URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [genrecog.c] - Rev 745
Go to most recent revision | Compare with Previous | Blame | View Log
/* Generate code from machine description to recognize rtl as insns. Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ /* This program is used to produce insn-recog.c, which contains a function called `recog' plus its subroutines. These functions contain a decision tree that recognizes whether an rtx, the argument given to recog, is a valid instruction. recog returns -1 if the rtx is not valid. If the rtx is valid, recog returns a nonnegative number which is the insn code number for the pattern that matched. This is the same as the order in the machine description of the entry that matched. This number can be used as an index into various insn_* tables, such as insn_template, insn_outfun, and insn_n_operands (found in insn-output.c). The third argument to recog is an optional pointer to an int. If present, recog will accept a pattern if it matches except for missing CLOBBER expressions at the end. In that case, the value pointed to by the optional pointer will be set to the number of CLOBBERs that need to be added (it should be initialized to zero by the caller). If it is set nonzero, the caller should allocate a PARALLEL of the appropriate size, copy the initial entries, and call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs. This program also generates the function `split_insns', which returns 0 if the rtl could not be split, or it returns the split rtl as an INSN list. This program also generates the function `peephole2_insns', which returns 0 if the rtl could not be matched. If there was a match, the new rtl is returned in an INSN list, and LAST_INSN will point to the last recognized insn in the old sequence. */ #include "bconfig.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "errors.h" #include "read-md.h" #include "gensupport.h" #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \ printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER)) /* Ways of obtaining an rtx to be tested. */ enum position_type { /* PATTERN (peep2_next_insn (ARG)). */ POS_PEEP2_INSN, /* XEXP (BASE, ARG). */ POS_XEXP, /* XVECEXP (BASE, 0, ARG). */ POS_XVECEXP0 }; /* The position of an rtx relative to X0. Each useful position is represented by exactly one instance of this structure. */ struct position { /* The parent rtx. This is the root position for POS_PEEP2_INSNs. */ struct position *base; /* A position with the same BASE and TYPE, but with the next value of ARG. */ struct position *next; /* A list of all POS_XEXP positions that use this one as their base, chained by NEXT fields. The first entry represents XEXP (this, 0), the second represents XEXP (this, 1), and so on. */ struct position *xexps; /* A list of POS_XVECEXP0 positions that use this one as their base, chained by NEXT fields. The first entry represents XVECEXP (this, 0, 0), the second represents XVECEXP (this, 0, 1), and so on. */ struct position *xvecexp0s; /* The type of position. */ enum position_type type; /* The argument to TYPE (shown as ARG in the position_type comments). */ int arg; /* The depth of this position, with 0 as the root. */ int depth; }; /* A listhead of decision trees. The alternatives to a node are kept in a doubly-linked list so we can easily add nodes to the proper place when merging. */ struct decision_head { struct decision *first; struct decision *last; }; /* These types are roughly in the order in which we'd like to test them. */ enum decision_type { DT_num_insns, DT_mode, DT_code, DT_veclen, DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe, DT_const_int, DT_veclen_ge, DT_dup, DT_pred, DT_c_test, DT_accept_op, DT_accept_insn }; /* A single test. The two accept types aren't tests per-se, but their equality (or lack thereof) does affect tree merging so it is convenient to keep them here. */ struct decision_test { /* A linked list through the tests attached to a node. */ struct decision_test *next; enum decision_type type; union { int num_insns; /* Number if insn in a define_peephole2. */ enum machine_mode mode; /* Machine mode of node. */ RTX_CODE code; /* Code to test. */ struct { const char *name; /* Predicate to call. */ const struct pred_data *data; /* Optimization hints for this predicate. */ enum machine_mode mode; /* Machine mode for node. */ } pred; const char *c_test; /* Additional test to perform. */ int veclen; /* Length of vector. */ int dup; /* Number of operand to compare against. */ HOST_WIDE_INT intval; /* Value for XINT for XWINT. */ int opno; /* Operand number matched. */ struct { int code_number; /* Insn number matched. */ int lineno; /* Line number of the insn. */ int num_clobbers_to_add; /* Number of CLOBBERs to be added. */ } insn; } u; }; /* Data structure for decision tree for recognizing legitimate insns. */ struct decision { struct decision_head success; /* Nodes to test on success. */ struct decision *next; /* Node to test on failure. */ struct decision *prev; /* Node whose failure tests us. */ struct decision *afterward; /* Node to test on success, but failure of successor nodes. */ struct position *position; /* Position in pattern. */ struct decision_test *tests; /* The tests for this node. */ int number; /* Node number, used for labels */ int subroutine_number; /* Number of subroutine this node starts */ int need_label; /* Label needs to be output. */ }; #define SUBROUTINE_THRESHOLD 100 static int next_subroutine_number; /* We can write three types of subroutines: One for insn recognition, one to split insns, and one for peephole-type optimizations. This defines which type is being written. */ enum routine_type { RECOG, SPLIT, PEEPHOLE2 }; #define IS_SPLIT(X) ((X) != RECOG) /* Next available node number for tree nodes. */ static int next_number; /* Next number to use as an insn_code. */ static int next_insn_code; /* Record the highest depth we ever have so we know how many variables to allocate in each subroutine we make. */ static int max_depth; /* The line number of the start of the pattern currently being processed. */ static int pattern_lineno; /* The root position (x0). */ static struct position root_pos; /* A list of all POS_PEEP2_INSNs. The entry for insn 0 is the root position, since we are given that instruction's pattern as x0. */ static struct position *peep2_insn_pos_list = &root_pos; extern void debug_decision (struct decision *); extern void debug_decision_list (struct decision *); /* Return a position with the given BASE, TYPE and ARG. NEXT_PTR points to where the unique object that represents the position should be stored. Create the object if it doesn't already exist, otherwise reuse the object that is already there. */ static struct position * next_position (struct position **next_ptr, struct position *base, enum position_type type, int arg) { struct position *pos; pos = *next_ptr; if (!pos) { pos = XCNEW (struct position); pos->base = base; pos->type = type; pos->arg = arg; pos->depth = base->depth + 1; *next_ptr = pos; } return pos; } /* Compare positions POS1 and POS2 lexicographically. */ static int compare_positions (struct position *pos1, struct position *pos2) { int diff; diff = pos1->depth - pos2->depth; if (diff < 0) do pos2 = pos2->base; while (pos1->depth != pos2->depth); else if (diff > 0) do pos1 = pos1->base; while (pos1->depth != pos2->depth); while (pos1 != pos2) { diff = (int) pos1->type - (int) pos2->type; if (diff == 0) diff = pos1->arg - pos2->arg; pos1 = pos1->base; pos2 = pos2->base; } return diff; } /* Create a new node in sequence after LAST. */ static struct decision * new_decision (struct position *pos, struct decision_head *last) { struct decision *new_decision = XCNEW (struct decision); new_decision->success = *last; new_decision->position = pos; new_decision->number = next_number++; last->first = last->last = new_decision; return new_decision; } /* Create a