URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ira-int.h] - Rev 867
Go to most recent revision | Compare with Previous | Blame | View Log
/* Integrated Register Allocator (IRA) intercommunication header file. Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. Contributed by Vladimir Makarov <vmakarov@redhat.com>. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "cfgloop.h" #include "ira.h" #include "alloc-pool.h" /* To provide consistency in naming, all IRA external variables, functions, common typedefs start with prefix ira_. */ #ifdef ENABLE_CHECKING #define ENABLE_IRA_CHECKING #endif #ifdef ENABLE_IRA_CHECKING #define ira_assert(c) gcc_assert (c) #else /* Always define and include C, so that warnings for empty body in an ‘if’ statement and unused variable do not occur. */ #define ira_assert(c) ((void)(0 && (c))) #endif /* Compute register frequency from edge frequency FREQ. It is analogous to REG_FREQ_FROM_BB. When optimizing for size, or profile driven feedback is available and the function is never executed, frequency is always equivalent. Otherwise rescale the edge frequency. */ #define REG_FREQ_FROM_EDGE_FREQ(freq) \ (optimize_size || (flag_branch_probabilities && !ENTRY_BLOCK_PTR->count) \ ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \ ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1) /* All natural loops. */ extern struct loops ira_loops; /* A modified value of flag `-fira-verbose' used internally. */ extern int internal_flag_ira_verbose; /* Dump file of the allocator if it is not NULL. */ extern FILE *ira_dump_file; /* Typedefs for pointers to allocno live range, allocno, and copy of allocnos. */ typedef struct live_range *live_range_t; typedef struct ira_allocno *ira_allocno_t; typedef struct ira_allocno_copy *ira_copy_t; typedef struct ira_object *ira_object_t; /* Definition of vector of allocnos and copies. */ DEF_VEC_P(ira_allocno_t); DEF_VEC_ALLOC_P(ira_allocno_t, heap); DEF_VEC_P(ira_object_t); DEF_VEC_ALLOC_P(ira_object_t, heap); DEF_VEC_P(ira_copy_t); DEF_VEC_ALLOC_P(ira_copy_t, heap); /* Typedef for pointer to the subsequent structure. */ typedef struct ira_loop_tree_node *ira_loop_tree_node_t; /* In general case, IRA is a regional allocator. The regions are nested and form a tree. Currently regions are natural loops. The following structure describes loop tree node (representing basic block or loop). We need such tree because the loop tree from cfgloop.h is not convenient for the optimization: basic blocks are not a part of the tree from cfgloop.h. We also use the nodes for storing additional information about basic blocks/loops for the register allocation purposes. */ struct ira_loop_tree_node { /* The node represents basic block if children == NULL. */ basic_block bb; /* NULL for loop. */ /* NULL for BB or for loop tree root if we did not build CFG loop tree. */ struct loop *loop; /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent. SUBLOOP_NEXT is always NULL for BBs. */ ira_loop_tree_node_t subloop_next, next; /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside the node. They are NULL for BBs. */ ira_loop_tree_node_t subloops, children; /* The node immediately containing given node. */ ira_loop_tree_node_t parent; /* Loop level in range [0, ira_loop_tree_height). */ int level; /* All the following members are defined only for nodes representing loops. */ /* The loop number from CFG loop tree. The root number is 0. */ int loop_num; /* True if the loop was marked for removal from the register allocation. */ bool to_remove_p; /* Allocnos in the loop corresponding to their regnos. If it is NULL the loop does not form a separate register allocation region (e.g. because it has abnormal enter/exit edges and we can not put code for register shuffling on the edges if a different allocation is used for a pseudo-register on different sides of the edges). Caps are not in the map (remember we can have more one cap with the same regno in a region). */ ira_allocno_t *regno_allocno_map; /* True if there is an entry to given loop not from its parent (or grandparent) basic block. For example, it is possible for two adjacent loops inside another loop. */ bool entered_from_non_parent_p; /* Maximal register pressure inside loop for given register class (defined only for the pressure classes). */ int reg_pressure[N_REG_CLASSES]; /* Numbers of allocnos referred or living in the loop node (except for its subloops). */ bitmap all_allocnos; /* Numbers of allocnos living at the loop borders. */ bitmap border_allocnos; /* Regnos of pseudos modified in the loop node (including its subloops). */ bitmap modified_regnos; /* Numbers of copies referred in the corresponding loop. */ bitmap local_copies; }; /* The root of the loop tree corresponding to the all function. */ extern ira_loop_tree_node_t ira_loop_tree_root; /* Height of the loop tree. */ extern int ira_loop_tree_height; /* All nodes representing basic blocks are referred through the following array. We can not use basic block member `aux' for this because it is used for insertion of insns on edges. */ extern ira_loop_tree_node_t ira_bb_nodes; /* Two access macros to the nodes representing basic blocks. */ #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007) #define IRA_BB_NODE_BY_INDEX(index) __extension__ \ (({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \ if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\ { \ fprintf (stderr, \ "\n%s: %d: error in %s: it is not a block node\n", \ __FILE__, __LINE__, __FUNCTION__); \ gcc_unreachable (); \ } \ _node; })) #else #define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index]) #endif #define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index) /* All nodes representing loops are referred through the following array. */ extern ira_loop_tree_node_t ira_loop_nodes; /* Two access macros to the nodes representing loops. */ #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007) #define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \ (({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]); \ if (_node->children == NULL || _node->bb != NULL \ || (_node->loop == NULL && current_loops != NULL)) \ { \ fprintf (stderr, \ "\n%s: %d: error in %s: it is not a loop node\n", \ __FILE__, __LINE__, __FUNCTION__); \ gcc_unreachable (); \ } \ _node; })) #else #define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index]) #endif #define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num) /* The structure describes program points where a given allocno lives. If the live ranges of two allocnos are intersected, the allocnos are in conflict. */ struct live_range { /* Object whose live range is described by given structure. */ ira_object_t object; /* Program point range. */ int start, finish; /* Next structure describing program points where the allocno lives. */ live_range_t next; /* Pointer to structures with the same start/finish. */ live_range_t start_next, finish_next; }; /* Program points are enumerated by numbers from range 0..IRA_MAX_POINT-1. There are approximately two times more program points than insns. Program points are places in the program where liveness info can be changed. In most general case (there are more complicated cases too) some program points correspond to places where input operand dies and other ones correspond to places where output operands are born. */ extern int ira_max_point; /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno live ranges with given start/finish point. */ extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges; /* A structure representing conflict information for an allocno (or one of its subwords). */ struct ira_object { /* The allocno associated with this record. */ ira_allocno_t allocno; /* Vector of accumulated conflicting conflict_redords with NULL end marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector otherwise. */ void *conflicts_array; /* Pointer to structures describing at what program point the object lives. We always maintain the list in such way that *the ranges in the list are not intersected and ordered by decreasing their program points*. */ live_range_t live_ranges; /* The subword within ALLOCNO which is represented by this object. Zero means the lowest-order subword (or the entire allocno in case it is not being tracked in subwords). */ int subword; /* Allocated size of the conflicts array. */ unsigned int conflicts_array_size; /* A unique number for every instance of this structure, which is used to represent it in conflict bit vectors. */ int id; /* Before building conflicts, MIN and MAX are initialized to correspondingly minimal and maximal points of the accumulated live ranges. Afterwards, they hold the minimal and maximal ids of other ira_objects that this one can conflict with. */ int min, max; /* Initial and accumulated hard registers conflicting with this object and as a consequences can not be assigned to the allocno. All non-allocatable hard regs and hard regs of register classes different from given allocno one are included in the sets. */ HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs; /* Number of accumulated conflicts in the vector of conflicting objects. */ int num_accumulated_conflicts; /* TRUE if conflicts are represented by a vector of pointers to ira_object structures. Otherwise, we use a bit vector indexed by conflict ID numbers. */ unsigned int conflict_vec_p : 1; }; /* A structure representing an allocno (allocation entity). Allocno represents a pseudo-register in an allocation region. If pseudo-register does not live in a region but it lives in the nested regions, it is represented in the region by special allocno called *cap*. There may be more one cap representing the same pseudo-register in region. It means that the corresponding pseudo-register lives in more one non-intersected subregion. */ struct ira_allocno { /* The allocno order number starting with 0. Each allocno has an unique number and the number is never changed for the allocno. */ int num; /* Regno for allocno or cap. */ int regno; /* Mode of the allocno which is the mode of the corresponding pseudo-register. */ ENUM_BITFIELD (machine_mode) mode : 8; /* Register class which should be used for allocation for given allocno. NO_REGS means that we should use memory. */ ENUM_BITFIELD (reg_class) aclass : 16; /* During the reload, value TRUE means that we should not reassign a hard register to the allocno got memory earlier. It is set up when we removed memory-memory move insn before each iteration of the reload. */ unsigned int dont_reassign_p : 1; #ifdef STACK_REGS /* Set to TRUE if allocno can't be assigned to the stack hard register correspondingly in this region and area including the region and all its subregions recursively. */ unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1; #endif /* TRUE value means that there is no sense to spill the allocno during coloring because the spill will result in additional reloads in reload pass. */ unsigned int bad_spill_p : 1; /* TRUE if a hard register or memory has been assigned to the allocno. */ unsigned int assigned_p : 1; /* TRUE if conflicts for given allocno are represented by vector of pointers to the conflicting allocnos. Otherwise, we use a bit vector where a bit with given index represents allocno with the same number. */ unsigned int conflict_vec_p : 1; /* Hard register assigned to given allocno. Negative value means that memory was allocated to the allocno. During the reload, spilled allocno has value equal to the corresponding stack slot number (0, ...) - 2. Value -1 is used for allocnos spilled by the reload (at this point pseudo-register has only one allocno) which did not get stack slot yet. */ short int hard_regno; /* Allocnos with the same regno are linked by the following member. Allocnos corresponding to inner loops are first in the list (it corresponds to depth-first traverse of the loops). */ ira_allocno_t next_regno_allocno; /* There may be different allocnos with the same regno in different regions. Allocnos are bound to the corresponding loop tree node. Pseudo-register may have only one regular allocno with given loop tree node but more than one cap (see comments above). */ ira_loop_tree_node_t loop_tree_node; /* Accumulated usage references of the allocno. Here