && MEM_READONLY_P (src)) { rtx x = avoid_constant_pool_reference (src); if (x != src && use_set) { rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX); rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set); rtx new_rtx = simplify_replace_rtx (old_rtx, src, x); if (old_rtx != new_rtx) set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx)); } return false; } if (asm_use >= 0) return forward_propagate_asm (use, def_insn, def_set, reg); /* Else try simplifying. */ if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE) { loc = &SET_DEST (use_set); set_reg_equal = false; } else if (!use_set) { loc = &INSN_VAR_LOCATION_LOC (use_insn); set_reg_equal = false; } else { rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX); if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE) loc = &XEXP (note, 0); else loc = &SET_SRC (use_set); /* Do not replace an existing REG_EQUAL note if the insn is not recognized. Either we're already replacing in the note, or we'll separately try plugging the definition in the note and simplifying. And only install a REQ_EQUAL note when the destination is a REG, as the note would be invalid otherwise. */ set_reg_equal = (note == NULL_RTX && REG_P (SET_DEST (use_set))); } if (GET_MODE (*loc) == VOIDmode) mode = GET_MODE (SET_DEST (use_set)); else mode = GET_MODE (*loc); new_rtx = propagate_rtx (*loc, mode, reg, src, optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn))); if (!new_rtx) return false; return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal); } /* Given a use USE of an insn, if it has a single reaching definition, try to forward propagate it into that insn. Return true if cfg cleanup will be needed. */ static bool forward_propagate_into (df_ref use) { df_ref def; rtx def_insn, def_set, use_insn; rtx parent; if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE) return false; if (DF_REF_IS_ARTIFICIAL (use)) return false; /* Only consider uses that have a single definition. */ def = get_def_for_use (use); if (!def) return false; if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE) return false; if (DF_REF_IS_ARTIFICIAL (def)) return false; /* Do not propagate loop invariant definitions inside the loop. */ if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father) return false; /* Check if the use is still present in the insn! */ use_insn = DF_REF_INSN (use); if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE) parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX); else parent = PATTERN (use_insn); if (!reg_mentioned_p (DF_REF_REG (use), parent)) return false; def_insn = DF_REF_INSN (def); if (multiple_sets (def_insn)) return false; def_set = single_set (def_insn); if (!def_set) return false; /* Only try one kind of propagation. If two are possible, we'll do it on the following iterations. */ if (forward_propagate_and_simplify (use, def_insn, def_set) || forward_propagate_subreg (use, def_insn, def_set)) { if (cfun->can_throw_non_call_exceptions && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX) && purge_dead_edges (DF_REF_BB (use))) return true; } return false; } static void fwprop_init (void) { num_changes = 0; calculate_dominance_info (CDI_DOMINATORS); /* We do not always want to propagate into loops, so we have to find loops and be careful about them. But we have to call flow_loops_find before df_analyze, because flow_loops_find may introduce new jump insns (sadly) if we are not working in cfglayout mode. */ loop_optimizer_init (0); build_single_def_use_links (); df_set_flags (DF_DEFER_INSN_RESCAN); active_defs = XNEWVEC (df_ref, max_reg_num ()); #ifdef ENABLE_CHECKING active_defs_check = sparseset_alloc (max_reg_num ()); #endif } static void fwprop_done (void) { loop_optimizer_finalize (); VEC_free (df_ref, heap, use_def_ref); free (active_defs); #ifdef ENABLE_CHECKING sparseset_free (active_defs_check); #endif free_dominance_info (CDI_DOMINATORS); cleanup_cfg (0); delete_trivially_dead_insns (get_insns (), max_reg_num ()); if (dump_file) fprintf (dump_file, "\nNumber of successful forward propagations: %d\n\n", num_changes); } /* Main entry point. */ static bool gate_fwprop (void) { return optimize > 0 && flag_forward_propagate; } static unsigned int fwprop (void) { unsigned i; bool need_cleanup = false; fwprop_init (); /* Go through all the uses. df_uses_create will create new ones at the end, and we'll go through them as well. Do not forward propagate addresses into loops until after unrolling. CSE did so because it was able to fix its own mess, but we are not. */ for (i = 0; i < DF_USES_TABLE_SIZE (); i++) { df_ref use = DF_USES_GET (i); if (use) if (DF_REF_TYPE (use) == DF_REF_REG_USE || DF_REF_BB (use)->loop_father == NULL /* The outer most loop is not really a loop. */ || loop_outer (DF_REF_BB (use)->loop_father) == NULL) need_cleanup |= forward_propagate_into (use); } fwprop_done (); if (need_cleanup) cleanup_cfg (0); return 0; } struct rtl_opt_pass pass_rtl_fwprop = { { RTL_PASS, "fwprop1", /* name */ gate_fwprop, /* gate */ fwprop, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_FWPROP, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_df_finish | TODO_verify_flow | TODO_verify_rtl_sharing /* todo_flags_finish */ } }; static unsigned int fwprop_addr (void) { unsigned i; bool need_cleanup = false; fwprop_init (); /* Go through all the uses. df_uses_create will create new ones at the end, and we'll go through them as well. */ for (i = 0; i < DF_USES_TABLE_SIZE (); i++) { df_ref use = DF_USES_GET (i); if (use) if (DF_REF_TYPE (use) != DF_REF_REG_USE && DF_REF_BB (use)->loop_father != NULL /* The outer most loop is not really a loop. */ && loop_outer (DF_REF_BB (use)->loop_father) != NULL) need_cleanup |= forward_propagate_into (use); } fwprop_done (); if (need_cleanup) cleanup_cfg (0); return 0; } struct rtl_opt_pass pass_rtl_fwprop_addr = { { RTL_PASS, "fwprop2", /* name */ gate_fwprop, /* gate */ fwprop_addr, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_FWPROP, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_df_finish | TODO_verify_rtl_sharing /* todo_flags_finish */ } };
Go to most recent revision | Compare with Previous | Blame | View Log