URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [gensupport.c] - Rev 686
Go to most recent revision | Compare with Previous | Blame | View Log
/* Support routines for the various generation passes. Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "bconfig.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "obstack.h" #include "errors.h" #include "hashtab.h" #include "read-md.h" #include "gensupport.h" /* In case some macros used by files we include need it, define this here. */ int target_flags; int insn_elision = 1; static struct obstack obstack; struct obstack *rtl_obstack = &obstack; static int sequence_num; static int predicable_default; static const char *predicable_true; static const char *predicable_false; static htab_t condition_table; /* We initially queue all patterns, process the define_insn and define_cond_exec patterns, then return them one at a time. */ struct queue_elem { rtx data; const char *filename; int lineno; struct queue_elem *next; /* In a DEFINE_INSN that came from a DEFINE_INSN_AND_SPLIT, SPLIT points to the generated DEFINE_SPLIT. */ struct queue_elem *split; }; #define MNEMONIC_ATTR_NAME "mnemonic" #define MNEMONIC_HTAB_SIZE 1024 static struct queue_elem *define_attr_queue; static struct queue_elem **define_attr_tail = &define_attr_queue; static struct queue_elem *define_pred_queue; static struct queue_elem **define_pred_tail = &define_pred_queue; static struct queue_elem *define_insn_queue; static struct queue_elem **define_insn_tail = &define_insn_queue; static struct queue_elem *define_cond_exec_queue; static struct queue_elem **define_cond_exec_tail = &define_cond_exec_queue; static struct queue_elem *other_queue; static struct queue_elem **other_tail = &other_queue; static struct queue_elem *queue_pattern (rtx, struct queue_elem ***, const char *, int); static void remove_constraints (rtx); static void process_rtx (rtx, int); static int is_predicable (struct queue_elem *); static void identify_predicable_attribute (void); static int n_alternatives (const char *); static void collect_insn_data (rtx, int *, int *); static rtx alter_predicate_for_insn (rtx, int, int, int); static const char *alter_test_for_insn (struct queue_elem *, struct queue_elem *); static char *shift_output_template (char *, const char *, int); static const char *alter_output_for_insn (struct queue_elem *, struct queue_elem *, int, int); static void process_one_cond_exec (struct queue_elem *); static void process_define_cond_exec (void); static void init_predicate_table (void); static void record_insn_name (int, const char *); /* Make a version of gen_rtx_CONST_INT so that GEN_INT can be used in the gensupport programs. */ rtx gen_rtx_CONST_INT (enum machine_mode ARG_UNUSED (mode), HOST_WIDE_INT arg) { rtx rt = rtx_alloc (CONST_INT); XWINT (rt, 0) = arg; return rt; } /* Predicate handling. We construct from the machine description a table mapping each predicate to a list of the rtl codes it can possibly match. The function 'maybe_both_true' uses it to deduce that there are no expressions that can be matches by certain pairs of tree nodes. Also, if a predicate can match only one code, we can hardwire that code into the node testing the predicate. Some predicates are flagged as special. validate_pattern will not warn about modeless match_operand expressions if they have a special predicate. Predicates that allow only constants are also treated as special, for this purpose. validate_pattern will warn about predicates that allow non-lvalues when they appear in destination operands. Calculating the set of rtx codes that can possibly be accepted by a predicate expression EXP requires a three-state logic: any given subexpression may definitively accept a code C (Y), definitively reject a code C (N), or may have an indeterminate effect (I). N and I is N; Y or I is Y; Y and I, N or I are both I. Here are full truth tables. a b a&b a|b Y Y Y Y N Y N Y N N N N I Y I Y I N N I I I I I We represent Y with 1, N with 0, I with 2. If any code is left in an I state by the complete expression, we must assume that that code can be accepted. */ #define N 0 #define Y 1 #define I 2 #define TRISTATE_AND(a,b) \ ((a) == I ? ((b) == N ? N : I) : \ (b) == I ? ((a) == N ? N : I) : \ (a) && (b)) #define TRISTATE_OR(a,b) \ ((a) == I ? ((b) == Y ? Y : I) : \ (b) == I ? ((a) == Y ? Y : I) : \ (a) || (b)) #define TRISTATE_NOT(a) \ ((a) == I ? I : !