and below, word 'accumulated' means info for given region and all nested subregions. In this case, 'accumulated' means sum of references of the corresponding pseudo-register in this region and in all nested subregions recursively. */ int nrefs; /* Accumulated frequency of usage of the allocno. */ int freq; /* Minimal accumulated and updated costs of usage register of the allocno class. */ int class_cost, updated_class_cost; /* Minimal accumulated, and updated costs of memory for the allocno. At the allocation start, the original and updated costs are equal. The updated cost may be changed after finishing allocation in a region and starting allocation in a subregion. The change reflects the cost of spill/restore code on the subregion border if we assign memory to the pseudo in the subregion. */ int memory_cost, updated_memory_cost; /* Accumulated number of points where the allocno lives and there is excess pressure for its class. Excess pressure for a register class at some point means that there are more allocnos of given register class living at the point than number of hard-registers of the class available for the allocation. */ int excess_pressure_points_num; /* Copies to other non-conflicting allocnos. The copies can represent move insn or potential move insn usually because of two operand insn constraints. */ ira_copy_t allocno_copies; /* It is a allocno (cap) representing given allocno on upper loop tree level. */ ira_allocno_t cap; /* It is a link to allocno (cap) on lower loop level represented by given cap. Null if given allocno is not a cap. */ ira_allocno_t cap_member; /* The number of objects tracked in the following array. */ int num_objects; /* An array of structures describing conflict information and live ranges for each object associated with the allocno. There may be more than one such object in cases where the allocno represents a multi-word register. */ ira_object_t objects[2]; /* Accumulated frequency of calls which given allocno intersects. */ int call_freq; /* Accumulated number of the intersected calls. */ int calls_crossed_num; /* Array of usage costs (accumulated and the one updated during coloring) for each hard register of the allocno class. The member value can be NULL if all costs are the same and equal to CLASS_COST. For example, the costs of two different hard registers can be different if one hard register is callee-saved and another one is callee-used and the allocno lives through calls. Another example can be case when for some insn the corresponding pseudo-register value should be put in specific register class (e.g. AREG for x86) which is a strict subset of the allocno class (GENERAL_REGS for x86). We have updated costs to reflect the situation when the usage cost of a hard register is decreased because the allocno is connected to another allocno by a copy and the another allocno has been assigned to the hard register. */ int *hard_reg_costs, *updated_hard_reg_costs; /* Array of decreasing costs (accumulated and the one updated during coloring) for allocnos conflicting with given allocno for hard regno of the allocno class. The member value can be NULL if all costs are the same. These costs are used to reflect preferences of other allocnos not assigned yet during assigning to given allocno. */ int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs; /* Different additional data. It is used to decrease size of allocno data footprint. */ void *add_data; }; /* All members of the allocno structures should be accessed only through the following macros. */ #define ALLOCNO_NUM(A) ((A)->num) #define ALLOCNO_REGNO(A) ((A)->regno) #define ALLOCNO_REG(A) ((A)->reg) #define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno) #define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node) #define ALLOCNO_CAP(A) ((A)->cap) #define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member) #define ALLOCNO_NREFS(A) ((A)->nrefs) #define ALLOCNO_FREQ(A) ((A)->freq) #define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno) #define ALLOCNO_CALL_FREQ(A) ((A)->call_freq) #define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num) #define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest) #define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p) #define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p) #define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p) #define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p) #ifdef STACK_REGS #define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p) #define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p) #endif #define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p) #define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p) #define ALLOCNO_MODE(A) ((A)->mode) #define ALLOCNO_COPIES(A) ((A)->allocno_copies) #define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs) #define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs) #define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \ ((A)->conflict_hard_reg_costs) #define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \ ((A)->updated_conflict_hard_reg_costs) #define ALLOCNO_CLASS(A) ((A)->aclass) #define ALLOCNO_CLASS_COST(A) ((A)->class_cost) #define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost) #define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost) #define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost) #define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \ ((A)->excess_pressure_points_num) #define ALLOCNO_OBJECT(A,N) ((A)->objects[N]) #define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects) #define ALLOCNO_ADD_DATA(A) ((A)->add_data) /* Typedef for pointer to the subsequent structure. */ typedef struct ira_emit_data *ira_emit_data_t; /* Allocno bound data used for emit pseudo live range split insns and to flattening IR. */ struct ira_emit_data { /* TRUE if the allocno assigned to memory was a destination of removed move (see ira-emit.c) at loop exit because the value of the corresponding pseudo-register is not changed inside the loop. */ unsigned int mem_optimized_dest_p : 1; /* TRUE if the corresponding