URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ipa-utils.c] - Rev 834
Go to most recent revision | Compare with Previous | Blame | View Log
/* Utilities for ipa analysis. Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc. Contributed by Kenneth Zadeck <zadeck@naturalbridge.com> This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "tree-flow.h" #include "tree-inline.h" #include "tree-pass.h" #include "langhooks.h" #include "pointer-set.h" #include "splay-tree.h" #include "ggc.h" #include "ipa-utils.h" #include "ipa-reference.h" #include "gimple.h" #include "cgraph.h" #include "output.h" #include "flags.h" #include "timevar.h" #include "diagnostic.h" #include "langhooks.h" /* Debugging function for postorder and inorder code. NOTE is a string that is printed before the nodes are printed. ORDER is an array of cgraph_nodes that has COUNT useful nodes in it. */ void ipa_print_order (FILE* out, const char * note, struct cgraph_node** order, int count) { int i; fprintf (out, "\n\n ordered call graph: %s\n", note); for (i = count - 1; i >= 0; i--) dump_cgraph_node(dump_file, order[i]); fprintf (out, "\n"); fflush(out); } struct searchc_env { struct cgraph_node **stack; int stack_size; struct cgraph_node **result; int order_pos; splay_tree nodes_marked_new; bool reduce; bool allow_overwritable; int count; }; /* This is an implementation of Tarjan's strongly connected region finder as reprinted in Aho Hopcraft and Ullman's The Design and Analysis of Computer Programs (1975) pages 192-193. This version has been customized for cgraph_nodes. The env parameter is because it is recursive and there are no nested functions here. This function should only be called from itself or ipa_reduced_postorder. ENV is a stack env and would be unnecessary if C had nested functions. V is the node to start searching from. */ static void searchc (struct searchc_env* env, struct cgraph_node *v, bool (*ignore_edge) (struct cgraph_edge *)) { struct cgraph_edge *edge; struct ipa_dfs_info *v_info = (struct ipa_dfs_info *) v->aux; /* mark node as old */ v_info->new_node = false; splay_tree_remove (env->nodes_marked_new, v->uid); v_info->dfn_number = env->count; v_info->low_link = env->count; env->count++; env->stack[(env->stack_size)++] = v; v_info->on_stack = true; for (edge = v->callees; edge; edge = edge->next_callee) { struct ipa_dfs_info * w_info; enum availability avail; struct cgraph_node *w = cgraph_function_or_thunk_node (edge->callee, &avail); if (!w || (ignore_edge && ignore_edge (edge))) continue; if (w->aux && (avail > AVAIL_OVERWRITABLE || (env->allow_overwritable && avail == AVAIL_OVERWRITABLE))) { w_info = (struct ipa_dfs_info *) w->aux; if (w_info->new_node) { searchc (env, w, ignore_edge); v_info->low_link = (v_info->low_link < w_info->low_link) ? v_info->low_link : w_info->low_link; } else if ((w_info->dfn_number < v_info->dfn_number) && (w_info->on_stack)) v_info->low_link = (w_info->dfn_number < v_info->low_link) ? w_info->dfn_number : v_info->low_link; } } if (v_info->low_link == v_info->dfn_number) { struct cgraph_node *last = NULL; struct cgraph_node *x; struct ipa_dfs_info *x_info; do { x = env->stack[--(env->stack_size)]; x_info = (struct ipa_dfs_info *) x->aux; x_info->on_stack = false; x_info->scc_no = v_info->dfn_number; if (env->reduce) { x_info->next_cycle = last; last = x; } else env->result[env->order_pos++] = x; } while (v != x); if (env->reduce) env->result[env->order_pos++] = v; } } /* Topsort the call graph by caller relation. Put the result in ORDER. The REDUCE flag is true if you want the cycles reduced to single nodes. Set ALLOW_OVERWRITABLE if nodes with such availability should be included. IGNORE_EDGE, if non-NULL is a hook that may make some edges insignificant for the topological sort. */ int ipa_reduced_postorder (struct cgraph_node **order, bool reduce, bool allow_overwritable, bool (*ignore_edge) (struct cgraph_edge *)) { struct cgraph_node *node; struct searchc_env env; splay_tree_node result; env.stack = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes); env.stack_size = 0; env.result = order; env.order_pos = 0; env.nodes_marked_new = splay_tree_new (splay_tree_compare_ints, 0, 0); env.count = 1; env.reduce = reduce; env.allow_overwritable = allow_overwritable; for (node = cgraph_nodes; node; node = node->next) { enum availability avail = cgraph_function_body_availability (node); if (avail > AVAIL_OVERWRITABLE || (allow_overwritable && (avail == AVAIL_OVERWRITABLE))) { /* Reuse the info if it