(a)) /* 0 means no warning about that code yet, 1 means warned. */ static char did_you_mean_codes[NUM_RTX_CODE]; /* Recursively calculate the set of rtx codes accepted by the predicate expression EXP, writing the result to CODES. LINENO is the line number on which the directive containing EXP appeared. */ static void compute_predicate_codes (rtx exp, int lineno, char codes[NUM_RTX_CODE]) { char op0_codes[NUM_RTX_CODE]; char op1_codes[NUM_RTX_CODE]; char op2_codes[NUM_RTX_CODE]; int i; switch (GET_CODE (exp)) { case AND: compute_predicate_codes (XEXP (exp, 0), lineno, op0_codes); compute_predicate_codes (XEXP (exp, 1), lineno, op1_codes); for (i = 0; i < NUM_RTX_CODE; i++) codes[i] = TRISTATE_AND (op0_codes[i], op1_codes[i]); break; case IOR: compute_predicate_codes (XEXP (exp, 0), lineno, op0_codes); compute_predicate_codes (XEXP (exp, 1), lineno, op1_codes); for (i = 0; i < NUM_RTX_CODE; i++) codes[i] = TRISTATE_OR (op0_codes[i], op1_codes[i]); break; case NOT: compute_predicate_codes (XEXP (exp, 0), lineno, op0_codes); for (i = 0; i < NUM_RTX_CODE; i++) codes[i] = TRISTATE_NOT (op0_codes[i]); break; case IF_THEN_ELSE: /* a ? b : c accepts the same codes as (a & b) | (!a & c). */ compute_predicate_codes (XEXP (exp, 0), lineno, op0_codes); compute_predicate_codes (XEXP (exp, 1), lineno, op1_codes); compute_predicate_codes (XEXP (exp, 2), lineno, op2_codes); for (i = 0; i < NUM_RTX_CODE; i++) codes[i] = TRISTATE_OR (TRISTATE_AND (op0_codes[i], op1_codes[i]), TRISTATE_AND (TRISTATE_NOT (op0_codes[i]), op2_codes[i])); break; case MATCH_CODE: /* MATCH_CODE allows a specified list of codes. However, if it does not apply to the top level of the expression, it does not constrain the set of codes for the top level. */ if (XSTR (exp, 1)[0] != '\0') { memset (codes, Y, NUM_RTX_CODE); break; } memset (codes, N, NUM_RTX_CODE); { const char *next_code = XSTR (exp, 0); const char *code; if (*next_code == '\0') { error_with_line (lineno, "empty match_code expression"); break; } while ((code = scan_comma_elt (&next_code)) != 0) { size_t n = next_code - code; int found_it = 0; for (i = 0; i < NUM_RTX_CODE; i++) if (!strncmp (code, GET_RTX_NAME (i), n) && GET_RTX_NAME (i)[n] == '\0') { codes[i] = Y; found_it = 1; break; } if (!found_it) { error_with_line (lineno, "match_code \"%.*s\" matches nothing", (int) n, code); for (i = 0; i < NUM_RTX_CODE; i++) if (!strncasecmp (code, GET_RTX_NAME (i), n) && GET_RTX_NAME (i)[n] == '\0' && !did_you_mean_codes[i]) { did_you_mean_codes[i] = 1; message_with_line (lineno, "(did you mean \"%s\"?)", GET_RTX_NAME (i)); } } } } break; case MATCH_OPERAND: /* MATCH_OPERAND disallows the set of codes that the named predicate disallows, and is indeterminate for the codes that it does allow. */ { struct pred_data *p = lookup_predicate (XSTR (exp, 1)); if (!p) { error_with_line (lineno, "reference to unknown predicate '%s'", XSTR (exp, 1)); break; } for (i = 0; i < NUM_RTX_CODE; i++) codes[i] = p->codes[i] ? I : N; } break; case MATCH_TEST: /* (match_test WHATEVER) is completely indeterminate. */ memset (codes, I, NUM_RTX_CODE); break; default: error_with_line (lineno, "'%s' cannot be used in a define_predicate expression", GET_RTX_NAME (GET_CODE (exp))); memset (codes, I, NUM_RTX_CODE); break; } } #undef TRISTATE_OR #undef TRISTATE_AND #undef TRISTATE_NOT /* Return true if NAME is a valid predicate name. */ static bool valid_predicate_name_p (const char *name) { const char *p; if (!ISALPHA (name[0]) && name[0] != '_') return false; for (p = name + 1; *p; p++) if (!ISALNUM (*p) && *p != '_') return false; return true; } /* Process define_predicate directive DESC, which appears on line number LINENO. Compute the set of codes that can be matched, and record this as a known predicate. */ static void process_define_predicate (rtx desc, int lineno) { struct pred_data *pred; char codes[NUM_RTX_CODE]; int i; if (!valid_predicate_name_p (XSTR (desc, 0))) { error_with_line (lineno, "%s: predicate name must be a valid C function name", XSTR (desc, 0)); return; } pred = XCNEW (struct pred_data); pred->name = XSTR (desc, 0); pred->exp = XEXP (desc, 1); pred->c_block = XSTR (desc, 2); if (GET_CODE (desc) == DEFINE_SPECIAL_PREDICATE) pred->special = true; compute_predicate_codes (XEXP (desc, 1), lineno, codes); for (i = 0; i < NUM_RTX_CODE; i++) if (codes[i] != N) add_predicate_code (pred, (enum rtx_code) i); add_predicate (pred); } #undef I #undef N #undef Y /* Queue PATTERN on LIST_TAIL. Return the address of the new queue element. */ static struct queue_elem * queue_pattern (rtx pattern, struct queue_elem ***list_tail, const char *filename, int lineno) { struct queue_elem *e = XNEW(struct queue_elem); e->data = pattern; e->filename = filename; e->lineno = lineno; e->next = NULL; e->split = NULL; **list_tail = e; *list_tail = &e->next; return e; } /* Build a define_attr for an binary attribute with name NAME and possible values "yes" and "no", and queue it. */ static void add_define_attr (const char *name) { struct queue_elem *e = XNEW(struct queue_elem); rtx t1 = rtx_alloc (DEFINE_ATTR); XSTR (t1, 0) = name; XSTR (t1, 1) = "no,yes"; XEXP (t1, 2) = rtx_alloc (CONST_STRING); XSTR (XEXP (t1, 2), 0) = "yes"; e->data = t1; e->filename = "built-in"; e->lineno = -1; e->next = define_attr_queue; define_attr_queue = e; } /* Recursively remove constraints from an rtx. */ static void remove_constraints (rtx part) { int i, j; const char *format_ptr; if (part == 0) return; if (GET_CODE (part) == MATCH_OPERAND) XSTR (part, 2) = ""; else if (GET_CODE (part) == MATCH_SCRATCH) XSTR (part, 1) = ""; format_ptr = GET_RTX_FORMAT (GET_CODE (part)); for (i = 0; i < GET_RTX_LENGTH (GET_CODE (part)); i++) switch (*format_ptr++) { case 'e': case 'u': remove_constraints (XEXP (part, i)); break; case 'E': if (XVEC (part, i) != NULL) for (j = 0; j < XVECLEN (part, i); j++) remove_constraints (XVECEXP (part, i, j)); break; } } /* Process a top level rtx in some way, queuing