new test and link it in at PLACE. */ static struct decision_test * new_decision_test (enum decision_type type, struct decision_test ***pplace) { struct decision_test **place = *pplace; struct decision_test *test; test = XNEW (struct decision_test); test->next = *place; test->type = type; *place = test; place = &test->next; *pplace = place; return test; } /* Search for and return operand N, stop when reaching node STOP. */ static rtx find_operand (rtx pattern, int n, rtx stop) { const char *fmt; RTX_CODE code; int i, j, len; rtx r; if (pattern == stop) return stop; code = GET_CODE (pattern); if ((code == MATCH_SCRATCH || code == MATCH_OPERAND || code == MATCH_OPERATOR || code == MATCH_PARALLEL) && XINT (pattern, 0) == n) return pattern; fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); for (i = 0; i < len; i++) { switch (fmt[i]) { case 'e': case 'u': if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX) return r; break; case 'V': if (! XVEC (pattern, i)) break; /* Fall through. */ case 'E': for (j = 0; j < XVECLEN (pattern, i); j++) if ((r = find_operand (XVECEXP (pattern, i, j), n, stop)) != NULL_RTX) return r; break; case 'i': case 'w': case '0': case 's': break; default: gcc_unreachable (); } } return NULL; } /* Search for and return operand M, such that it has a matching constraint for operand N. */ static rtx find_matching_operand (rtx pattern, int n) { const char *fmt; RTX_CODE code; int i, j, len; rtx r; code = GET_CODE (pattern); if (code == MATCH_OPERAND && (XSTR (pattern, 2)[0] == '0' + n || (XSTR (pattern, 2)[0] == '%' && XSTR (pattern, 2)[1] == '0' + n))) return pattern; fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); for (i = 0; i < len; i++) { switch (fmt[i]) { case 'e': case 'u': if ((r = find_matching_operand (XEXP (pattern, i), n))) return r; break; case 'V': if (! XVEC (pattern, i)) break; /* Fall through. */ case 'E': for (j = 0; j < XVECLEN (pattern, i); j++) if ((r = find_matching_operand (XVECEXP (pattern, i, j), n))) return r; break; case 'i': case 'w': case '0': case 's': break; default: gcc_unreachable (); } } return NULL; } /* Check for various errors in patterns. SET is nonnull for a destination, and is the complete set pattern. SET_CODE is '=' for normal sets, and '+' within a context that requires in-out constraints. */ static void validate_pattern (rtx pattern, rtx insn, rtx set, int set_code) { const char *fmt; RTX_CODE code; size_t i, len; int j; code = GET_CODE (pattern); switch (code) { case MATCH_SCRATCH: return; case MATCH_DUP: case MATCH_OP_DUP: case MATCH_PAR_DUP: if (find_operand (insn, XINT (pattern, 0), pattern) == pattern) error_with_line (pattern_lineno, "operand %i duplicated before defined", XINT (pattern, 0)); break; case MATCH_OPERAND: case MATCH_OPERATOR: { const char *pred_name = XSTR (pattern, 1); const struct pred_data *pred; const char *c_test; if (GET_CODE (insn) == DEFINE_INSN) c_test = XSTR (insn, 2); else c_test = XSTR (insn, 1); if (pred_name[0] != 0) { pred = lookup_predicate (pred_name); if (!pred) message_with_line (pattern_lineno, "warning: unknown predicate '%s'", pred_name); } else pred = 0; if (code == MATCH_OPERAND) { const char constraints0 = XSTR (pattern, 2)[0]; /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we don't use the MATCH_OPERAND constraint, only the predicate. This is confusing to folks doing new ports, so help them not make the mistake. */ if (GET_CODE (insn) == DEFINE_EXPAND || GET_CODE (insn) == DEFINE_SPLIT || GET_CODE (insn) == DEFINE_PEEPHOLE2) { if (constraints0) message_with_line (pattern_lineno, "warning: constraints not supported in %s", rtx_name[GET_CODE (insn)]); } /* A MATCH_OPERAND that is a SET should have an output reload. */ else if (set && constraints0) { if (set_code == '+') { if (constraints0 == '+') ; /* If we've only got an output reload for this operand, we'd better have a matching input operand. */ else if (constraints0 == '=' && find_matching_operand (insn, XINT (pattern, 0))) ; else error_with_line (pattern_lineno, "operand %d missing in-out reload", XINT (pattern, 0)); } else if (constraints0 != '=' && constraints0 != '+') error_with_line (pattern_lineno, "operand %d missing output reload", XINT (pattern, 0)); } } /* Allowing non-lvalues in destinations -- particularly CONST_INT -- while not likely to occur at runtime, results in less efficient code from insn-recog.c. */ if (set && pred && pred->allows_non_lvalue) message_with_line (pattern_lineno, "warning: destination operand %d " "allows non-lvalue", XINT (pattern, 0)); /* A modeless MATCH_OPERAND can be handy when we can check for multiple modes in the c_test. In most other cases, it is a mistake. Only DEFINE_INSN is eligible, since SPLIT and PEEP2 can FAIL within the output pattern. Exclude special predicates, which check the mode themselves. Also exclude predicates that allow only constants. Exclude the SET_DEST of a call instruction, as that is a common idiom. */ if (GET_MODE (pattern) == VOIDmode && code == MATCH_OPERAND && GET_CODE (insn) == DEFINE_INSN && pred && !pred->special && pred->allows_non_const && strstr (c_test, "operands") == NULL && ! (set && GET_CODE (set) == SET && GET_CODE (SET_SRC (set)) == CALL)) message_with_line (pattern_lineno, "warning: operand %d missing mode?", XINT (pattern, 0)); return; } case SET: { enum machine_mode dmode, smode; rtx dest, src; dest = SET_DEST (pattern); src = SET_SRC (pattern); /* STRICT_LOW_PART is a wrapper. Its argument is the real destination, and it's mode should match the source. */ if (GET_CODE (dest) == STRICT_LOW_PART) dest = XEXP (dest, 0); /* Find the referent for a DUP. */ if (GET_CODE (dest) == MATCH_DUP || GET_CODE (dest) == MATCH_OP_DUP || GET_CODE (dest) == MATCH_PAR_DUP) dest = find_operand (insn, XINT (dest, 0), NULL); if (GET_CODE (src) == MATCH_DUP || GET_CODE (src) == MATCH_OP_DUP || GET_CODE (src) == MATCH_PAR_DUP) src = find_operand (insn, XINT (src, 0), NULL); dmode = GET_MODE (dest); smode = GET_MODE (src); /* The mode of an ADDRESS_OPERAND is the mode of the memory reference, not the mode of the address. */ if (GET_CODE (src) == MATCH_OPERAND && ! strcmp (XSTR (src, 1), "address_operand")) ; /* The operands of a SET must have the same mode unless one is VOIDmode. */ else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode) error_with_line (pattern_lineno, "mode mismatch in set: %smode vs %smode", GET_MODE_NAME (dmode), GET_MODE_NAME (smode)); /* If only one of the operands is VOIDmode, and PC or CC0 is not involved, it's probably a mistake. */ else if (dmode != smode && GET_CODE (dest) != PC && GET_CODE (dest) != CC0 && GET_CODE (src) != PC && GET_CODE (src) != CC0 && !CONST_INT_P (src) && GET_CODE (src) != CALL) { const char *which; which = (dmode == VOIDmode ? "destination" : "source"); message_with_line (pattern_lineno, "warning: %s missing a mode?", which); } if (dest != SET_DEST (pattern)) validate_pattern (dest, insn, pattern, '='); validate_pattern (SET_DEST (pattern), insn, pattern, '='); validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0); return; } case CLOBBER: validate_pattern (SET_DEST (pattern), insn, pattern, '='); return; case ZERO_EXTRACT: validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0); validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0); validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0); return; case STRICT_LOW_PART: validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0); return; case LABEL_REF: if (GET_MODE (XEXP (pattern, 0)) != VOIDmode) error_with_line (pattern_lineno, "operand to label_ref %smode not VOIDmode", GET_MODE_NAME (GET_MODE (XEXP (pattern, 0)))); break; default: break; } fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); for (i = 0; i < len; i++) { switch (fmt[i]) { case 'e': case 'u': validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0); break; case 'E': for (j = 0; j < XVECLEN (pattern, i); j++) validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0); break; case 'i': case 'w': case '0': case 's': break; default: gcc_unreachable (); } } } /* Create a chain of nodes to verify that an rtl expression matches PATTERN. LAST is a pointer to the listhead in the previous node in the chain (or in the calling function, for the first node). POSITION is the current position in the insn. INSN_TYPE is the type of insn for which we are emitting code. A pointer to the final node in the chain is returned. */ static struct decision * add_to_sequence (rtx pattern, struct decision_head *last, struct position *pos, enum routine_type insn_type, int top) { RTX_CODE code; struct decision *this_decision, *sub; struct decision_test *test; struct decision_test **place; struct position *subpos, **subpos_ptr; size_t i; const char *fmt; int len; enum machine_mode mode; enum position_type pos_type; if (pos->depth > max_depth) max_depth = pos->depth; sub = this_decision = new_decision (pos, last); place = &this_decision->tests; restart: mode = GET_MODE (pattern); code = GET_CODE (pattern); switch (code) { case PARALLEL: /* Toplevel peephole pattern. */ if (insn_type == PEEPHOLE2 && top) { int num_insns; /* Check we have sufficient insns. This avoids complications because we then know peep2_next_insn never fails. */ num_insns = XVECLEN (pattern, 0); if (num_insns > 1) { test = new_decision_test (DT_num_insns, &place); test->u.num_insns = num_insns; last = &sub->success; } else { /* We don't need the node we just created -- unlink it. */ last->first = last->last = NULL; } subpos_ptr = &peep2_insn_pos_list; for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++) { subpos = next_position (subpos_ptr, &root_pos, POS_PEEP2_INSN, i); sub = add_to_sequence (XVECEXP (pattern, 0, i), last, subpos, insn_type, 0); last = &sub->success; subpos_ptr = &subpos->next; } goto ret; } /* Else nothing special. */ break; case MATCH_PARALLEL: /* The explicit patterns within a match_parallel enforce a minimum length on the vector. The match_parallel predicate may allow for more elements. We do need to check for this minimum here or the code generated to match the internals may reference data beyond the end of the vector. */ test = new_decision_test (DT_veclen_ge, &place); test->u.veclen = XVECLEN (pattern, 2); /* Fall through. */ case MATCH_OPERAND: case MATCH_SCRATCH: case MATCH_OPERATOR: { RTX_CODE was_code = code; const char *pred_name; bool allows_const_int = true; if (code == MATCH_SCRATCH) { pred_name = "scratch_operand"; code = UNKNOWN; } else { pred_name = XSTR (pattern, 1); if (code == MATCH_PARALLEL) code = PARALLEL; else code = UNKNOWN; } if (pred_name[0] != 0) { const struct pred_data *pred; test = new_decision_test (DT_pred, &place); test->u.pred.name = pred_name; test->u.pred.mode = mode; /* See if we know about this predicate. If we do, remember it for use below. We can optimize the generated code a little if either (a) the predicate only accepts one code, or (b) the predicate does not allow CONST_INT, in which case it can match only if the modes match. */ pred = lookup_predicate (pred_name); if (pred) { test->u.pred.data = pred; allows_const_int = pred->codes[CONST_INT]; if (was_code == MATCH_PARALLEL && pred->singleton != PARALLEL) message_with_line (pattern_lineno, "predicate '%s' used in match_parallel " "does not allow only PARALLEL", pred->name); else code = pred->singleton; } else message_with_line (pattern_lineno, "warning: unknown predicate '%s' in '%s' expression", pred_name, GET_RTX_NAME (was_code)); } /* Can't enforce a mode if we allow const_int. */ if (allows_const_int) mode = VOIDmode; /* Accept the operand, i.e. record it in `operands'. */ test = new_decision_test (DT_accept_op, &place); test->u.opno = XINT (pattern, 0); if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL) { if (was_code == MATCH_OPERATOR) { pos_type = POS_XEXP; subpos_ptr = &pos->xexps; } else { pos_type = POS_XVECEXP0; subpos_ptr = &pos->xvecexp0s; } for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++) { subpos = next_position (subpos_ptr, pos, pos_type, i); sub = add_to_sequence (XVECEXP (pattern, 2, i), &sub->success, subpos, insn_type, 0); subpos_ptr = &subpos->next; } } goto fini; } case MATCH_OP_DUP: code = UNKNOWN; test = new_decision_test (DT_dup, &place); test->u.dup = XINT (pattern, 0); test = new_decision_test (DT_accept_op, &place); test->u.opno = XINT (pattern, 0); subpos_ptr = &pos->xexps; for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++) { subpos = next_position (subpos_ptr, pos, POS_XEXP, i); sub = add_to_sequence (XVECEXP (pattern, 1, i), &sub->success, subpos, insn_type, 0); subpos_ptr = &subpos->next; } goto fini; case MATCH_DUP: case MATCH_PAR_DUP: code = UNKNOWN; test = new_decision_test (DT_dup, &place); test->u.dup = XINT (pattern, 0); goto fini; case ADDRESS: pattern = XEXP (pattern, 0); goto restart; default: break; } fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); /* Do tests against the current node first. */ for (i = 0; i < (size_t) len; i++) { if (fmt[i] == 'i') { gcc_assert (i < 2); if (!i) { test = new_decision_test (DT_elt_zero_int, &place); test->u.intval = XINT (pattern, i); } else { test = new_decision_test (DT_elt_one_int, &place); test->u.intval = XINT (pattern, i); } } else if (fmt[i] == 'w') { /* If this value actually fits in an int, we can use a switch statement here, so indicate that. */ enum decision_type type = ((int) XWINT (pattern, i) == XWINT (pattern, i)) ? DT_elt_zero_wide_safe : DT_elt_zero_wide; gcc_assert (!i); test = new_decision_test (type, &place); test->u.intval = XWINT (pattern, i); } else if (fmt[i] == 'E') { gcc_assert (!i); test = new_decision_test (DT_veclen, &place); test->u.veclen = XVECLEN (pattern, i); } } /* Now test our sub-patterns. */ subpos_ptr = &pos->xexps; for (i = 0; i < (size_t) len; i++) { subpos = next_position (subpos_ptr, pos, POS_XEXP, i); switch (fmt[i]) { case 'e': case 'u': sub = add_to_sequence (XEXP (pattern, i), &sub->success, subpos, insn_type, 0); break; case 'E': { struct position *subpos2, **subpos2_ptr; int j; subpos2_ptr = &pos->xvecexp0s; for (j = 0; j < XVECLEN (pattern, i); j++) { subpos2 = next_position (subpos2_ptr, pos, POS_XVECEXP0, j); sub = add_to_sequence (XVECEXP (pattern, i, j), &sub->success, subpos2, insn_type, 0); subpos2_ptr = &subpos2->next; } break; } case 'i': case 'w': /* Handled above. */ break; case '0': break; default: gcc_unreachable (); } subpos_ptr = &subpos->next; } fini: /* Insert nodes testing mode and code, if they're still relevant, before any of the nodes we may have added above. */ if (code != UNKNOWN) { place = &this_decision->tests; test = new_decision_test (DT_code, &place); test->u.code = code; } if (mode != VOIDmode) { place = &this_decision->tests; test = new_decision_test (DT_mode, &place); test->u.mode = mode; } /* If we didn't insert any tests or accept nodes, hork. */ gcc_assert (this_decision->tests); ret: return sub; } /* A subroutine of maybe_both_true; examines only one test. Returns > 0 for "definitely both true" and < 0 for "maybe both true". */ static int maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2) { if (d1->type == d2->type) { switch (d1->type) { case DT_num_insns: if (d1->u.num_insns == d2->u.num_insns) return 1; else return -1; case DT_mode: return d1->u.mode == d2->u.mode; case DT_code: return d1->u.code == d2->u.code; case DT_veclen: return d1->u.veclen == d2->u.veclen; case DT_elt_zero_int: case DT_elt_one_int: case DT_elt_zero_wide: case DT_elt_zero_wide_safe: return d1->u.intval == d2->u.intval; default: break; } } /* If either has a predicate that we know something about, set things up so that D1 is the one that always has a known predicate. Then see if they have any codes in common. */ if (d1->type == DT_pred || d2->type == DT_pred) { if (d2->type == DT_pred) { struct decision_test *tmp; tmp = d1, d1 = d2, d2 = tmp; } /* If D2 tests a mode, see