pseudo-register has disjoint live ranges and the other allocnos of the pseudo-register except this one changed REG. */ unsigned int somewhere_renamed_p : 1; /* TRUE if allocno with the same REGNO in a subregion has been renamed, in other words, got a new pseudo-register. */ unsigned int child_renamed_p : 1; /* Final rtx representation of the allocno. */ rtx reg; /* Non NULL if we remove restoring value from given allocno to MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the allocno value is not changed inside the loop. */ ira_allocno_t mem_optimized_dest; }; #define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a)) /* Data used to emit live range split insns and to flattening IR. */ extern ira_emit_data_t ira_allocno_emit_data; /* Abbreviation for frequent emit data access. */ static inline rtx allocno_emit_reg (ira_allocno_t a) { return ALLOCNO_EMIT_DATA (a)->reg; } #define OBJECT_ALLOCNO(O) ((O)->allocno) #define OBJECT_SUBWORD(O) ((O)->subword) #define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array) #define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array) #define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array) #define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size) #define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p) #define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts) #define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs) #define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs) #define OBJECT_MIN(O) ((O)->min) #define OBJECT_MAX(O) ((O)->max) #define OBJECT_CONFLICT_ID(O) ((O)->id) #define OBJECT_LIVE_RANGES(O) ((O)->live_ranges) /* Map regno -> allocnos with given regno (see comments for allocno member `next_regno_allocno'). */ extern ira_allocno_t *ira_regno_allocno_map; /* Array of references to all allocnos. The order number of the allocno corresponds to the index in the array. Removed allocnos have NULL element value. */ extern ira_allocno_t *ira_allocnos; /* The size of the previous array. */ extern int ira_allocnos_num; /* Map a conflict id to its corresponding ira_object structure. */ extern ira_object_t *ira_object_id_map; /* The size of the previous array. */ extern int ira_objects_num; /* The following structure represents a copy of two allocnos. The copies represent move insns or potential move insns usually because of two operand insn constraints. To remove register shuffle, we also create copies between allocno which is output of an insn and allocno becoming dead in the insn. */ struct ira_allocno_copy { /* The unique order number of the copy node starting with 0. */ int num; /* Allocnos connected by the copy. The first allocno should have smaller order number than the second one. */ ira_allocno_t first, second; /* Execution frequency of the copy. */ int freq; bool constraint_p; /* It is a move insn which is an origin of the copy. The member value for the copy representing two operand insn constraints or for the copy created to remove register shuffle is NULL. In last case the copy frequency is smaller than the corresponding insn execution frequency. */ rtx insn; /* All copies with the same allocno as FIRST are linked by the two following members. */ ira_copy_t prev_first_allocno_copy, next_first_allocno_copy; /* All copies with the same allocno as SECOND are linked by the two following members. */ ira_copy_t prev_second_allocno_copy, next_second_allocno_copy; /* Region from which given copy is originated. */ ira_loop_tree_node_t loop_tree_node; }; /* Array of references to all copies. The order number of the copy corresponds to the index in the array. Removed copies have NULL element value. */ extern ira_copy_t *ira_copies; /* Size of the previous array. */ extern int ira_copies_num; /* The following structure describes a stack slot used for spilled pseudo-registers. */ struct ira_spilled_reg_stack_slot { /* pseudo-registers assigned to the stack slot. */ bitmap_head spilled_regs; /* RTL representation of the stack slot. */ rtx mem; /* Size of the stack slot. */ unsigned int width; }; /* The number of elements in the following array. */ extern int ira_spilled_reg_stack_slots_num; /* The following array contains info about spilled pseudo-registers stack slots used in current function so far. */ extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots; /* Correspondingly overall cost of the allocation, cost of the allocnos assigned to hard-registers, cost of the allocnos assigned to memory, cost of loads, stores and register move insns generated for pseudo-register live range splitting (see ira-emit.c). */ extern int ira_overall_cost; extern int ira_reg_cost, ira_mem_cost; extern int ira_load_cost, ira_store_cost, ira_shuffle_cost; extern int ira_move_loops_num, ira_additional_jumps_num; /* This page contains a bitset implementation called 'min/max sets' used to record conflicts in IRA. They are named min/maxs set since we keep track of a minimum and a maximum bit number for each set representing the bounds of valid elements. Otherwise, the implementation resembles sbitmaps in that we store an array of integers whose bits directly represent the members of the set. */ /* The type used as elements in the array, and the number of bits in this type. */ #define IRA_INT_BITS HOST_BITS_PER_WIDE_INT #define IRA_INT_TYPE HOST_WIDE_INT /* Set, clear or test bit number I in R, a bit vector of elements with minimal index and maximal index equal correspondingly to MIN and MAX. */ #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007) #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \ (({ int _min = (MIN), _max = (MAX), _i = (I); \ if (_i < _min || _i > _max) \ { \ fprintf (stderr, \ "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \ __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \ gcc_unreachable (); \ } \ ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \ |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); })) #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \ (({ int _min = (MIN), _max = (MAX), _i = (I); \ if (_i < _min || _i > _max) \ { \ fprintf (stderr, \ "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \ __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \ gcc_unreachable (); \ } \ ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \ &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); })) #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \ (({ int _min = (MIN), _max = (MAX), _i = (I); \ if (_i < _min || _i > _max) \ { \ fprintf (stderr, \ "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \ __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \ gcc_unreachable (); \ } \ ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \ & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); })) #else #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) \ ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \ |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS))) #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) \ ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \ &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS))) #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) \ ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \ & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS))) #endif /* The iterator for min/max sets. */ typedef struct { /* Array containing the bit vector. */ IRA_INT_TYPE *vec; /* The number of the current element in the vector. */ unsigned int word_num; /* The number of bits in the bit vector. */ unsigned int nel; /* The current bit index of the bit vector. */ unsigned int bit_num; /* Index corresponding to the 1st bit of the bit vector. */ int start_val; /* The word of the bit vector currently visited. */ unsigned IRA_INT_TYPE word; } minmax_set_iterator; /* Initialize the iterator I for bit vector VEC containing minimal and maximal values MIN and MAX. */ static inline void minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min, int max) { i->vec = vec; i->word_num = 0; i->nel = max < min ? 0 : max - min + 1; i->start_val = min; i->bit_num = 0; i->word = i->nel == 0 ? 0 : vec[0]; } /* Return TRUE if we have more allocnos to visit, in which case *N is set to the number of the element to be visited. Otherwise, return FALSE. */ static inline bool minmax_set_iter_cond (minmax_set_iterator *i, int *n) { /* Skip words that are zeros. */ for (; i->word == 0; i->word = i->vec[i->word_num]) { i->word_num++; i->bit_num = i->word_num * IRA_INT_BITS; /* If we have reached the end, break. */ if (i->bit_num >= i->nel) return false; } /* Skip bits that are zero. */ for (; (i->word & 1) == 0; i->word >>= 1) i->bit_num++; *n = (int) i->bit_num + i->start_val; return true; } /* Advance to the next element in the set. */ static inline void minmax_set_iter_next (minmax_set_iterator *i) { i->word >>= 1; i->bit_num++; } /* Loop over all elements of a min/max set given by bit vector VEC and their minimal and maximal values MIN and MAX. In each iteration, N is set to the number of next allocno. ITER is an instance of minmax_set_iterator used to iterate over the set. */ #define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER) \ for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \ minmax_set_iter_cond (&(ITER), &(N)); \ minmax_set_iter_next (&(ITER))) struct target_ira_int { /* Initialized once. It is a maximal possible size of the allocated struct costs. */ int x_max_struct_costs_size; /* Allocated and initialized once, and used to initialize cost values for each insn. */ struct costs *x_init_cost; /* Allocated once, and used for temporary purposes. */ struct costs *x_temp_costs; /* Allocated once, and used for the cost calculation. */ struct costs *x_op_costs[MAX_RECOG_OPERANDS]; struct costs *x_this_op_costs[MAX_RECOG_OPERANDS]; /* Hard registers that can not be used for the register allocator for all functions of the current compilation unit. */ HARD_REG_SET x_no_unit_alloc_regs; /* Map: hard regs X modes -> set of hard registers for storing value of given mode starting with given hard register. */ HARD_REG_SET (x_ira_reg_mode_hard_regset [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES]); /* Array based on TARGET_REGISTER_MOVE_COST. Don't use ira_register_move_cost directly. Use function of ira_get_may_move_cost instead. */ move_table *x_ira_register_move_cost[MAX_MACHINE_MODE]; /* Array analogs of the macros MEMORY_MOVE_COST and REGISTER_MOVE_COST but they contain maximal cost not minimal as the previous two ones do. */ short int x_ira_max_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2]; move_table *x_ira_max_register_move_cost[MAX_MACHINE_MODE]; /* Similar to may_move_in_cost but it is calculated in IRA instead of regclass. Another difference we take only available hard registers into account to figure out that one register class is a subset of the another one. Don't use it directly. Use function of ira_get_may_move_cost instead. */ move_table *x_ira_may_move_in_cost[MAX_MACHINE_MODE]; /* Similar to may_move_out_cost but it is calculated in IRA instead of regclass. Another difference we take only available hard registers into account to figure out that one register class is a subset of the another one. Don't use it directly. Use function of ira_get_may_move_cost instead. */ move_table *x_ira_may_move_out_cost[MAX_MACHINE_MODE]; /* Similar to ira_may_move_in_cost and ira_may_move_out_cost but they return maximal cost. */ move_table *x_ira_max_may_move_in_cost[MAX_MACHINE_MODE]; move_table *x_ira_max_may_move_out_cost[MAX_MACHINE_MODE]; /* Map class->true if class is a possible allocno class, false otherwise. */ bool x_ira_reg_allocno_class_p[N_REG_CLASSES]; /* Map class->true if class is a pressure class, false otherwise. */ bool x_ira_reg_pressure_class_p[N_REG_CLASSES]; /* Register class subset relation: TRUE if the first class is a subset of the second one considering only hard registers available for the allocation. */ int x_ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES]; /* Array of the number of hard registers of given class which are available for allocation. The order is defined by the hard register numbers. */ short x_ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER]; /* Index (in ira_class_hard_regs; for given register class and hard register (in general case a hard register can belong to several register classes;. The index is negative for hard registers unavailable for the allocation. */ short x_ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER]; /* Array whose values are hard regset of hard registers available for the allocation of given register class whose HARD_REGNO_MODE_OK values for given mode are zero. */ HARD_REG_SET x_ira_prohibited_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES]; /* The value is number of elements in the subsequent array. */ int x_ira_important_classes_num; /* The array containing all non-empty classes. Such classes is important for calculation of the hard register usage costs. */ enum reg_class x_ira_important_classes[N_REG_CLASSES]; /* The array containing indexes of important classes in the previous array. The array elements are defined only for important classes. */ int x_ira_important_class_nums[N_REG_CLASSES]; /* The biggest important class inside of intersection of the two classes (that is calculated taking only hard registers available for allocation into account;. If the both classes contain no hard registers available for allocation, the value is calculated with taking all hard-registers including fixed ones into account. */ enum reg_class x_ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES]; /* True if the two classes (that is calculated taking only hard registers available for allocation into account; are intersected. */ bool x_ira_reg_classes_intersect_p[N_REG_CLASSES][N_REG_CLASSES]; /* Classes with end marker LIM_REG_CLASSES which are intersected with given class (the first index;. That includes given class itself. This is calculated taking only hard registers available for allocation into account. */ enum reg_class x_ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES]; /* The biggest (smallest) important class inside of (covering) union of the two classes (that is calculated taking only hard registers available for allocation into account). If the both classes contain no hard registers available for allocation, the value is calculated with taking all hard-registers including fixed ones into account. In other words, the value is the corresponding reg_class_subunion (reg_class_superunion) value. */ enum reg_class x_ira_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES]; enum reg_class x_ira_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES]; /* For each reg class, table listing all the classes contained in it (excluding the class itself. Non-allocatable registers are excluded from the consideration;. */ enum reg_class x_alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES]; /* Array whose values are hard regset of hard registers for which move of the hard register in given mode into itself is prohibited. */ HARD_REG_SET x_ira_prohibited_mode_move_regs[NUM_MACHINE_MODES]; /* Flag of that the above array has been initialized. */ bool x_ira_prohibited_mode_move_regs_initialized_p; }; extern struct target_ira_int default_target_ira_int; #if SWITCHABLE_TARGET extern struct target_ira_int *this_target_ira_int; #else #define this_target_ira_int (&default_target_ira_int) #endif #define ira_reg_mode_hard_regset \ (this_target_ira_int->x_ira_reg_mode_hard_regset) #define ira_register_move_cost \ (this_target_ira_int->x_ira_register_move_cost) #define ira_max_memory_move_cost \ (this_target_ira_int->x_ira_max_memory_move_cost) #define ira_max_register_move_cost \ (this_target_ira_int->x_ira_max_register_move_cost) #define ira_may_move_in_cost \ (this_target_ira_int->x_ira_may_move_in_cost) #define ira_may_move_out_cost \ (this_target_ira_int->x_ira_may_move_out_cost) #define ira_max_may_move_in_cost \ (this_target_ira_int->x_ira_max_may_move_in_cost) #define ira_max_may_move_out_cost \ (this_target_ira_int->x_ira_max_may_move_out_cost) #define ira_reg_allocno_class_p \ (this_target_ira_int->x_ira_reg_allocno_class_p) #define ira_reg_pressure_class_p \ (this_target_ira_int->x_ira_reg_pressure_class_p) #define ira_class_subset_p \ (this_target_ira_int->x_ira_class_subset_p) #define ira_non_ordered_class_hard_regs \ (this_target_ira_int->x_ira_non_ordered_class_hard_regs) #define ira_class_hard_reg_index \ (this_target_ira_int->x_ira_class_hard_reg_index) #define ira_prohibited_class_mode_regs \ (this_target_ira_int->x_ira_prohibited_class_mode_regs) #define ira_important_classes_num \ (this_target_ira_int->x_ira_important_classes_num) #define ira_important_classes \ (this_target_ira_int->x_ira_important_classes) #define ira_important_class_nums \ (this_target_ira_int->x_ira_important_class_nums) #define ira_reg_class_intersect \ (this_target_ira_int->x_ira_reg_class_intersect) #define ira_reg_classes_intersect_p \ (this_target_ira_int->x_ira_reg_classes_intersect_p) #define ira_reg_class_super_classes \ (this_target_ira_int->x_ira_reg_class_super_classes) #define ira_reg_class_subunion \ (this_target_ira_int->x_ira_reg_class_subunion) #define ira_reg_class_superunion \ (this_target_ira_int->x_ira_reg_class_superunion) #define ira_prohibited_mode_move_regs \ (this_target_ira_int->x_ira_prohibited_mode_move_regs) /* ira.c: */ extern void *ira_allocate (size_t); extern void ira_free (void *addr); extern bitmap ira_allocate_bitmap (void); extern void ira_free_bitmap (bitmap); extern void ira_print_disposition (FILE *); extern void ira_debug_disposition (void); extern void ira_debug_allocno_classes (void); extern void ira_init_register_move_cost (enum machine_mode); /* The length of the two following arrays. */ extern int ira_reg_equiv_len; /* The element value is TRUE if the corresponding regno value is invariant. */ extern bool *ira_reg_equiv_invariant_p; /* The element value is equiv constant of given pseudo-register or NULL_RTX. */ extern rtx *ira_reg_equiv_const; /* ira-build.c */ /* The current loop tree node and its regno allocno map. */ extern ira_loop_tree_node_t ira_curr_loop_tree_node; extern ira_allocno_t *ira_curr_regno_allocno_map; extern void ira_debug_copy (ira_copy_t); extern void ira_debug_copies (void); extern void ira_debug_allocno_copies (ira_allocno_t); extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t, void (*) (ira_loop_tree_node_t), void (*) (ira_loop_tree_node_t)); extern ira_allocno_t ira_parent_allocno (ira_allocno_t); extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t); extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t); extern void ira_create_allocno_objects (ira_allocno_t); extern void ira_set_allocno_class (ira_allocno_t, enum reg_class); extern bool ira_conflict_vector_profitable_p (ira_object_t, int); extern void ira_allocate_conflict_vec (ira_object_t, int); extern void ira_allocate_object_conflicts (ira_object_t, int); extern void ior_hard_reg_conflicts (ira_allocno_t, HARD_REG_SET *); extern void ira_print_expanded_allocno (ira_allocno_t); extern void ira_add_live_range_to_object (ira_object_t, int, int); extern live_range_t ira_create_live_range (ira_object_t, int, int, live_range_t); extern live_range_t ira_copy_live_range_list (live_range_t); extern live_range_t ira_merge_live_ranges (live_range_t, live_range_t); extern bool ira_live_ranges_intersect_p (live_range_t, live_range_t); extern void ira_finish_live_range (live_range_t); extern void ira_finish_live_range_list (live_range_t); extern void ira_free_allocno_updated_costs (ira_allocno_t); extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t, int, bool, rtx, ira_loop_tree_node_t); extern void ira_add_allocno_copy_to_list (ira_copy_t); extern void ira_swap_allocno_copy_ends_if_necessary (ira_copy_t); extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int, bool, rtx, ira_loop_tree_node_t); extern int *ira_allocate_cost_vector (reg_class_t); extern void ira_free_cost_vector (int *, reg_class_t); extern void ira_flattening (int, int); extern bool ira_build (void); extern void ira_destroy (void); /* ira-costs.c */ extern void ira_init_costs_once (void); extern void ira_init_costs (void); extern void ira_finish_costs_once (void); extern void ira_costs (void); extern void ira_tune_allocno_costs (void); /* ira-lives.c */ extern void ira_rebuild_start_finish_chains (void); extern void ira_print_live_range_list (FILE *, live_range_t); extern void ira_debug_live_range_list (live_range_t); extern void ira_debug_allocno_live_ranges (ira_allocno_t); extern void ira_debug_live_ranges (void); extern void ira_create_allocno_live_ranges (void); extern void ira_compress_allocno_live_ranges (void); extern void ira_finish_allocno_live_ranges (void); /* ira-conflicts.c */ extern void ira_debug_conflicts (bool); extern void ira_build_conflicts (void); /* ira-color.c */ extern void ira_debug_hard_regs_forest (void); extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool); extern void ira_reassign_conflict_allocnos (int); extern void ira_initiate_assign (void); extern void ira_finish_assign (void); extern void ira_color (void); /* ira-emit.c */ extern void ira_initiate_emit_data (void); extern void ira_finish_emit_data (void); extern void ira_emit (bool); /* Initialize register costs for MODE if necessary. */ static inline void ira_init_register_move_cost_if_necessary (enum machine_mode mode) { if (ira_register_move_cost[mode] == NULL) ira_init_register_move_cost (mode); } /* The iterator for all allocnos. */ typedef struct { /* The number of the current element in IRA_ALLOCNOS. */ int n; } ira_allocno_iterator; /* Initialize the iterator I. */ static inline void ira_allocno_iter_init (ira_allocno_iterator *i) { i->n = 0; } /* Return TRUE if we have more allocnos to visit, in which case *A is set to the allocno to be visited. Otherwise, return FALSE. */ static inline bool ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a) { int n; for (n = i->n; n < ira_allocnos_num; n++) if (ira_allocnos[n] != NULL) { *a = ira_allocnos[n]; i->n = n + 1; return true; } return false; } /* Loop over all allocnos. In each iteration, A is set to the next allocno. ITER is an instance of ira_allocno_iterator used to iterate the allocnos. */ #define FOR_EACH_ALLOCNO(A, ITER) \ for (ira_allocno_iter_init (&(ITER)); \ ira_allocno_iter_cond (&(ITER), &(A));) /* The iterator for all objects. */ typedef struct { /* The number of the current element in ira_object_id_map. */ int n; } ira_object_iterator; /* Initialize the iterator I. */ static inline void ira_object_iter_init (ira_object_iterator *i) { i->n = 0; } /* Return TRUE if we have more objects to visit, in which case *OBJ is set to the object to be visited. Otherwise, return FALSE. */ static inline bool ira_object_iter_cond (ira_object_iterator *i, ira_object_t *obj) { int n; for (n = i->n; n < ira_objects_num; n++) if (ira_object_id_map[n] != NULL) { *obj = ira_object_id_map[n]; i->n = n + 1; return true; } return false; } /* Loop over all objects. In each iteration, OBJ is set to the next object. ITER is an instance of ira_object_iterator used to iterate the objects. */ #define FOR_EACH_OBJECT(OBJ, ITER) \ for (ira_object_iter_init (&(ITER)); \ ira_object_iter_cond (&(ITER), &(OBJ));) /* The iterator for objects associated with an allocno. */ typedef struct { /* The number of the element the allocno's object array. */ int n; } ira_allocno_object_iterator; /* Initialize the iterator I. */ static inline void ira_allocno_object_iter_init (ira_allocno_object_iterator *i) { i->n = 0; } /* Return TRUE if we have more objects to visit in allocno A, in which case *O is set to the object to be visited. Otherwise, return FALSE. */ static inline bool ira_allocno_object_iter_cond (ira_allocno_object_iterator *i, ira_allocno_t a, ira_object_t *o) { *o = ALLOCNO_OBJECT (a, i->n); return i->n++ < ALLOCNO_NUM_OBJECTS (a); } /* Loop over all objects associated with allocno A. In each iteration, O is set to the next object. ITER is an instance of ira_allocno_object_iterator used to iterate the conflicts. */ #define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER) \ for (ira_allocno_object_iter_init (&(ITER)); \ ira_allocno_object_iter_cond (&(ITER), (A), &(O));) /* The iterator for copies. */ typedef struct { /* The number of the current element in IRA_COPIES. */ int n; } ira_copy_iterator; /* Initialize the iterator I. */ static inline void ira_copy_iter_init (ira_copy_iterator *i) { i->n = 0; } /* Return TRUE