is already there. */ struct ipa_dfs_info *info = (struct ipa_dfs_info *) node->aux; if (!info) info = XCNEW (struct ipa_dfs_info); info->new_node = true; info->on_stack = false; info->next_cycle = NULL; node->aux = info; splay_tree_insert (env.nodes_marked_new, (splay_tree_key)node->uid, (splay_tree_value)node); } else node->aux = NULL; } result = splay_tree_min (env.nodes_marked_new); while (result) { node = (struct cgraph_node *)result->value; searchc (&env, node, ignore_edge); result = splay_tree_min (env.nodes_marked_new); } splay_tree_delete (env.nodes_marked_new); free (env.stack); return env.order_pos; } /* Deallocate all ipa_dfs_info structures pointed to by the aux pointer of call graph nodes. */ void ipa_free_postorder_info (void) { struct cgraph_node *node; for (node = cgraph_nodes; node; node = node->next) { /* Get rid of the aux information. */ if (node->aux) { free (node->aux); node->aux = NULL; } } } struct postorder_stack { struct cgraph_node *node; struct cgraph_edge *edge; int ref; }; /* Fill array order with all nodes with output flag set in the reverse topological order. Return the number of elements in the array. FIXME: While walking, consider aliases, too. */ int ipa_reverse_postorder (struct cgraph_node **order) { struct cgraph_node *node, *node2; int stack_size = 0; int order_pos = 0; struct cgraph_edge *edge; int pass; struct ipa_ref *ref; struct postorder_stack *stack = XCNEWVEC (struct postorder_stack, cgraph_n_nodes); /* We have to deal with cycles nicely, so use a depth first traversal output algorithm. Ignore the fact that some functions won't need to be output and put them into order as well, so we get dependencies right through inline functions. */ for (node = cgraph_nodes; node; node = node->next) node->aux = NULL; for (pass = 0; pass < 2; pass++) for (node = cgraph_nodes; node; node = node->next) if (!node->aux && (pass || (!node->address_taken && !node->global.inlined_to && !node->alias && !node->thunk.thunk_p && !cgraph_only_called_directly_p (node)))) { stack_size = 0; stack[stack_size].node = node; stack[stack_size].edge = node->callers; stack[stack_size].ref = 0; node->aux = (void *)(size_t)1; while (stack_size >= 0) { while (true) { node2 = NULL; while (stack[stack_size].edge && !node2) { edge = stack[stack_size].edge; node2 = edge->caller; stack[stack_size].edge = edge->next_caller; /* Break possible cycles involving always-inline functions by ignoring edges from always-inline functions to non-always-inline functions. */ if (DECL_DISREGARD_INLINE_LIMITS (edge->caller->decl) && !DECL_DISREGARD_INLINE_LIMITS (cgraph_function_node (edge->callee, NULL)->decl)) node2 = NULL; } for (;ipa_ref_list_refering_iterate (&stack[stack_size].node->ref_list, stack[stack_size].ref, ref) && !node2; stack[stack_size].ref++) { if (ref->use == IPA_REF_ALIAS) node2 = ipa_ref_refering_node (ref); } if (!node2) break; if (!node2->aux) { stack[++stack_size].node = node2; stack[stack_size].edge = node2->callers; stack[stack_size].ref = 0; node2->aux = (void *)(size_t)1; } } order[order_pos++] = stack[stack_size--].node; } } free (stack); for (node = cgraph_nodes; node; node = node->next) node->aux = NULL; return order_pos; } /* Given a memory reference T, will return the variable at the bottom of the access. Unlike get_base_address, this will recurse thru INDIRECT_REFS. */ tree get_base_var (tree t) { while (!SSA_VAR_P (t) && (!CONSTANT_CLASS_P (t)) && TREE_CODE (t) != LABEL_DECL && TREE_CODE (t) != FUNCTION_DECL && TREE_CODE (t) != CONST_DECL && TREE_CODE (t) != CONSTRUCTOR) { t = TREE_OPERAND (t, 0); } return t; } /* Create a new cgraph node set. */ cgraph_node_set cgraph_node_set_new (void) { cgraph_node_set new_node_set; new_node_set = XCNEW (struct cgraph_node_set_def); new_node_set->map = pointer_map_create (); new_node_set->nodes = NULL; return new_node_set; } /* Add cgraph_node NODE to cgraph_node_set SET. */ void cgraph_node_set_add (cgraph_node_set set, struct cgraph_node *node) { void **slot; slot = pointer_map_insert (set->map, node); if (*slot) { int index = (size_t) *slot - 1; gcc_checking_assert ((VEC_index (cgraph_node_ptr, set->nodes, index) == node)); return; } *slot = (void *)(size_t) (VEC_length (cgraph_node_ptr, set->nodes) + 1); /* Insert into node vector. */ VEC_safe_push (cgraph_node_ptr, heap, set->nodes, node); } /* Remove cgraph_node NODE from cgraph_node_set SET. */ void cgraph_node_set_remove (cgraph_node_set set, struct cgraph_node *node) { void **slot, **last_slot; int index; struct cgraph_node *last_node; slot = pointer_map_contains (set->map, node); if (slot == NULL || !