URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [go/] [gofrontend/] [export.cc] - Rev 849
Go to most recent revision | Compare with Previous | Blame | View Log
// export.cc -- Export declarations in Go frontend. // Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "go-system.h" #include "sha1.h" #include "go-c.h" #include "gogo.h" #include "types.h" #include "statements.h" #include "export.h" // This file handles exporting global declarations. // Class Export. // Version 1 magic number. const int Export::v1_magic_len; const char Export::v1_magic[Export::v1_magic_len] = { 'v', '1', ';', '\n' }; const int Export::v1_checksum_len; // Constructor. Export::Export(Stream* stream) : stream_(stream), type_refs_(), type_index_(1) { } // A functor to sort Named_object pointers by name. struct Sort_bindings { bool operator()(const Named_object* n1, const Named_object* n2) const { return n1->name() < n2->name(); } }; // Return true if we should export NO. static bool should_export(Named_object* no) { // We only export objects which are locally defined. if (no->package() != NULL) return false; // We don't export packages. if (no->is_package()) return false; // We don't export hidden names. if (Gogo::is_hidden_name(no->name())) return false; // We don't export nested functions. if (no->is_function() && no->func_value()->enclosing() != NULL) return false; // We don't export thunks. if (no->is_function() && Gogo::is_thunk(no)) return false; // Methods are exported with the type, not here. if (no->is_function() && no->func_value()->type()->is_method()) return false; if (no->is_function_declaration() && no->func_declaration_value()->type()->is_method()) return false; // Don't export dummy global variables created for initializers when // used with sinks. if (no->is_variable() && no->name()[0] == '_' && no->name()[1] == '.') return false; return true; } // Export those identifiers marked for exporting. void Export::export_globals(const std::string& package_name, const std::string& unique_prefix, int package_priority, const std::map<std::string, Package*>& imports, const std::string& import_init_fn, const std::set<Import_init>& imported_init_fns, const Bindings* bindings) { // If there have been any errors so far, don't try to export // anything. That way the export code doesn't have to worry about // mismatched types or other confusions. if (saw_errors()) return; // Export the symbols in sorted order. That will reduce cases where // irrelevant changes to the source code affect the exported // interface. std::vector<Named_object*> exports; exports.reserve(bindings->size_definitions()); for (Bindings::const_definitions_iterator p = bindings->begin_definitions(); p != bindings->end_definitions(); ++p) if (should_export(*p)) exports.push_back(*p); for (Bindings::const_declarations_iterator p = bindings->begin_declarations(); p != bindings->end_declarations(); ++p) { // We export a function declaration as it may be implemented in // supporting C code. We do not export type declarations. if (p->second->is_function_declaration() && should_export(p->second)) exports.push_back(p->second); } std::sort(exports.begin(), exports.end(), Sort_bindings()); // Although the export data is readable, at least this version is, // it is conceptually a binary format. Start with a four byte // verison number. this->write_bytes(Export::v1_magic, Export::v1_magic_len); // The package name. this->write_c_string("package "); this->write_string(package_name); this->write_c_string(";\n"); // The unique prefix. This prefix is used for all global symbols. this->write_c_string("prefix "); this->write_string(unique_prefix); this->write_c_string(";\n"); // The package priority. char buf[100]; snprintf(buf, sizeof buf, "priority %d;\n", package_priority); this->write_c_string(buf); this->write_imports(imports); this->write_imported_init_fns(package_name, package_priority, import_init_fn, imported_init_fns); // FIXME: It might be clever to add something about the processor // and ABI being used, although ideally any problems in that area // would be caught by the linker. for (std::vector<Named_object*>::const_iterator p = exports.begin(); p != exports.end(); ++p) (*p)->export_named_object(this); std::string checksum = this->stream_->checksum(); std::string s = "checksum "; for (std::string::const_iterator p = checksum.begin(); p != checksum.end(); ++p) { unsigned char c = *p; unsigned int dig = c >> 4; s += dig < 10 ? '0' + dig : 'A' + dig - 10; dig = c & 0xf; s += dig < 10 ? '0' + dig : 'A' + dig - 10; } s += ";\n"; this->stream_->write_checksum(s); } // Sort imported packages. static bool import_compare(const std::pair<std::string, Package*>& a, const std::pair<std::string, Package*>& b) { return a.first < b.first; } // Write out the imported packages. void Export::write_imports(const std::map<std::string, Package*>& imports) { // Sort the imports for more consistent output. std::vector<std::pair<std::string, Package*> > imp; for (std::map<std::string, Package*>::const_iterator p = imports.begin(); p != imports.end(); ++p) imp.push_back(std::make_pair(p->first, p->second)); std::sort(imp.begin(), imp.end(), import_compare); for (std::vector<std::pair<std::string, Package*> >::const_iterator p = imp.begin(); p != imp.end(); ++p) { this->write_c_string("import "); this->write_string(p->second->name()); this->write_c_string(" "); this->write_string(p->second->unique_prefix()); this->write_c_string(" \""); this->write_string(p->first); this->write_c_string("\";\n"); } } // Write out the initialization functions which need to run for this // package. void Export::write_imported_init_fns( const std::string& package_name, int priority, const std::string& import_init_fn, const std::set<Import_init>& imported_init_fns) { if (import_init_fn.empty() && imported_init_fns.empty()) return; this->write_c_string("init"); if (!import_init_fn.empty()) { this->write_c_string(" "); this->write_string(package_name); this->write_c_string(" "); this->write_string(import_init_fn); char buf[100]; snprintf(buf, sizeof buf, " %d", priority); this->write_c_string(buf); } if (!imported_init_fns.empty()) { // Sort the list of functions for more consistent output. std::vector<Import_init> v; for (std::set<Import_init>::const_iterator p = imported_init_fns.begin(); p != imported_init_fns.end(); ++p) v.push_back(*p); std::sort(v.begin(), v.end()); for (std::vector<Import_init>::const_iterator p = v.begin(); p != v.end(); ++p) { this->write_c_string(" "); this->write_string(p->package_name()); this->write_c_string(" "); this->write_string(p->init_name()); char buf[100]; snprintf(buf, sizeof buf, " %d", p->priority()); this->write_c_string(buf); } } this->write_c_string(";\n"); } // Write a name to the export stream. void Export::write_name(const std::string& name) { if (name.empty()) this->write_c_string("?"); else this->write_string(Gogo::message_name(name)); } // Export a type. We have to ensure that on import we create a single // Named_type node for each named type. We do this by keeping a hash // table mapping named types to reference numbers. The first time we // see a named type we assign it a reference number by making an entry // in the hash table. If we see it again, we just refer to the // reference number. // Named types are, of course, associated with packages. Note that we // may see a named type when importing one package, and then later see // the same named type when importing a different package. The home // package may or may not be imported during this compilation. The // reference number scheme has to get this all right. Basic approach // taken from "On the Linearization of Graphs and Writing Symbol // Files" by Robert Griesemer. void Export::write_type(const Type* type) { // We don't want to assign a reference number to a forward // declaration to a type which was defined later. type = type->forwarded(); Type_refs::const_iterator p = this->type_refs_.find(type); if (p != this->type_refs_.end()) { // This type was already in the table. int index = p->second; go_assert(index != 0); char buf[30]; snprintf(buf, sizeof buf, "<type %d>", index); this->write_c_string(buf); return; } const Named_type* named_type = type->named_type(); const Forward_declaration_type* forward = type->forward_declaration_type(); int index = this->type_index_; ++this->type_index_; char buf[30]; snprintf(buf, sizeof