if it matches D1. */ if (d1->u.pred.mode != VOIDmode) { if (d2->type == DT_mode) { if (d1->u.pred.mode != d2->u.mode /* The mode of an address_operand predicate is the mode of the memory, not the operand. It can only be used for testing the predicate, so we must ignore it here. */ && strcmp (d1->u.pred.name, "address_operand") != 0) return 0; } /* Don't check two predicate modes here, because if both predicates accept CONST_INT, then both can still be true even if the modes are different. If they don't accept CONST_INT, there will be a separate DT_mode that will make maybe_both_true_1 return 0. */ } if (d1->u.pred.data) { /* If D2 tests a code, see if it is in the list of valid codes for D1's predicate. */ if (d2->type == DT_code) { if (!d1->u.pred.data->codes[d2->u.code]) return 0; } /* Otherwise see if the predicates have any codes in common. */ else if (d2->type == DT_pred && d2->u.pred.data) { bool common = false; int c; for (c = 0; c < NUM_RTX_CODE; c++) if (d1->u.pred.data->codes[c] && d2->u.pred.data->codes[c]) { common = true; break; } if (!common) return 0; } } } /* Tests vs veclen may be known when strict equality is involved. */ if (d1->type == DT_veclen && d2->type == DT_veclen_ge) return d1->u.veclen >= d2->u.veclen; if (d1->type == DT_veclen_ge && d2->type == DT_veclen) return d2->u.veclen >= d1->u.veclen; return -1; } /* A subroutine of maybe_both_true; examines all the tests for a given node. Returns > 0 for "definitely both true" and < 0 for "maybe both true". */ static int maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2) { struct decision_test *t1, *t2; /* A match_operand with no predicate can match anything. Recognize this by the existence of a lone DT_accept_op test. */ if (d1->type == DT_accept_op || d2->type == DT_accept_op) return 1; /* Eliminate pairs of tests while they can exactly match. */ while (d1 && d2 && d1->type == d2->type) { if (maybe_both_true_2 (d1, d2) == 0) return 0; d1 = d1->next, d2 = d2->next; } /* After that, consider all pairs. */ for (t1 = d1; t1 ; t1 = t1->next) for (t2 = d2; t2 ; t2 = t2->next) if (maybe_both_true_2 (t1, t2) == 0) return 0; return -1; } /* Return 0 if we can prove that there is no RTL that can match both D1 and D2. Otherwise, return 1 (it may be that there is an RTL that can match both or just that we couldn't prove there wasn't such an RTL). TOPLEVEL is nonzero if we are to only look at the top level and not recursively descend. */ static int maybe_both_true (struct decision *d1, struct decision *d2, int toplevel) { struct decision *p1, *p2; int cmp; /* Don't compare strings on the different positions in insn. Doing so is incorrect and results in false matches from constructs like [(set (subreg:HI (match_operand:SI "register_operand" "r") 0) (subreg:HI (match_operand:SI "register_operand" "r") 0))] vs [(set (match_operand:HI "register_operand" "r") (match_operand:HI "register_operand" "r"))] If we are presented with such, we are recursing through the remainder of a node's success nodes (from the loop at the end of this function). Skip forward until we come to a position that matches. Due to the way positions are constructed, we know that iterating forward from the lexically lower position will run into the lexically higher position and not the other way around. This saves a bit of effort. */ cmp = compare_positions (d1->position, d2->position); if (cmp != 0) { gcc_assert (!toplevel); /* If the d2->position was lexically lower, swap. */ if (cmp > 0) p1 = d1, d1 = d2, d2 = p1; if (d1->success.first == 0) return 1; for (p1 = d1->success.first; p1; p1 = p1->next) if (maybe_both_true (p1, d2, 0)) return 1; return 0; } /* Test the current level. */ cmp = maybe_both_true_1 (d1->tests, d2->tests); if (cmp >= 0) return cmp; /* We can't prove that D1 and D2 cannot both be true. If we are only to check the top level, return 1. Otherwise, see if we can prove that all choices in both successors are mutually exclusive. If either does not have any successors, we can't prove they can't both be true. */ if (toplevel || d1->success.first == 0 || d2->success.first == 0) return 1; for (p1 = d1->success.first; p1; p1 = p1->next) for (p2 = d2->success.first; p2; p2 = p2->next) if (maybe_both_true (p1, p2, 0)) return 1; return 0; } /* A subroutine of nodes_identical. Examine two tests for equivalence. */ static int nodes_identical_1 (struct decision_test *d1, struct decision_test *d2) { switch (d1->type) { case DT_num_insns: return d1->u.num_insns == d2->u.num_insns; case DT_mode: return d1->u.mode == d2->u.mode; case DT_code: return d1->u.code == d2->u.code; case DT_pred: return (d1->u.pred.mode == d2->u.pred.mode && strcmp (d1->u.pred.name, d2->u.pred.name) == 0); case DT_c_test: return strcmp (d1->u.c_test, d2->u.c_test) == 0; case DT_veclen: case DT_veclen_ge: return d1->u.veclen == d2->u.veclen; case DT_dup: return d1->u.dup == d2->u.dup; case DT_elt_zero_int: case DT_elt_one_int: case DT_elt_zero_wide: case DT_elt_zero_wide_safe: return d1->u.intval == d2->u.intval; case DT_accept_op: return d1->u.opno == d2->u.opno; case DT_accept_insn: /* Differences will be handled in merge_accept_insn. */ return 1; default: gcc_unreachable (); } } /* True iff the two nodes are identical (on one level only). Due to the way these lists are constructed, we shouldn't have to consider different orderings on the tests. */ static int nodes_identical (struct decision *d1, struct decision *d2) { struct decision_test *t1, *t2; for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next) { if (t1->type != t2->type) return 0; if (! nodes_identical_1 (t1, t2)) return 0; } /* For success, they should now both be null. */ if (t1 != t2) return 0; /* Check that their subnodes are at the same position, as any one set of sibling decisions must be at the same position. Allowing this requires complications to find_afterward and when change_state is invoked. */ if (d1->success.first && d2->success.first && d1->success.first->position != d2->success.first->position) return 0; return 1; } /* A subroutine of merge_trees; given two nodes that have been declared identical, cope with two insn accept states. If they differ in the number of clobbers, then the conflict was created by make_insn_sequence and we can drop the with-clobbers version on the floor. If both nodes have no additional clobbers, we have found an ambiguity in the source machine description. */ static void merge_accept_insn (struct decision *oldd, struct decision *addd) { struct decision_test *old, *add; for (old = oldd->tests; old; old = old->next) if (old->type == DT_accept_insn) break; if (old == NULL) return; for (add = addd->tests; add; add = add->next) if (add->type == DT_accept_insn) break; if (add == NULL) return; /* If one node is for a normal insn and the second is for the base insn with clobbers stripped off, the second node should be ignored. */ if (old->u.insn.num_clobbers_to_add == 0 && add->u.insn.num_clobbers_to_add > 0) { /* Nothing to do here. */ } else if (old->u.insn.num_clobbers_to_add > 0 && add->u.insn.num_clobbers_to_add == 0) { /* In this case, replace OLD with ADD. */ old->u.insn = add->u.insn; } else { error_with_line (add->u.insn.lineno, "`%s' matches `%s'", get_insn_name (add->u.insn.code_number), get_insn_name (old->u.insn.code_number)); message_with_line (old->u.insn.lineno, "previous definition of `%s'", get_insn_name (old->u.insn.code_number)); } } /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */ static void merge_trees (struct decision_head *oldh, struct decision_head *addh) { struct decision *next, *add; if (addh->first == 0) return; if (oldh->first == 0) { *oldh = *addh; return; } /* Trying to merge bits at different positions isn't possible. */ gcc_assert (oldh->first->position == addh->first->position); for (add = addh->first; add ; add = next) { struct decision *old, *insert_before = NULL; next = add->next; /* The semantics of pattern matching state