*slot) return; index = (size_t) *slot - 1; gcc_checking_assert (VEC_index (cgraph_node_ptr, set->nodes, index) == node); /* Remove from vector. We do this by swapping node with the last element of the vector. */ last_node = VEC_pop (cgraph_node_ptr, set->nodes); if (last_node != node) { last_slot = pointer_map_contains (set->map, last_node); gcc_checking_assert (last_slot && *last_slot); *last_slot = (void *)(size_t) (index + 1); /* Move the last element to the original spot of NODE. */ VEC_replace (cgraph_node_ptr, set->nodes, index, last_node); } /* Remove element from hash table. */ *slot = NULL; } /* Find NODE in SET and return an iterator to it if found. A null iterator is returned if NODE is not in SET. */ cgraph_node_set_iterator cgraph_node_set_find (cgraph_node_set set, struct cgraph_node *node) { void **slot; cgraph_node_set_iterator csi; slot = pointer_map_contains (set->map, node); if (slot == NULL || !*slot) csi.index = (unsigned) ~0; else csi.index = (size_t)*slot - 1; csi.set = set; return csi; } /* Dump content of SET to file F. */ void dump_cgraph_node_set (FILE *f, cgraph_node_set set) { cgraph_node_set_iterator iter; for (iter = csi_start (set); !csi_end_p (iter); csi_next (&iter)) { struct cgraph_node *node = csi_node (iter); fprintf (f, " %s/%i", cgraph_node_name (node), node->uid); } fprintf (f, "\n"); } /* Dump content of SET to stderr. */ DEBUG_FUNCTION void debug_cgraph_node_set (cgraph_node_set set) { dump_cgraph_node_set (stderr, set); } /* Free varpool node set. */ void free_cgraph_node_set (cgraph_node_set set) { VEC_free (cgraph_node_ptr, heap, set->nodes); pointer_map_destroy (set->map); free (set); } /* Create a new varpool node set. */ varpool_node_set varpool_node_set_new (void) { varpool_node_set new_node_set; new_node_set = XCNEW (struct varpool_node_set_def); new_node_set->map = pointer_map_create (); new_node_set->nodes = NULL; return new_node_set; } /* Add varpool_node NODE to varpool_node_set SET. */ void varpool_node_set_add (varpool_node_set set, struct varpool_node *node) { void **slot; slot = pointer_map_insert (set->map, node); if (*slot) { int index = (size_t) *slot - 1; gcc_checking_assert ((VEC_index (varpool_node_ptr, set->nodes, index) == node)); return; } *slot = (void *)(size_t) (VEC_length (varpool_node_ptr, set->nodes) + 1); /* Insert into node vector. */ VEC_safe_push (varpool_node_ptr, heap, set->nodes, node); } /* Remove varpool_node NODE from varpool_node_set SET. */ void varpool_node_set_remove (varpool_node_set set, struct varpool_node *node) { void **slot, **last_slot; int index; struct varpool_node *last_node; slot = pointer_map_contains (set->map, node); if (slot == NULL || !*slot) return; index = (size_t) *slot - 1; gcc_checking_assert (VEC_index (varpool_node_ptr, set->nodes, index) == node); /* Remove from vector. We do this by swapping node with the last element of the vector. */ last_node = VEC_pop (varpool_node_ptr, set->nodes); if (last_node != node) { last_slot = pointer_map_contains (set->map, last_node); gcc_checking_assert (last_slot && *last_slot); *last_slot = (void *)(size_t) (index + 1); /* Move the last element to the original spot of NODE. */ VEC_replace (varpool_node_ptr, set->nodes, index, last_node); } /* Remove element from hash table. */ *slot = NULL; } /* Find NODE in SET and return an iterator to it if found. A null iterator is returned if NODE is not in SET. */ varpool_node_set_iterator varpool_node_set_find (varpool_node_set set, struct varpool_node *node) { void **slot; varpool_node_set_iterator vsi; slot = pointer_map_contains (set->map, node); if (slot == NULL || !*slot) vsi.index = (unsigned) ~0; else vsi.index = (size_t)*slot - 1; vsi.set = set; return vsi; } /* Dump content of SET to file F. */ void dump_varpool_node_set (FILE *f, varpool_node_set set) { varpool_node_set_iterator iter; for (iter = vsi_start (set); !vsi_end_p (iter); vsi_next (&iter)) { struct varpool_node *node = vsi_node (iter); fprintf (f, " %s", varpool_node_name (node)); } fprintf (f, "\n"); } /* Free varpool node set. */ void free_varpool_node_set (varpool_node_set set) { VEC_free (varpool_node_ptr, heap, set->nodes); pointer_map_destroy (set->map); free (set); } /* Dump content of SET to stderr. */ DEBUG_FUNCTION void debug_varpool_node_set (varpool_node_set set) { dump_varpool_node_set (stderr, set); }
Go to most recent revision | Compare with Previous | Blame | View Log