as appropriate. */ static void process_rtx (rtx desc, int lineno) { switch (GET_CODE (desc)) { case DEFINE_INSN: queue_pattern (desc, &define_insn_tail, read_md_filename, lineno); break; case DEFINE_COND_EXEC: queue_pattern (desc, &define_cond_exec_tail, read_md_filename, lineno); break; case DEFINE_ATTR: case DEFINE_ENUM_ATTR: queue_pattern (desc, &define_attr_tail, read_md_filename, lineno); break; case DEFINE_PREDICATE: case DEFINE_SPECIAL_PREDICATE: process_define_predicate (desc, lineno); /* Fall through. */ case DEFINE_CONSTRAINT: case DEFINE_REGISTER_CONSTRAINT: case DEFINE_MEMORY_CONSTRAINT: case DEFINE_ADDRESS_CONSTRAINT: queue_pattern (desc, &define_pred_tail, read_md_filename, lineno); break; case DEFINE_INSN_AND_SPLIT: { const char *split_cond; rtx split; rtvec attr; int i; struct queue_elem *insn_elem; struct queue_elem *split_elem; /* Create a split with values from the insn_and_split. */ split = rtx_alloc (DEFINE_SPLIT); i = XVECLEN (desc, 1); XVEC (split, 0) = rtvec_alloc (i); while (--i >= 0) { XVECEXP (split, 0, i) = copy_rtx (XVECEXP (desc, 1, i)); remove_constraints (XVECEXP (split, 0, i)); } /* If the split condition starts with "&&", append it to the insn condition to create the new split condition. */ split_cond = XSTR (desc, 4); if (split_cond[0] == '&' && split_cond[1] == '&') { copy_md_ptr_loc (split_cond + 2, split_cond); split_cond = join_c_conditions (XSTR (desc, 2), split_cond + 2); } XSTR (split, 1) = split_cond; XVEC (split, 2) = XVEC (desc, 5); XSTR (split, 3) = XSTR (desc, 6); /* Fix up the DEFINE_INSN. */ attr = XVEC (desc, 7); PUT_CODE (desc, DEFINE_INSN); XVEC (desc, 4) = attr; /* Queue them. */ insn_elem = queue_pattern (desc, &define_insn_tail, read_md_filename, lineno); split_elem = queue_pattern (split, &other_tail, read_md_filename, lineno); insn_elem->split = split_elem; break; } default: queue_pattern (desc, &other_tail, read_md_filename, lineno); break; } } /* Return true if attribute PREDICABLE is true for ELEM, which holds a DEFINE_INSN. */ static int is_predicable (struct queue_elem *elem) { rtvec vec = XVEC (elem->data, 4); const char *value; int i; if (! vec) return predicable_default; for (i = GET_NUM_ELEM (vec) - 1; i >= 0; --i) { rtx sub = RTVEC_ELT (vec, i); switch (GET_CODE (sub)) { case SET_ATTR: if (strcmp (XSTR (sub, 0), "predicable") == 0) { value = XSTR (sub, 1); goto found; } break; case SET_ATTR_ALTERNATIVE: if (strcmp (XSTR (sub, 0), "predicable") == 0) { error_with_line (elem->lineno, "multiple alternatives for `predicable'"); return 0; } break; case SET: if (GET_CODE (SET_DEST (sub)) != ATTR || strcmp (XSTR (SET_DEST (sub), 0), "predicable") != 0) break; sub = SET_SRC (sub); if (GET_CODE (sub) == CONST_STRING) { value = XSTR (sub, 0); goto found; } /* ??? It would be possible to handle this if we really tried. It's not easy though, and I'm not going to bother until it really proves necessary. */ error_with_line (elem->lineno, "non-constant value for `predicable'"); return 0; default: gcc_unreachable (); } } return predicable_default; found: /* Find out which value we're looking at. Multiple alternatives means at least one is predicable. */ if (strchr (value, ',') != NULL) return 1; if (strcmp (value, predicable_true) == 0) return 1; if (strcmp (value, predicable_false) == 0) return 0; error_with_line (elem->lineno, "unknown value `%s' for `predicable' attribute", value); return 0; } /* Examine the attribute "predicable"; discover its boolean values and its default. */ static void identify_predicable_attribute (void) { struct queue_elem *elem; char *p_true, *p_false; const char *value; /* Look for the DEFINE_ATTR for `predicable', which must exist. */ for (elem = define_attr_queue; elem ; elem = elem->next) if (strcmp (XSTR (elem->data, 0), "predicable") == 0) goto found; error_with_line (define_cond_exec_queue->lineno, "attribute `predicable' not defined"); return; found: value = XSTR (elem->data, 1); p_false = xstrdup (value); p_true = strchr (p_false, ','); if (p_true == NULL || strchr (++p_true, ',') != NULL) { error_with_line (elem->lineno, "attribute `predicable' is not a boolean"); free (p_false); return; } p_true[-1] = '\0'; predicable_true = p_true; predicable_false = p_false; switch (GET_CODE (XEXP (elem->data, 2))) { case CONST_STRING: value = XSTR (XEXP (elem->data, 2), 0); break; case CONST: error_with_line (elem->lineno, "attribute `predicable' cannot be const"); free (p_false); return; default: error_with_line (elem->lineno, "attribute `predicable' must have a constant default"); free (p_false); return; } if (strcmp (value, p_true) == 0) predicable_default = 1; else if (strcmp (value, p_false) == 0) predicable_default = 0; else { error_with_line (elem->lineno, "unknown value `%s' for `predicable' attribute", value); free (p_false); } } /* Return the number of alternatives in constraint S. */ static int n_alternatives (const char *s) { int n = 1; if (s) while (*s) n += (*s++ == ','); return n; } /* Determine how many alternatives there are in INSN, and how many operands. */ static void collect_insn_data (rtx pattern, int *palt, int *pmax) { const char *fmt; enum rtx_code code; int i, j, len; code = GET_CODE (pattern); switch (code) { case MATCH_OPERAND: i = n_alternatives (XSTR (pattern, 2)); *palt = (i > *palt ? i : *palt); /* Fall through. */ case MATCH_OPERATOR: case MATCH_SCRATCH: case MATCH_PARALLEL: i = XINT (pattern, 0); if (i > *pmax) *pmax = i; break; default: break; } fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); for (i = 0; i < len; i++) { switch (fmt[i]) { case 'e': case 'u': collect_insn_data (XEXP (pattern, i), palt, pmax); break; case 'V': if (XVEC (pattern, i) == NULL) break; /* Fall through. */ case 'E': for (j = XVECLEN (pattern, i) - 1; j >= 0; --j) collect_insn_data (XVECEXP (pattern, i, j), palt, pmax); break; case 'i': case 'w': case '0': case 's': case 'S': case 'T': break; default: gcc_unreachable (); } } } static rtx alter_predicate_for_insn (rtx pattern, int alt, int max_op, int lineno) { const char *fmt; enum rtx_code code; int i, j, len; code = GET_CODE (pattern); switch (code) { case MATCH_OPERAND: { const char *c = XSTR (pattern, 2); if (n_alternatives (c) != 1) { error_with_line (lineno, "too many alternatives for operand %d", XINT (pattern, 0)); return NULL; } /* Replicate C as needed to fill out ALT alternatives. */ if (c && *c && alt > 1) { size_t c_len = strlen (c); size_t len = alt * (c_len + 1); char *new_c = XNEWVEC(char, len); memcpy (new_c, c, c_len); for (i = 1; i < alt; ++i) { new_c[i * (c_len + 1) - 1] = ','; memcpy (&new_c[i * (c_len + 1)], c, c_len); } new_c[len - 1] = '\0'; XSTR (pattern, 2) = new_c; } } /* Fall through. */ case MATCH_OPERATOR: case MATCH_SCRATCH: case MATCH_PARALLEL: XINT (pattern, 0) += max_op; break; default: break; } fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); for (i = 0; i < len; i++) { rtx r; switch (fmt[i]) { case 'e': case 'u': r = alter_predicate_for_insn (XEXP (pattern, i), alt, max_op, lineno); if (r == NULL) return r; break; case 'E': for (j = XVECLEN (pattern, i) - 1; j >= 0; --j) { r = alter_predicate_for_insn (XVECEXP (pattern, i, j), alt, max_op, lineno); if (r == NULL) return r; } break; case 'i': case 'w': case '0': case 's': break; default: gcc_unreachable (); } } return pattern; } static const char * alter_test_for_insn (struct queue_elem *ce_elem, struct queue_elem *insn_elem) { return join_c_conditions (XSTR (ce_elem->data, 1), XSTR (insn_elem->data, 2)); } /* Modify VAL, which is an attribute expression for the "enabled" attribute, to take "ce_enabled" into account. Return the new expression. */ static rtx modify_attr_enabled_ce (rtx val) { rtx eq_attr, str; rtx ite; eq_attr = rtx_alloc (EQ_ATTR); ite = rtx_alloc (IF_THEN_ELSE); str = rtx_alloc (CONST_STRING); XSTR (eq_attr, 0) = "ce_enabled"; XSTR (eq_attr, 1) = "yes"; XSTR (str, 0) = "no"; XEXP (ite, 0) = eq_attr; XEXP (ite, 1) = val; XEXP (ite, 2) = str; return ite; } /* Alter the attribute vector of INSN, which is a COND_EXEC variant created from a define_insn pattern. We must modify the "predicable" attribute to be named "ce_enabled", and also change any "enabled" attribute that's present so that it takes ce_enabled into account. We rely on the fact that INSN was created with copy_rtx, and modify data in-place. */ static void alter_attrs_for_insn (rtx insn) { static bool global_changes_made = false; rtvec vec = XVEC (insn, 4); rtvec new_vec; rtx val, set; int num_elem; int predicable_idx = -1; int enabled_idx = -1; int i; if (! vec) return; num_elem = GET_NUM_ELEM (vec); for (i = num_elem - 1; i >= 0; --i) { rtx sub = RTVEC_ELT (vec, i); switch (GET_CODE (sub)) { case SET_ATTR: if (strcmp (XSTR (sub, 0), "predicable") == 0) { predicable_idx = i; XSTR (sub, 0) = "ce_enabled"; } else if (strcmp (XSTR (sub, 0), "enabled") == 0) { enabled_idx = i; XSTR (sub, 0) = "nonce_enabled"; } break; case SET_ATTR_ALTERNATIVE: if (strcmp (XSTR (sub, 0), "predicable") == 0) /* We already give an error elsewhere. */ return; else if (strcmp (XSTR (sub, 0), "enabled") == 0) { enabled_idx = i; XSTR (sub, 0) = "nonce_enabled"; } break; case SET: if (GET_CODE (SET_DEST (sub)) != ATTR) break; if (strcmp (XSTR (SET_DEST (sub), 0), "predicable") == 0) { sub = SET_SRC (sub); if (GET_CODE (sub) == CONST_STRING) { predicable_idx = i; XSTR (sub, 0) = "ce_enabled"; } else /* We already give an error elsewhere. */ return; break; } if (strcmp (XSTR (SET_DEST (sub), 0), "enabled") == 0) { enabled_idx = i; XSTR (SET_DEST (sub), 0) = "nonce_enabled"; } break; default: gcc_unreachable (); } } if (predicable_idx == -1) return; if (!global_changes_made) { struct queue_elem *elem; global_changes_made = true; add_define_attr ("ce_enabled"); add_define_attr ("nonce_enabled"); for (elem = define_attr_queue; elem ; elem = elem->next) if (strcmp (XSTR (elem->data, 0), "enabled") == 0) { XEXP (elem->data, 2) = modify_attr_enabled_ce (XEXP (elem->data, 2)); } } if (enabled_idx == -1) return; new_vec = rtvec_alloc (num_elem + 1); for (i = 0; i < num_elem; i++) RTVEC_ELT (new_vec, i) = RTVEC_ELT (vec, i); val = rtx_alloc (IF_THEN_ELSE); XEXP (val, 0) = rtx_alloc (EQ_ATTR); XEXP (val, 1) = rtx_alloc (CONST_STRING); XEXP (val, 2) = rtx_alloc (CONST_STRING); XSTR (XEXP (val, 0), 0) = "nonce_enabled"; XSTR (XEXP (val, 0), 1) = "yes"; XSTR (XEXP (val, 1), 0) = "yes"; XSTR (XEXP (val, 2), 0) = "no"; set = rtx_alloc (SET); SET_DEST (set) = rtx_alloc (ATTR); XSTR (SET_DEST (set), 0) = "enabled"; SET_SRC (set) = modify_attr_enabled_ce (val); RTVEC_ELT (new_vec, i) = set; XVEC (insn, 4) = new_vec; } /* Adjust all of the operand numbers in SRC to match the shift they'll get from an operand displacement of DISP. Return a pointer after the adjusted string. */ static char * shift_output_template (char *dest, const char *src, int disp) { while (*src) { char c = *src++; *dest++ = c; if (c == '%') { c = *src++; if (ISDIGIT ((unsigned char) c)) c += disp; else if (ISALPHA (c)) { *dest++ = c; c = *src++ + disp; } *dest++ = c; } } return dest; } static const char * alter_output_for_insn (struct queue_elem *ce_elem, struct queue_elem *insn_elem, int alt, int max_op) { const char *ce_out, *insn_out; char *result, *p; size_t len, ce_len, insn_len; /* ??? Could coordinate with genoutput to not duplicate code here. */ ce_out = XSTR (ce_elem->data, 2); insn_out = XTMPL (insn_elem->data, 3); if (!ce_out || *ce_out == '\0') return insn_out; ce_len = strlen (ce_out); insn_len = strlen (insn_out); if (*insn_out == '*') /* You must take care of the predicate yourself. */ return insn_out; if (*insn_out == '@') { len = (ce_len + 1) * alt + insn_len + 1; p = result = XNEWVEC(char, len); do { do *p++ = *insn_out++; while (ISSPACE ((unsigned char) *insn_out)); if (*insn_out != '#') { p = shift_output_template (p, ce_out, max_op); *p++ = ' '; } do *p++ = *insn_out++; while (*insn_out && *insn_out != '\n'); } while (*insn_out); *p = '\0'; } else { len = ce_len + 1 + insn_len + 1; result = XNEWVEC (char, len); p = shift_output_template (result, ce_out, max_op); *p++ = ' '; memcpy (p, insn_out, insn_len + 1); } return result; } /* Replicate insns as appropriate for the given DEFINE_COND_EXEC. */ static void process_one_cond_exec (struct queue_elem *ce_elem) { struct queue_elem *insn_elem; for (insn_elem = define_insn_queue; insn_elem ; insn_elem = insn_elem->next) { int alternatives, max_operand; rtx pred, insn, pattern, split; char *new_name; int i; if (! is_predicable (insn_elem)) continue; alternatives = 1; max_operand = -1; collect_insn_data (insn_elem->data, &alternatives, &max_operand); max_operand += 1; if (XVECLEN (ce_elem->data, 0) != 1) { error_with_line (ce_elem->lineno, "too many patterns in predicate"); return; } pred = copy_rtx (XVECEXP (ce_elem->data, 0, 0)); pred = alter_predicate_for_insn (pred, alternatives, max_operand, ce_elem->lineno); if (pred == NULL) return; /* Construct a new pattern for the new insn. */ insn = copy_rtx (insn_elem->data); new_name = XNEWVAR (char, strlen XSTR (insn_elem->data, 0) + 4); sprintf (new_name, "*p %s", XSTR (insn_elem->data, 0)); XSTR (insn, 0) = new_name; pattern = rtx_alloc (COND_EXEC); XEXP (pattern, 0) = pred; if (XVECLEN (insn, 1) == 1) { XEXP (pattern, 1) = XVECEXP (insn, 1, 0); XVECEXP (insn, 1, 0) = pattern; PUT_NUM_ELEM (XVEC (insn, 1), 1); } else { XEXP (pattern, 1) = rtx_alloc (PARALLEL); XVEC (XEXP (pattern, 1), 0) = XVEC (insn, 1); XVEC (insn, 1) = rtvec_alloc (1); XVECEXP (insn, 1, 0) = pattern; } XSTR (insn, 2) = alter_test_for_insn (ce_elem, insn_elem); XTMPL (insn, 3) = alter_output_for_insn (ce_elem, insn_elem, alternatives, max_operand); alter_attrs_for_insn (insn); /* Put the new pattern on the `other' list so that it (a) is not reprocessed by other define_cond_exec patterns (b) appears after all normal define_insn patterns. ??? B is debatable. If one has normal insns that match cond_exec patterns, they will be preferred over these generated patterns. Whether this matters in practice, or if it's a good thing, or whether we should thread these new patterns into the define_insn chain just after their generator is something we'll have to experiment with. */ queue_pattern (insn, &other_tail, insn_elem->filename, insn_elem->lineno); if (!insn_elem->split) continue; /* If the original insn came from a define_insn_and_split, generate a new split to handle the predicated insn. */ split = copy_rtx (insn_elem->split->data); /* Predicate the pattern matched by the split. */ pattern = rtx_alloc (COND_EXEC); XEXP (pattern, 0) = pred; if (XVECLEN (split, 0) == 1) { XEXP (pattern, 1) = XVECEXP (split, 0, 0); XVECEXP (split, 0, 0) = pattern; PUT_NUM_ELEM (XVEC (split, 0), 1); } else { XEXP (pattern, 1) = rtx_alloc (PARALLEL); XVEC (XEXP (pattern, 1), 0) = XVEC (split, 0); XVEC (split, 0) = rtvec_alloc (1); XVECEXP (split, 0, 0) = pattern; } /* Predicate all of the insns generated by the split. */ for (i = 0; i < XVECLEN (split, 2); i++) { pattern = rtx_alloc (COND_EXEC); XEXP (pattern, 0) = pred; XEXP (pattern, 1) = XVECEXP (split, 2, i); XVECEXP (split, 2, i) = pattern; } /* Add the new split to the queue. */ queue_pattern (split, &other_tail, read_md_filename, insn_elem->split->lineno); } } /* If we have any DEFINE_COND_EXEC patterns, expand the DEFINE_INSN patterns appropriately. */ static void process_define_cond_exec (void) { struct queue_elem *elem; identify_predicable_attribute (); if (have_error) return; for (elem = define_cond_exec_queue; elem ; elem = elem->next) process_one_cond_exec (elem); } /* A read_md_files