that the tests are done in the order given in the MD file so that if an insn matches two patterns, the first one will be used. However, in practice, most, if not all, patterns are unambiguous so that their order is independent. In that case, we can merge identical tests and group all similar modes and codes together. Scan starting from the end of OLDH until we reach a point where we reach the head of the list or where we pass a pattern that could also be true if NEW is true. If we find an identical pattern, we can merge them. Also, record the last node that tests the same code and mode and the last one that tests just the same mode. If we have no match, place NEW after the closest match we found. */ for (old = oldh->last; old; old = old->prev) { if (nodes_identical (old, add)) { merge_accept_insn (old, add); merge_trees (&old->success, &add->success); goto merged_nodes; } if (maybe_both_true (old, add, 0)) break; /* Insert the nodes in DT test type order, which is roughly how expensive/important the test is. Given that the tests are also ordered within the list, examining the first is sufficient. */ if ((int) add->tests->type < (int) old->tests->type) insert_before = old; } if (insert_before == NULL) { add->next = NULL; add->prev = oldh->last; oldh->last->next = add; oldh->last = add; } else { if ((add->prev = insert_before->prev) != NULL) add->prev->next = add; else oldh->first = add; add->next = insert_before; insert_before->prev = add; } merged_nodes:; } } /* Walk the tree looking for sub-nodes that perform common tests. Factor out the common test into a new node. This enables us (depending on the test type) to emit switch statements later. */ static void factor_tests (struct decision_head *head) { struct decision *first, *next; for (first = head->first; first && first->next; first = next) { enum decision_type type; struct decision *new_dec, *old_last; type = first->tests->type; next = first->next; /* Want at least two compatible sequential nodes. */ if (next->tests->type != type) continue; /* Don't want all node types, just those we can turn into switch statements. */ if (type != DT_mode && type != DT_code && type != DT_veclen && type != DT_elt_zero_int && type != DT_elt_one_int && type != DT_elt_zero_wide_safe) continue; /* If we'd been performing more than one test, create a new node below our first test. */ if (first->tests->next != NULL) { new_dec = new_decision (first->position, &first->success); new_dec->tests = first->tests->next; first->tests->next = NULL; } /* Crop the node tree off after our first test. */ first->next = NULL; old_last = head->last; head->last = first; /* For each compatible test, adjust to perform only one test in the top level node, then merge the node back into the tree. */ do { struct decision_head h; if (next->tests->next != NULL) { new_dec = new_decision (next->position, &next->success); new_dec->tests = next->tests->next; next->tests->next = NULL; } new_dec = next; next = next->next; new_dec->next = NULL; h.first = h.last = new_dec; merge_trees (head, &h); } while (next && next->tests->type == type); /* After we run out of compatible tests, graft the remaining nodes back onto the tree. */ if (next) { next->prev = head->last; head->last->next = next; head->last = old_last; } } /* Recurse. */ for (first = head->first; first; first = first->next) factor_tests (&first->success); } /* After factoring, try to simplify the tests on any one node. Tests that are useful for switch statements are recognizable by having only a single test on a node -- we'll be manipulating nodes with multiple tests: If we have mode tests or code tests that are redundant with predicates, remove them. */ static void simplify_tests (struct decision_head *head) { struct decision *tree; for (tree = head->first; tree; tree = tree->next) { struct decision_test *a, *b; a = tree->tests; b = a->next; if (b == NULL) continue; /* Find a predicate node. */ while (b && b->type != DT_pred) b = b->next; if (b) { /* Due to how these tests are constructed, we don't even need to check that the mode and code are compatible -- they were generated from the predicate in the first place. */ while (a->type == DT_mode || a->type == DT_code) a = a->next; tree->tests = a; } } /* Recurse. */ for (tree = head->first; tree; tree = tree->next) simplify_tests (&tree->success); } /* Count the number of subnodes of HEAD. If the number is high enough, make the first node in HEAD start a separate subroutine in the C code that is generated. */ static int break_out_subroutines (struct decision_head *head, int initial) { int size = 0; struct decision *sub; for (sub = head->first; sub; sub = sub->next) size += 1 + break_out_subroutines (&sub->success, 0); if (size > SUBROUTINE_THRESHOLD && ! initial) { head->first->subroutine_number = ++next_subroutine_number; size = 1; } return size; } /* For each node p, find the next alternative that might be true when p is true. */ static void find_afterward (struct decision_head *head, struct decision *real_afterward) { struct decision *p, *q, *afterward; /* We can't propagate alternatives across subroutine boundaries. This is not incorrect, merely a minor optimization loss. */ p = head->first; afterward = (p->subroutine_number > 0 ? NULL : real_afterward); for ( ; p ; p = p->next) { /* Find the next node that might be true if this one fails. */ for (q = p->next; q ; q = q->next) if (maybe_both_true (p, q, 1)) break; /* If we reached the end of the list without finding one, use the incoming afterward position. */ if (!q) q = afterward; p->afterward = q; if (q) q->need_label = 1; } /* Recurse. */ for (p = head->first; p ; p = p->next) if (p->success.first) find_afterward (&p->success, p->afterward); /* When we are generating a subroutine, record the real afterward position in the first node where write_tree can find it, and we can do the right thing at the subroutine call site. */ p = head->first; if (p->subroutine_number > 0) p->afterward = real_afterward; } /* Assuming that the state of argument is denoted by OLDPOS, take whatever actions are necessary to move to NEWPOS. If we fail to move to the new state, branch to node AFTERWARD if nonzero, otherwise return. Failure to move to the new state can only occur if we are trying to match multiple insns and we try to step past the end of the stream. */ static void change_state (struct position *oldpos, struct position *newpos, const char *indent) { while (oldpos->depth > newpos->depth) oldpos = oldpos->base; if (oldpos != newpos) switch (newpos->type) { case POS_PEEP2_INSN: printf ("%stem = peep2_next_insn (%d);\n", indent, newpos->arg); printf ("%sx%d = PATTERN (tem);\n", indent, newpos->depth); break; case POS_XEXP: change_state (oldpos, newpos->base, indent); printf ("%sx%d = XEXP (x%d, %d);\n", indent, newpos->depth, newpos->depth - 1, newpos->arg); break; case POS_XVECEXP0: change_state (oldpos, newpos->base, indent); printf ("%sx%d = XVECEXP (x%d, 0, %d);\n", indent, newpos->depth, newpos->depth - 1, newpos->arg); break; } } /* Print the enumerator constant for CODE -- the upcase version of the name. */ static void print_code (enum rtx_code code) { const char *p; for (p = GET_RTX_NAME (code); *p; p++) putchar (TOUPPER (*p)); } /* Emit code to cross an afterward link -- change state and branch. */ static void write_afterward (struct decision *start, struct decision *afterward, const char *indent) { if (!afterward || start->subroutine_number > 0) printf("%sgoto ret0;\n", indent); else { change_state (start->position, afterward->position, indent); printf ("%sgoto L%d;\n", indent, afterward->number); } } /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take special care to avoid "decimal constant is so large that it is unsigned" warnings in the resulting code. */ static void print_host_wide_int (HOST_WIDE_INT val) { HOST_WIDE_INT min = (unsigned HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1); if (val == min) printf ("(" HOST_WIDE_INT_PRINT_DEC_C "-1)", val + 1); else printf (HOST_WIDE_INT_PRINT_DEC_C, val); } /* Emit a switch statement, if possible, for an initial sequence of nodes at START. Return the first node yet untested. */ static struct decision * write_switch (struct decision *start, int depth) { struct decision *p = start; enum decision_type type = p->tests->type; struct decision *needs_label = NULL; /* If we have two or more nodes in sequence that test the same one thing, we may be able to use a switch statement. */ if (!p->next || p->tests->next || p->next->tests->type != type || p->next->tests->next || nodes_identical_1 (p->tests, p->next->tests)) return p; /* DT_code is special in that we can do interesting things with known predicates at the same time. */ if (type == DT_code) { char codemap[NUM_RTX_CODE]; struct decision *ret; RTX_CODE code; memset (codemap, 0, sizeof(codemap)); printf (" switch (GET_CODE (x%d))\n {\n", depth); code = p->tests->u.code; do { if (p != start && p->need_label && needs_label == NULL) needs_label = p; printf (" case "); print_code (code); printf (":\n goto L%d;\n", p->success.first->number); p->success.first->need_label = 1; codemap[code] = 1; p = p->next; } while (p && ! p->tests->next && p->tests->type == DT_code && ! codemap[code = p->tests->u.code]); /* If P is testing a predicate that we know about and we haven't seen any of the codes that are valid for the predicate, we can write a series of "case" statement, one for each possible code. Since we are already in a switch, these redundant tests are very cheap and will reduce the number of predicates called. */ /* Note that while we write out cases for these predicates here, we don't actually write the test here, as it gets kinda messy. It is trivial to leave this to later by telling our caller that we only processed the CODE tests. */ if (needs_label != NULL) ret = needs_label; else ret = p; while (p && p->tests->type == DT_pred && p->tests->u.pred.data) { const struct pred_data *data = p->tests->u.pred.data; int c; for (c = 0; c < NUM_RTX_CODE; c++) if (codemap[c] && data->codes[c]) goto pred_done; for (c = 0; c < NUM_RTX_CODE; c++) if (data->codes[c]) { fputs (" case ", stdout); print_code ((enum rtx_code) c); fputs (":\n", stdout); codemap[c] = 1; } printf (" goto L%d;\n", p->number); p->need_label = 1; p = p->next; } pred_done: /* Make the default case skip the predicates we managed to match. */ printf (" default:\n"); if (p != ret) { if (p) { printf (" goto L%d;\n", p->number); p->need_label = 1; } else write_afterward (start, start->afterward, " "); } else printf (" break;\n"); printf (" }\n"); return ret; } else if (type == DT_mode || type == DT_veclen || type == DT_elt_zero_int || type == DT_elt_one_int || type == DT_elt_zero_wide_safe) { const char *indent = ""; /* We cast switch parameter to integer, so we must ensure that the value fits. */ if (type == DT_elt_zero_wide_safe) { indent = " "; printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth); } printf ("%s switch (", indent); switch (type) { case DT_mode: printf ("GET_MODE (x%d)", depth); break; case DT_veclen: printf ("XVECLEN (x%d, 0)", depth); break; case DT_elt_zero_int: printf ("XINT (x%d, 0)", depth); break; case DT_elt_one_int: printf ("XINT (x%d, 1)", depth); break; case DT_elt_zero_wide_safe: /* Convert result of XWINT to int for portability since some C compilers won't do it and some will. */ printf ("(int) XWINT (x%d, 0)", depth); break; default: gcc_unreachable (); } printf (")\n%s {\n", indent); do { /* Merge trees will not unify identical nodes if their sub-nodes are at different levels. Thus we must check for duplicate cases. */ struct decision *q; for (q = start; q != p; q = q->next) if (nodes_identical_1 (p->tests, q->tests)) goto case_done; if (p != start && p->need_label && needs_label == NULL) needs_label = p; printf ("%s case ", indent); switch (type) { case DT_mode: printf ("%smode", GET_MODE_NAME (p->tests->u.mode)); break; case DT_veclen: printf ("%d", p->tests->u.veclen); break; case DT_elt_zero_int: case DT_elt_one_int: case DT_elt_zero_wide: case DT_elt_zero_wide_safe: print_host_wide_int (p->tests->u.intval); break; default: gcc_unreachable (); } printf (":\n%s goto L%d;\n", indent, p->success.first->number); p->success.first->need_label = 1; p = p->next; } while (p && p->tests->type == type && !p->tests->next); case_done: printf ("%s default:\n%s break;\n%s }\n", indent, indent, indent); return needs_label != NULL ? needs_label : p; } else { /* None of the other tests are amenable. */ return p; } } /* Emit code for one test. */ static void write_cond (struct decision_test *p, int depth, enum routine_type subroutine_type) { switch (p->type) { case DT_num_insns: printf ("peep2_current_count >= %d", p->u.num_insns); break; case DT_mode: printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode)); break; case DT_code: printf ("GET_CODE (x%d) == ", depth); print_code (p->u.code); break; case DT_veclen: printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen); break; case DT_elt_zero_int: printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval); break; case DT_elt_one_int: printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval); break; case DT_elt_zero_wide: case DT_elt_zero_wide_safe: printf ("XWINT (x%d, 0) == ", depth); print_host_wide_int (p->u.intval); break; case DT_const_int: printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]", depth, (int) p->u.intval); break; case DT_veclen_ge: printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen); break; case DT_dup: printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup); break; case DT_pred: printf ("%s (x%d, %smode)", p->u.pred.name, depth, GET_MODE_NAME (p->u.pred.mode)); break; case DT_c_test: print_c_condition (p->u.c_test); break; case DT_accept_insn: gcc_assert (subroutine_type == RECOG); gcc_assert (p->u.insn.num_clobbers_to_add); printf ("pnum_clobbers != NULL"); break; default: gcc_unreachable (); } } /* Emit code for one action. The previous tests have succeeded; TEST is the last of the chain. In the normal case we simply perform a state change. For the `accept' tests we must do more work. */ static void write_action (struct decision *p, struct decision_test *test, int depth, int uncond, struct decision *success, enum routine_type subroutine_type) { const char *indent; int want_close = 0; if (uncond) indent = " "; else if (test->type == DT_accept_op || test->type == DT_accept_insn) { fputs (" {\n", stdout); indent = " "; want_close = 1; } else indent = " "; if (test->type == DT_accept_op) { printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth); /* Only allow DT_accept_insn to follow. */ if (test->next) { test = test->next; gcc_assert (test->type == DT_accept_insn); } } /* Sanity check that we're now at the end of the list of tests. */ gcc_assert (!test->next); if (test->type == DT_accept_insn) { switch (subroutine_type) { case RECOG: if (test->u.insn.num_clobbers_to_add != 0) printf ("%s*pnum_clobbers = %d;\n", indent, test->u.insn.num_clobbers_to_add); printf ("%sreturn %d; /* %s */\n", indent, test->u.insn.code_number, get_insn_name (test->u.insn.code_number)); break; case SPLIT: printf ("%sreturn gen_split_%d (insn, operands);\n", indent, test->u.insn.code_number); break; case PEEPHOLE2: { int match_len = 0; struct position *pos; for (pos = p->position; pos; pos = pos->base) if (pos->type == POS_PEEP2_INSN) { match_len = pos->arg; break; } printf ("%s*_pmatch_len = %d;\n", indent, match_len); printf ("%stem = gen_peephole2_%d (insn, operands);\n", indent, test->u.insn.code_number); printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent); } break; default: gcc_unreachable (); } } else { printf("%sgoto L%d;\n", indent, success->number); success->need_label = 1; } if (want_close) fputs (" }\n", stdout); } /* Return 1 if the test is always true and has no fallthru path. Return -1 if the test does have a fallthru path, but requires that the condition be terminated. Otherwise return 0 for a normal test. */ /* ??? is_unconditional is a stupid name for a tri-state function. */ static int is_unconditional (struct decision_test *t, enum routine_type subroutine_type) { if (t->type == DT_accept_op) return 1; if (t->type == DT_accept_insn) { switch (subroutine_type) { case RECOG: return (t->u.insn.num_clobbers_to_add == 0); case SPLIT: return 1; case PEEPHOLE2: return -1; default: gcc_unreachable (); } } return 0; } /* Emit code for one node -- the conditional and the accompanying action. Return true if there is no fallthru path. */ static int write_node (struct decision *p, int depth, enum routine_type subroutine_type) { struct decision_test *test, *last_test; int uncond; /* Scan the tests and simplify comparisons against small constants. */ for (test = p->tests; test; test = test->next) { if (test->type == DT_code && test->u.code == CONST_INT && test->next && test->next->type == DT_elt_zero_wide_safe && -MAX_SAVED_CONST_INT <= test->next->u.intval && test->next->u.intval <= MAX_SAVED_CONST_INT) { test->type = DT_const_int; test->u.intval = test->next->u.intval; test->next = test->next->next; } } last_test = test = p->tests; uncond = is_unconditional (test, subroutine_type); if (uncond == 0) { printf (" if ("); write_cond (test, depth, subroutine_type); while ((test = test->next) != NULL) { last_test = test; if (is_unconditional (test, subroutine_type)) break; printf ("\n && "); write_cond (test, depth, subroutine_type); } printf (")\n"); } write_action (p, last_test, depth, uncond, p->success.first, subroutine_type); return uncond > 0; } /* Emit code for all of the sibling nodes of HEAD. */ static void write_tree_1 (struct decision_head *head, int depth, enum routine_type subroutine_type) { struct decision *p, *next; int uncond = 0; for (p = head->first; p ; p = next) { /* The label for the first element was printed in write_tree. */ if (p != head->first && p->need_label) OUTPUT_LABEL (" ", p->number); /* Attempt to write a switch statement for a whole sequence. */ next = write_switch (p, depth); if (p != next) uncond = 0; else { /* Failed -- fall back and write one node. */ uncond = write_node (p, depth, subroutine_type); next = p->next; } } /* Finished with this chain. Close a fallthru path by branching to the afterward node. */ if (! uncond) write_afterward (head->last, head->last->afterward, " "); } /* Write out the decision tree starting at HEAD. PREVPOS is the position at the node that branched to this node. */ static void write_tree (struct decision_head *head, struct position *prevpos, enum routine_type type, int initial) { struct decision *p = head->first; putchar ('\n'); if (p->need_label) OUTPUT_LABEL (" ", p->number); if (! initial && p->subroutine_number > 0) { static const char * const name_prefix[] = { "recog", "split", "peephole2" }; static const char * const call_suffix[] = { ", pnum_clobbers", "", ", _pmatch_len" }; /* This node has been broken out into a separate subroutine. Call it, test the result, and branch accordingly. */ if (p->afterward) { printf (" tem = %s_%d (x0, insn%s);\n", name_prefix[type], p->subroutine_number, call_suffix[type]); if (IS_SPLIT (type)) printf (" if (tem != 0)\n return tem;\n"); else printf (" if (tem >= 0)\n return tem;\n"); change_state (p->position, p->afterward->position, " "); printf (" goto L%d;\n", p->afterward->number); } else { printf (" return %s_%d (x0, insn%s);\n", name_prefix[type], p->subroutine_number, call_suffix[type]); } } else { change_state (prevpos, p->position, " "); write_tree_1 (head, p->position->depth, type); for (p = head->first; p; p = p->next) if (p->success.first) write_tree (&p->success, p->position, type, 0); } } /* Write out a subroutine of type TYPE to do comparisons starting at node TREE. */ static void write_subroutine (struct decision_head *head, enum routine_type type) { int subfunction = head->first ? head->first->subroutine_number : 0; const char *s_or_e; char extension[32]; int i; s_or_e = subfunction ? "static " : ""; if (subfunction) sprintf (extension, "_%d", subfunction); else if (type == RECOG) extension[0] = '\0'; else strcpy (extension, "_insns"); switch (type) { case RECOG: printf ("%sint\n\ recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension); break; case SPLIT: printf ("%srtx\n\ split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n", s_or_e, extension); break; case PEEPHOLE2: printf ("%srtx\n\ peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n", s_or_e, extension); break; } printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n"); for (i = 1; i <= max_depth; i++) printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i); printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int"); if (!subfunction) printf (" recog_data.insn = NULL_RTX;\n"); if (head->first) write_tree (head, &root_pos, type, 1); else printf (" goto ret0;\n"); printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1); } /* In break_out_subroutines, we discovered the boundaries for the subroutines, but did not write them out. Do so now. */ static void write_subroutines (struct decision_head *head, enum routine_type type) { struct decision *p; for (p = head->first; p ; p = p->next) if (p->success.first) write_subroutines (&p->success, type); if (head->first->subroutine_number > 0) write_subroutine (head, type); } /* Begin the output file. */ static void write_header (void) { puts ("\ /* Generated automatically by the program `genrecog' from the target\n\ machine description file. */\n\ \n\ #include \"config.h\"\n\ #include \"system.h\"\n\ #include \"coretypes.h\"\n\ #include \"tm.h\"\n\ #include \"rtl.h\"\n\ #include \"tm_p.h\"\n\ #include \"function.h\"\n\ #include \"insn-config.h\"\n\ #include \"recog.h\"\n\ #include \"output.h\"\n\ #include \"flags.h\"\n\ #include \"hard-reg-set.h\"\n\ #include \"resource.h\"\n\ #include \"diagnostic-core.h\"\n\ #include \"reload.h\"\n\ #include \"regs.h\"\n\ #include \"tm-constrs.h\"\n\ \n"); puts ("\n\ /* `recog' contains a decision tree that recognizes whether the rtx\n\ X0 is a valid instruction.\n\ \n\ recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\ returns a nonnegative number which is the insn code number for the\n\ pattern that matched. This is the same as the order in the machine\n\ description of the entry that matched. This number can be used as an\n\ index into `insn_data' and other tables.\n"); puts ("\ The third argument to recog is an optional pointer to an int. If\n\ present, recog will accept a pattern if it matches except for missing\n\ CLOBBER expressions at the end. In that case, the value pointed to by\n\ the optional pointer will be set to the number of CLOBBERs that need\n\ to be added (it should be initialized to zero by the caller). If it"); puts ("\ is set nonzero, the caller should allocate a PARALLEL of the\n\ appropriate size, copy the initial entries, and call add_clobbers\n\ (found in insn-emit.c) to fill in the CLOBBERs.\n\ "); puts ("\n\ The function split_insns returns 0 if the rtl could not\n\ be split or the split rtl as an INSN list if it can be.\n\ \n\ The function peephole2_insns returns 0 if the rtl could not\n\ be matched. If there was a match, the new rtl is returned in an INSN list,\n\ and LAST_INSN will point to the last recognized insn in the old sequence.\n\ */\n\n"); } /* Construct and return a sequence of decisions that will recognize INSN. TYPE says what type of routine we are recognizing (RECOG or SPLIT). */ static struct decision_head make_insn_sequence (rtx insn, enum routine_type type) { rtx x; const char *c_test = XSTR (insn, type == RECOG ? 