buf, "<type %d ", index); this->write_c_string(buf); if (named_type != NULL || forward != NULL) { const Named_object* named_object; if (named_type != NULL) { // The builtin types should have been predefined. go_assert(!Linemap::is_predeclared_location(named_type->location()) || (named_type->named_object()->package()->name() == "unsafe")); named_object = named_type->named_object(); } else named_object = forward->named_object(); const Package* package = named_object->package(); std::string s = "\""; if (package != NULL && !Gogo::is_hidden_name(named_object->name())) { s += package->unique_prefix(); s += '.'; s += package->name(); s += '.'; } s += named_object->name(); s += "\" "; this->write_string(s); // We must add a named type to the table now, since the // definition of the type may refer to the named type via a // pointer. this->type_refs_[type] = index; } type->export_type(this); this->write_c_string(">"); if (named_type == NULL) this->type_refs_[type] = index; } // Add the builtin types to the export table. void Export::register_builtin_types(Gogo* gogo) { this->register_builtin_type(gogo, "int8", BUILTIN_INT8); this->register_builtin_type(gogo, "int16", BUILTIN_INT16); this->register_builtin_type(gogo, "int32", BUILTIN_INT32); this->register_builtin_type(gogo, "int64", BUILTIN_INT64); this->register_builtin_type(gogo, "uint8", BUILTIN_UINT8); this->register_builtin_type(gogo, "uint16", BUILTIN_UINT16); this->register_builtin_type(gogo, "uint32", BUILTIN_UINT32); this->register_builtin_type(gogo, "uint64", BUILTIN_UINT64); this->register_builtin_type(gogo, "float32", BUILTIN_FLOAT32); this->register_builtin_type(gogo, "float64", BUILTIN_FLOAT64); this->register_builtin_type(gogo, "complex64", BUILTIN_COMPLEX64); this->register_builtin_type(gogo, "complex128", BUILTIN_COMPLEX128); this->register_builtin_type(gogo, "int", BUILTIN_INT); this->register_builtin_type(gogo, "uint", BUILTIN_UINT); this->register_builtin_type(gogo, "uintptr", BUILTIN_UINTPTR); this->register_builtin_type(gogo, "bool", BUILTIN_BOOL); this->register_builtin_type(gogo, "string", BUILTIN_STRING); this->register_builtin_type(gogo, "error", BUILTIN_ERROR); this->register_builtin_type(gogo, "byte", BUILTIN_BYTE); this->register_builtin_type(gogo, "rune", BUILTIN_RUNE); } // Register one builtin type in the export table. void Export::register_builtin_type(Gogo* gogo, const char* name, Builtin_code code) { Named_object* named_object = gogo->lookup_global(name); go_assert(named_object != NULL && named_object->is_type()); std::pair<Type_refs::iterator, bool> ins = this->type_refs_.insert(std::make_pair(named_object->type_value(), code)); go_assert(ins.second); // We also insert the underlying type. We can see the underlying // type at least for string and bool. We skip the type aliases byte // and rune here. if (code != BUILTIN_BYTE && code != BUILTIN_RUNE) { Type* real_type = named_object->type_value()->real_type(); ins = this->type_refs_.insert(std::make_pair(real_type, code)); go_assert(ins.second); } } // Class Export::Stream. Export::Stream::Stream() { this->checksum_ = new sha1_ctx; memset(this->checksum_, 0, sizeof(sha1_ctx)); sha1_init_ctx(this->checksum_); } Export::Stream::~Stream() { } // Write bytes to the stream. This keeps a checksum of bytes as they // go by. void Export::Stream::write_and_sum_bytes(const char* bytes, size_t length) { sha1_process_bytes(bytes, length, this->checksum_); this->do_write(bytes, length); } // Get the checksum. std::string Export::Stream::checksum() { // Use a union to provide the required alignment. union { char checksum[Export::v1_checksum_len]; long align; } u; sha1_finish_ctx(this->checksum_, u.checksum); return std::string(u.checksum, Export::v1_checksum_len); } // Write the checksum string to the export data. void Export::Stream::write_checksum(const std::string& s) { this->do_write(s.data(), s.length()); } // Class Stream_to_section. Stream_to_section::Stream_to_section() { } // Write data to a section. void Stream_to_section::do_write(const char* bytes, size_t length) { go_write_export_data (bytes, length); }
Go to most recent revision | Compare with Previous | Blame | View Log