callback for reading an rtx. */ static void rtx_handle_directive (int lineno, const char *rtx_name) { rtx queue, x; if (read_rtx (rtx_name, &queue)) for (x = queue; x; x = XEXP (x, 1)) process_rtx (XEXP (x, 0), lineno); } /* Comparison function for the mnemonic hash table. */ static int htab_eq_string (const void *s1, const void *s2) { return strcmp ((const char*)s1, (const char*)s2) == 0; } /* Add mnemonic STR with length LEN to the mnemonic hash table MNEMONIC_HTAB. A trailing zero end character is appendend to STR and a permanent heap copy of STR is created. */ static void add_mnemonic_string (htab_t mnemonic_htab, const char *str, int len) { char *new_str; void **slot; char *str_zero = (char*)alloca (len + 1); memcpy (str_zero, str, len); str_zero[len] = '\0'; slot = htab_find_slot (mnemonic_htab, str_zero, INSERT); if (*slot) return; /* Not found; create a permanent copy and add it to the hash table. */ new_str = XNEWVAR (char, len + 1); memcpy (new_str, str_zero, len + 1); *slot = new_str; } /* Scan INSN for mnemonic strings and add them to the mnemonic hash table in MNEMONIC_HTAB. The mnemonics cannot be found if they are emitted using C code. If a mnemonic string contains ';' or a newline the string assumed to consist of more than a single instruction. The attribute value will then be set to the user defined default value. */ static void gen_mnemonic_setattr (htab_t mnemonic_htab, rtx insn) { const char *template_code, *cp; int i; int vec_len; rtx set_attr; char *attr_name; rtvec new_vec; template_code = XTMPL (insn, 3); /* Skip patterns which use C code to emit the template. */ if (template_code[0] == '*') return; if (template_code[0] == '@') cp = &template_code[1]; else cp = &template_code[0]; for (i = 0; *cp; ) { const char *ep, *sp; int size = 0; while (ISSPACE (*cp)) cp++; for (ep = sp = cp; !IS_VSPACE (*ep) && *ep != '\0'; ++ep) if (!ISSPACE (*ep)) sp = ep + 1; if (i > 0) obstack_1grow (&string_obstack, ','); while (cp < sp && ((*cp >= '0' && *cp <= '9') || (*cp >= 'a' && *cp <= 'z'))) { obstack_1grow (&string_obstack, *cp); cp++; size++; } while (cp < sp) { if (*cp == ';' || (*cp == '\\' && cp[1] == 'n')) { /* Don't set a value if there are more than one instruction in the string. */ obstack_next_free (&string_obstack) = obstack_next_free (&string_obstack) - size; size = 0; cp = sp; break; } cp++; } if (size == 0) obstack_1grow (&string_obstack, '*'); else add_mnemonic_string (mnemonic_htab, obstack_next_free (&string_obstack) - size, size); i++; } /* An insn definition might emit an empty string. */ if (obstack_object_size (&string_obstack) == 0) return; obstack_1grow (&string_obstack, '\0'); set_attr = rtx_alloc (SET_ATTR); XSTR (set_attr, 1) = XOBFINISH (&string_obstack, char *); attr_name = XNEWVAR (char, strlen (MNEMONIC_ATTR_NAME) + 1); strcpy (attr_name, MNEMONIC_ATTR_NAME); XSTR (set_attr, 0) = attr_name; if (!XVEC (insn, 4)) vec_len = 0; else vec_len = XVECLEN (insn, 4); new_vec = rtvec_alloc (vec_len + 1); for (i = 0; i < vec_len; i++) RTVEC_ELT (new_vec, i) = XVECEXP (insn, 4, i); RTVEC_ELT (new_vec, vec_len) = set_attr; XVEC (insn, 4) = new_vec; } /* This function is called for the elements in the mnemonic hashtable and generates a comma separated list of the mnemonics. */ static int mnemonic_htab_callback (void **slot, void *info ATTRIBUTE_UNUSED) { obstack_grow (&string_obstack, (char*)*slot, strlen ((char*)*slot)); obstack_1grow (&string_obstack, ','); return 1; } /* Generate (set_attr "mnemonic" "..") RTXs and append them to every insn definition in case the back end requests it by defining the mnemonic attribute. The values for the attribute will be extracted from the output patterns of the insn definitions as far as possible. */ static void gen_mnemonic_attr (void) { struct queue_elem *elem; rtx mnemonic_attr = NULL; htab_t mnemonic_htab; const char *str, *p; int i; if (have_error) return; /* Look for the DEFINE_ATTR for `mnemonic'. */ for (elem = define_attr_queue; elem != *define_attr_tail; elem = elem->next) if (GET_CODE (elem->data) == DEFINE_ATTR && strcmp (XSTR (elem->data, 0), MNEMONIC_ATTR_NAME) == 0) { mnemonic_attr = elem->data; break; } /* A (define_attr "mnemonic" "...") indicates that the back-end wants a mnemonic attribute to be generated. */ if (!mnemonic_attr) return; mnemonic_htab = htab_create_alloc (MNEMONIC_HTAB_SIZE, htab_hash_string, htab_eq_string, 0, xcalloc, free); for (elem = define_insn_queue; elem; elem = elem->next) { rtx insn = elem->data; bool found = false; /* Check if the insn definition already has (set_attr "mnemonic" ...). */ if (XVEC (insn, 4)) for (i = 0; i < XVECLEN (insn, 4); i++) if (strcmp (XSTR (XVECEXP (insn, 4, i), 0), MNEMONIC_ATTR_NAME) == 0) { found = true; break; } if (!found) gen_mnemonic_setattr (mnemonic_htab, insn); } /* Add the user defined values to the hash table. */ str = XSTR (mnemonic_attr, 1); while ((p = scan_comma_elt (&str)) != NULL) add_mnemonic_string (mnemonic_htab, p, str - p); htab_traverse (mnemonic_htab, mnemonic_htab_callback, NULL); /* Replace the last ',' with the zero end character. */ *((char *)obstack_next_free (&string_obstack) - 1) = '\0'; XSTR (mnemonic_attr, 1) = XOBFINISH (&string_obstack, char *); } /* The entry point for initializing the reader. */ bool init_rtx_reader_args_cb (int argc, char **argv, bool (*parse_opt) (const char *)) { /* Prepare to read input. */ condition_table = htab_create (500, hash_c_test, cmp_c_test, NULL); init_predicate_table (); obstack_init (rtl_obstack); sequence_num = 0; read_md_files (argc, argv, parse_opt, rtx_handle_directive); /* Process define_cond_exec patterns. */ if (define_cond_exec_queue != NULL) process_define_cond_exec (); if (define_attr_queue != NULL) gen_mnemonic_attr (); return !have_error; } /* Programs that don't have their own options can use this entry point instead. */ bool init_rtx_reader_args (int argc, char **argv) { return init_rtx_reader_args_cb (argc, argv, 0); } /* The entry point for reading a single rtx from an md file. */ rtx read_md_rtx (int *lineno, int *seqnr) { struct queue_elem **queue, *elem; rtx desc; discard: /* Read all patterns from a given queue before moving on to the next. */ if (define_attr_queue != NULL) queue = &define_attr_queue; else if (define_pred_queue != NULL) queue = &define_pred_queue; else if (define_insn_queue != NULL) queue = &define_insn_queue; else if (other_queue != NULL) queue = &other_queue; else return NULL_RTX; elem = *queue; *queue = elem->next; desc = elem->data; read_md_filename = elem->filename; *lineno = elem->lineno; *seqnr = sequence_num; free (elem); /* Discard insn patterns which we know can never match (because their C test is provably always false). If insn_elision is false, our caller needs to see all the patterns. Note that the elided patterns are never counted by the sequence numbering; it is the caller's responsibility, when insn_elision is false, not to use elided pattern numbers for anything. */ switch (GET_CODE (desc)) { case DEFINE_INSN: case DEFINE_EXPAND: if (maybe_eval_c_test (XSTR (desc, 2)) != 0) sequence_num++; else if (insn_elision) goto discard; /* *seqnr is used here so the name table will match caller's idea of insn numbering, whether or not elision is active. */ record_insn_name (*seqnr, XSTR (desc, 0)); break; case DEFINE_SPLIT: case DEFINE_PEEPHOLE: case DEFINE_PEEPHOLE2: if (maybe_eval_c_test (XSTR (desc, 1)) != 0) sequence_num++; else if (insn_elision) goto discard; break; default: break; } return desc; } /* Helper functions for insn elision. */ /* Compute a hash function of a c_test structure, which is keyed by its ->expr field. */ hashval_t hash_c_test (const void *x) { const struct c_test *a = (const struct c_test *) x; const unsigned char *base, *s = (const unsigned char *) a->expr; hashval_t hash; unsigned char c; unsigned int len; base = s; hash = 0; while ((c = *s++) != '\0') { hash += c + (c << 17); hash ^= hash >> 2; } len = s - base; hash += len + (len << 17); hash ^= hash >> 2; return hash; } /* Compare two c_test expression structures. */ int cmp_c_test (const void *x, const void *y) { const struct c_test *a = (const struct c_test *) x; const struct c_test *b = (const struct c_test *) y; return !strcmp (a->expr, b->expr); } /* Given a string representing a C test expression, look it up in the condition_table and report whether or not its value is known at compile time. Returns a tristate: 1 for known true, 0 for known false, -1 for unknown. */ int maybe_eval_c_test (const char *expr) { const struct c_test *test; struct c_test dummy; if (expr[0] == 0) return 1; dummy.expr = expr; test = (const struct c_test *)htab_find (condition_table, &dummy); if (!test) return -1; return test->value; } /* Record the C test expression EXPR in the condition_table, with value VAL. Duplicates clobber previous entries. */ void add_c_test (const char *expr, int value) { struct c_test *test; if (expr[0] == 0) return; test = XNEW (struct c_test); test->expr = expr; test->value = value; *(htab_find_slot (condition_table, test, INSERT)) = test; } /* For every C test, call CALLBACK with two arguments: a pointer to the condition structure and INFO. Stops when CALLBACK returns zero. */ void traverse_c_tests (htab_trav callback, void *info) { if (condition_table) htab_traverse (condition_table, callback, info); } /* Helper functions for define_predicate and define_special_predicate processing. Shared between genrecog.c and genpreds.c. */ static htab_t predicate_table; struct pred_data *first_predicate; static struct pred_data **last_predicate = &first_predicate; static hashval_t hash_struct_pred_data (const void *ptr) { return htab_hash_string (((const struct pred_data *)ptr)->name); } static int eq_struct_pred_data (const void *a, const void *b) { return !strcmp (((const struct pred_data *)a)->name, ((const struct pred_data *)b)->name); } struct pred_data * lookup_predicate (const char *name) { struct pred_data key; key.name = name; return (struct pred_data *) htab_find (predicate_table, &key); } /* Record that predicate PRED can accept CODE. */ void add_predicate_code (struct pred_data *pred, enum rtx_code code) { if (!pred->codes[code]) { pred->num_codes++; pred->codes[code] = true; if (GET_RTX_CLASS (code) != RTX_CONST_OBJ) pred->allows_non_const = true; if (code != REG && code != SUBREG && code != MEM && code != CONCAT && code != PARALLEL && code != STRICT_LOW_PART) pred->allows_non_lvalue = true; if (pred->num_codes == 1) pred->singleton = code; else if (pred->num_codes == 2) pred->singleton = UNKNOWN; } } void add_predicate (struct pred_data *pred) { void **slot = htab_find_slot (predicate_table, pred, INSERT); if (*slot) { error ("duplicate predicate definition for '%s'", pred->name); return; } *slot = pred; *last_predicate = pred; last_predicate = &pred->next; } /* This array gives the initial content of the predicate table. It has entries for all predicates defined in recog.c. */ struct std_pred_table { const char *name; bool special; bool allows_const_p; RTX_CODE codes[NUM_RTX_CODE]; }; static const struct std_pred_table std_preds[] = { {"general_operand", false, true, {SUBREG, REG, MEM}}, {"address_operand", true, true, {SUBREG, REG, MEM, PLUS, MINUS, MULT}}, {"register_operand", false, false, {SUBREG, REG}}, {"pmode_register_operand", true, false, {SUBREG, REG}}, {"scratch_operand", false, false, {SCRATCH, REG}}, {"immediate_operand", false, true, {UNKNOWN}}, {"const_int_operand", false, false, {CONST_INT}}, {"const_double_operand", false, false, {CONST_INT, CONST_DOUBLE}}, {"nonimmediate_operand", false, false, {SUBREG, REG, MEM}}, {"nonmemory_operand", false, true, {SUBREG, REG}}, {"push_operand", false, false, {MEM}}, {"pop_operand", false, false, {MEM}}, {"memory_operand", false, false, {SUBREG, MEM}}, {"indirect_operand", false, false, {SUBREG, MEM}}, {"ordered_comparison_operator", false, false, {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU}}, {"comparison_operator", false, false, {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU, UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE, UNLT, LTGT}} }; #define NUM_KNOWN_STD_PREDS ARRAY_SIZE (std_preds) /* Initialize the table of predicate definitions, starting with the information we have on generic predicates. */ static void init_predicate_table (void) { size_t i, j; struct pred_data *pred; predicate_table = htab_create_alloc (37, hash_struct_pred_data, eq_struct_pred_data, 0, xcalloc, free); for (i = 0; i < NUM_KNOWN_STD_PREDS; i++) { pred = XCNEW (struct pred_data); pred->name = std_preds[i].name; pred->special = std_preds[i].special; for (j = 0; std_preds[i].codes[j] != 0; j++) add_predicate_code (pred, std_preds[i].codes[j]); if (std_preds[i].allows_const_p) for (j = 0; j < NUM_RTX_CODE; j++) if (GET_RTX_CLASS (j) == RTX_CONST_OBJ) add_predicate_code (pred, (enum rtx_code) j); add_predicate (pred); } } /* These functions allow linkage with print-rtl.c. Also, some generators like to annotate their output with insn names. */ /* Holds an array of names indexed by insn_code_number. */ static char **insn_name_ptr = 0; static int insn_name_ptr_size = 0; const char * get_insn_name (int code) { if (code < insn_name_ptr_size) return insn_name_ptr[code]; else return NULL; } static void record_insn_name (int code, const char *name) { static const char *last_real_name = "insn"; static int last_real_code = 0; char *new_name; if (insn_name_ptr_size <= code) { int new_size; new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512); insn_name_ptr = XRESIZEVEC (char *, insn_name_ptr, new_size); memset (insn_name_ptr + insn_name_ptr_size, 0, sizeof(char *) * (new_size - insn_name_ptr_size)); insn_name_ptr_size = new_size; } if (!name || name[0] == '\0') { new_name = XNEWVAR (char, strlen (last_real_name) + 10); sprintf (new_name, "%s+%d", last_real_name, code - last_real_code); } else { last_real_name = new_name = xstrdup (name); last_real_code = code; } insn_name_ptr[code] = new_name; } /* Make STATS describe the operands that appear in rtx X. */ static void get_pattern_stats_1 (struct pattern_stats *stats, rtx x) { RTX_CODE code; int i; int len; const char *fmt; if (x == NULL_RTX) return; code = GET_CODE (x); switch (code) { case MATCH_OPERAND: case MATCH_OPERATOR: case MATCH_PARALLEL: stats->max_opno = MAX (stats->max_opno, XINT (x, 0)); break; case MATCH_DUP: case MATCH_OP_DUP: case MATCH_PAR_DUP: stats->num_dups++; stats->max_dup_opno = MAX (stats->max_dup_opno, XINT (x, 0)); break; case MATCH_SCRATCH: stats->max_scratch_opno = MAX (stats->max_scratch_opno, XINT (x, 0)); break; default: break; } fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); for (i = 0; i < len; i++) { if (fmt[i] == 'e' || fmt[i] == 'u') get_pattern_stats_1 (stats, XEXP (x, i)); else if (fmt[i] == 'E') { int j; for (j = 0; j < XVECLEN (x, i); j++) get_pattern_stats_1 (stats, XVECEXP (x, i, j)); } } } /* Make STATS describe the operands that appear in instruction pattern PATTERN. */ void get_pattern_stats (struct pattern_stats *stats, rtvec pattern) { int i, len; stats->max_opno = -1; stats->max_dup_opno = -1; stats->max_scratch_opno = -1; stats->num_dups = 0; len = GET_NUM_ELEM (pattern); for (i = 0; i < len; i++) get_pattern_stats_1 (stats, RTVEC_ELT (pattern, i)); stats->num_generator_args = stats->max_opno + 1; stats->num_insn_operands = MAX (stats->max_opno, stats->max_scratch_opno) + 1; stats->num_operand_vars = MAX (stats->max_opno, MAX (stats->max_dup_opno, stats->max_scratch_opno)) + 1; }
Go to most recent revision | Compare with Previous | Blame | View Log