2 : 1); int truth = maybe_eval_c_test (c_test); struct decision *last; struct decision_test *test, **place; struct decision_head head; struct position *c_test_pos, **pos_ptr; /* We should never see an insn whose C test is false at compile time. */ gcc_assert (truth); c_test_pos = &root_pos; if (type == PEEPHOLE2) { int i, j; /* peephole2 gets special treatment: - X always gets an outer parallel even if it's only one entry - we remove all traces of outer-level match_scratch and match_dup expressions here. */ x = rtx_alloc (PARALLEL); PUT_MODE (x, VOIDmode); XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0)); pos_ptr = &peep2_insn_pos_list; for (i = j = 0; i < XVECLEN (insn, 0); i++) { rtx tmp = XVECEXP (insn, 0, i); if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP) { c_test_pos = next_position (pos_ptr, &root_pos, POS_PEEP2_INSN, j); XVECEXP (x, 0, j) = tmp; j++; pos_ptr = &c_test_pos->next; } } XVECLEN (x, 0) = j; } else if (XVECLEN (insn, type == RECOG) == 1) x = XVECEXP (insn, type == RECOG, 0); else { x = rtx_alloc (PARALLEL); XVEC (x, 0) = XVEC (insn, type == RECOG); PUT_MODE (x, VOIDmode); } validate_pattern (x, insn, NULL_RTX, 0); memset(&head, 0, sizeof(head)); last = add_to_sequence (x, &head, &root_pos, type, 1); /* Find the end of the test chain on the last node. */ for (test = last->tests; test->next; test = test->next) continue; place = &test->next; /* Skip the C test if it's known to be true at compile time. */ if (truth == -1) { /* Need a new node if we have another test to add. */ if (test->type == DT_accept_op) { last = new_decision (c_test_pos, &last->success); place = &last->tests; } test = new_decision_test (DT_c_test, &place); test->u.c_test = c_test; } test = new_decision_test (DT_accept_insn, &place); test->u.insn.code_number = next_insn_code; test->u.insn.lineno = pattern_lineno; test->u.insn.num_clobbers_to_add = 0; switch (type) { case RECOG: /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes. If so, set up to recognize the pattern without these CLOBBERs. */ if (GET_CODE (x) == PARALLEL) { int i; /* Find the last non-clobber in the parallel. */ for (i = XVECLEN (x, 0); i > 0; i--) { rtx y = XVECEXP (x, 0, i - 1); if (GET_CODE (y) != CLOBBER || (!REG_P (XEXP (y, 0)) && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH)) break; } if (i != XVECLEN (x, 0)) { rtx new_rtx; struct decision_head clobber_head; /* Build a similar insn without the clobbers. */ if (i == 1) new_rtx = XVECEXP (x, 0, 0); else { int j; new_rtx = rtx_alloc (PARALLEL); XVEC (new_rtx, 0) = rtvec_alloc (i); for (j = i - 1; j >= 0; j--) XVECEXP (new_rtx, 0, j) = XVECEXP (x, 0, j); } /* Recognize it. */ memset (&clobber_head, 0, sizeof(clobber_head)); last = add_to_sequence (new_rtx, &clobber_head, &root_pos, type, 1); /* Find the end of the test chain on the last node. */ for (test = last->tests; test->next; test = test->next) continue; /* We definitely have a new test to add -- create a new node if needed. */ place = &test->next; if (test->type == DT_accept_op) { last = new_decision (&root_pos, &last->success); place = &last->tests; } /* Skip the C test if it's known to be true at compile time. */ if (truth == -1) { test = new_decision_test (DT_c_test, &place); test->u.c_test = c_test; } test = new_decision_test (DT_accept_insn, &place); test->u.insn.code_number = next_insn_code; test->u.insn.lineno = pattern_lineno; test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i; merge_trees (&head, &clobber_head); } } break; case SPLIT: /* Define the subroutine we will call below and emit in genemit. */ printf ("extern rtx gen_split_%d (rtx, rtx *);\n", next_insn_code); break; case PEEPHOLE2: /* Define the subroutine we will call below and emit in genemit. */ printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n", next_insn_code); break; } return head; } static void process_tree (struct decision_head *head, enum routine_type subroutine_type) { if (head->first == NULL) { /* We can elide peephole2_insns, but not recog or split_insns. */ if (subroutine_type == PEEPHOLE2) return; } else { factor_tests (head); next_subroutine_number = 0; break_out_subroutines (head, 1); find_afterward (head, NULL); /* We run this after find_afterward, because find_afterward needs the redundant DT_mode tests on predicates to determine whether two tests can both be true or not. */ simplify_tests(head); write_subroutines (head, subroutine_type); } write_subroutine (head, subroutine_type); } extern int main (int, char **); int main (int argc, char **argv) { rtx desc; struct decision_head recog_tree, split_tree, peephole2_tree, h; progname = "genrecog"; memset (&recog_tree, 0, sizeof recog_tree); memset (&split_tree, 0, sizeof split_tree); memset (&peephole2_tree, 0, sizeof peephole2_tree); if (!init_rtx_reader_args (argc, argv)) return (FATAL_EXIT_CODE); next_insn_code = 0; write_header (); /* Read the machine description. */ while (1) { desc = read_md_rtx (&pattern_lineno, &next_insn_code); if (desc == NULL) break; switch (GET_CODE (desc)) { case DEFINE_INSN: h = make_insn_sequence (desc, RECOG); merge_trees (&recog_tree, &h); break; case DEFINE_SPLIT: h = make_insn_sequence (desc, SPLIT); merge_trees (&split_tree, &h); break; case DEFINE_PEEPHOLE2: h = make_insn_sequence (desc, PEEPHOLE2); merge_trees (&peephole2_tree, &h); default: /* do nothing */; } } if (have_error) return FATAL_EXIT_CODE; puts ("\n\n"); process_tree (&recog_tree, RECOG); process_tree (&split_tree, SPLIT); process_tree (&peephole2_tree, PEEPHOLE2); fflush (stdout); return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE); } static void debug_decision_2 (struct decision_test *test) { switch (test->type) { case DT_num_insns: fprintf (stderr, "num_insns=%d", test->u.num_insns); break; case DT_mode: fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode)); break; case DT_code: fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code)); break; case DT_veclen: fprintf (stderr, "veclen=%d", test->u.veclen); break; case DT_elt_zero_int: fprintf (stderr, "elt0_i=%d", (int) test->u.intval); break; case DT_elt_one_int: fprintf (stderr, "elt1_i=%d", (int) test->u.intval); break; case DT_elt_zero_wide: fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval); break; case DT_elt_zero_wide_safe: fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval); break; case DT_veclen_ge: fprintf (stderr, "veclen>=%d", test->u.veclen); break; case DT_dup: fprintf (stderr, "dup=%d", test->u.dup); break; case DT_pred: fprintf (stderr, "pred=(%s,%s)", test->u.pred.name, GET_MODE_NAME(test->u.pred.mode)); break; case DT_c_test: { char sub[16+4]; strncpy (sub, test->u.c_test, sizeof(sub)); memcpy (sub+16, "...", 4); fprintf (stderr, "c_test=\"%s\"", sub); } break; case DT_accept_op: fprintf (stderr, "A_op=%d", test->u.opno); break; case DT_accept_insn: fprintf (stderr, "A_insn=(%d,%d)", test->u.insn.code_number, test->u.insn.num_clobbers_to_add); break; default: gcc_unreachable (); } } static void debug_decision_1 (struct decision *d, int indent) { int i; struct decision_test *test; if (d == NULL) { for (i = 0; i < indent; ++i) putc (' ', stderr); fputs ("(nil)\n", stderr); return; } for (i = 0; i < indent; ++i) putc (' ', stderr); putc ('{', stderr); test = d->tests; if (test) { debug_decision_2 (test); while ((test = test->next) != NULL) { fputs (" + ", stderr); debug_decision_2 (test); } } fprintf (stderr, "} %d n %d a %d\n", d->number, (d->next ? d->next->number : -1), (d->afterward ? d->afterward->number : -1)); } static void debug_decision_0 (struct decision *d, int indent, int maxdepth) { struct decision *n; int i; if (maxdepth < 0) return; if (d == NULL) { for (i = 0; i < indent; ++i) putc (' ', stderr); fputs ("(nil)\n", stderr); return; } debug_decision_1 (d, indent); for (n = d->success.first; n ; n = n->next) debug_decision_0 (n, indent + 2, maxdepth - 1); } DEBUG_FUNCTION void debug_decision (struct decision *d) { debug_decision_0 (d, 0, 1000000); } DEBUG_FUNCTION void debug_decision_list (struct decision *d) { while (d) { debug_decision_0 (d, 0, 0); d = d->next; } }
Go to most recent revision | Compare with Previous | Blame | View Log