if we have more copies to visit, in which case *CP is set to the copy to be visited. Otherwise, return FALSE. */ static inline bool ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp) { int n; for (n = i->n; n < ira_copies_num; n++) if (ira_copies[n] != NULL) { *cp = ira_copies[n]; i->n = n + 1; return true; } return false; } /* Loop over all copies. In each iteration, C is set to the next copy. ITER is an instance of ira_copy_iterator used to iterate the copies. */ #define FOR_EACH_COPY(C, ITER) \ for (ira_copy_iter_init (&(ITER)); \ ira_copy_iter_cond (&(ITER), &(C));) /* The iterator for object conflicts. */ typedef struct { /* TRUE if the conflicts are represented by vector of allocnos. */ bool conflict_vec_p; /* The conflict vector or conflict bit vector. */ void *vec; /* The number of the current element in the vector (of type ira_object_t or IRA_INT_TYPE). */ unsigned int word_num; /* The bit vector size. It is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */ unsigned int size; /* The current bit index of bit vector. It is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */ unsigned int bit_num; /* The object id corresponding to the 1st bit of the bit vector. It is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */ int base_conflict_id; /* The word of bit vector currently visited. It is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */ unsigned IRA_INT_TYPE word; } ira_object_conflict_iterator; /* Initialize the iterator I with ALLOCNO conflicts. */ static inline void ira_object_conflict_iter_init (ira_object_conflict_iterator *i, ira_object_t obj) { i->conflict_vec_p = OBJECT_CONFLICT_VEC_P (obj); i->vec = OBJECT_CONFLICT_ARRAY (obj); i->word_num = 0; if (i->conflict_vec_p) i->size = i->bit_num = i->base_conflict_id = i->word = 0; else { if (OBJECT_MIN (obj) > OBJECT_MAX (obj)) i->size = 0; else i->size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj) + IRA_INT_BITS) / IRA_INT_BITS) * sizeof (IRA_INT_TYPE); i->bit_num = 0; i->base_conflict_id = OBJECT_MIN (obj); i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]); } } /* Return TRUE if we have more conflicting allocnos to visit, in which case *A is set to the allocno to be visited. Otherwise, return FALSE. */ static inline bool ira_object_conflict_iter_cond (ira_object_conflict_iterator *i, ira_object_t *pobj) { ira_object_t obj; if (i->conflict_vec_p) { obj = ((ira_object_t *) i->vec)[i->word_num++]; if (obj == NULL) return false; } else { unsigned IRA_INT_TYPE word = i->word; unsigned int bit_num = i->bit_num; /* Skip words that are zeros. */ for (; word == 0; word = ((IRA_INT_TYPE *) i->vec)[i->word_num]) { i->word_num++; /* If we have reached the end, break. */ if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size) return false; bit_num = i->word_num * IRA_INT_BITS; } /* Skip bits that are zero. */ for (; (word & 1) == 0; word >>= 1) bit_num++; obj = ira_object_id_map[bit_num + i->base_conflict_id]; i->bit_num = bit_num + 1; i->word = word >> 1; } *pobj = obj; return true; } /* Loop over all objects conflicting with OBJ. In each iteration, CONF is set to the next conflicting object. ITER is an instance of ira_object_conflict_iterator used to iterate the conflicts. */ #define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER) \ for (ira_object_conflict_iter_init (&(ITER), (OBJ)); \ ira_object_conflict_iter_cond (&(ITER), &(CONF));) /* The function returns TRUE if at least one hard register from ones starting with HARD_REGNO and containing value of MODE are in set HARD_REGSET. */ static inline bool ira_hard_reg_set_intersection_p (int hard_regno, enum machine_mode mode, HARD_REG_SET hard_regset) { int i; gcc_assert (hard_regno >= 0); for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--) if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i)) return true; return false; } /* Return number of hard registers in hard register SET. */ static inline int hard_reg_set_size (HARD_REG_SET set) { int i, size; for (size = i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (TEST_HARD_REG_BIT (set, i)) size++; return size; } /* The function returns TRUE if hard registers starting with HARD_REGNO and containing value of MODE are fully in set HARD_REGSET. */ static inline bool ira_hard_reg_in_set_p (int hard_regno, enum machine_mode mode, HARD_REG_SET hard_regset) { int i; ira_assert (hard_regno >= 0); for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--) if (!TEST_HARD_REG_BIT (hard_regset, hard_regno + i)) return false; return true; } /* To save memory we use a lazy approach for allocation and initialization of the cost vectors. We do this only when it is really necessary. */ /* Allocate cost vector *VEC for hard registers of ACLASS and initialize the elements by VAL if it is necessary */ static inline void ira_allocate_and_set_costs (int **vec, reg_class_t aclass, int val) { int i, *reg_costs; int len; if (*vec != NULL) return; *vec = reg_costs = ira_allocate_cost_vector (aclass); len = ira_class_hard_regs_num[(int) aclass]; for (i = 0; i < len; i++) reg_costs[i] = val; } /* Allocate cost vector *VEC for hard registers of ACLASS and copy values of vector SRC into the vector if it is necessary */ static inline void ira_allocate_and_copy_costs (int **vec, enum reg_class aclass, int *src) { int len; if (*vec != NULL || src == NULL) return; *vec = ira_allocate_cost_vector (aclass); len = ira_class_hard_regs_num[aclass]; memcpy (*vec, src, sizeof (int) * len); } /* Allocate cost vector *VEC for hard registers of ACLASS and add values of vector SRC into the vector if it is necessary */ static inline void ira_allocate_and_accumulate_costs (int **vec, enum reg_class aclass, int *src) { int i, len; if (src == NULL) return; len = ira_class_hard_regs_num[aclass]; if (*vec == NULL) { *vec = ira_allocate_cost_vector (aclass); memset (*vec, 0, sizeof (int) * len); } for (i = 0; i < len; i++) (*vec)[i] += src[i]; } /* Allocate cost vector *VEC for hard registers of ACLASS and copy values of vector SRC into the vector or initialize it by VAL (if SRC is null). */ static inline void ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class aclass, int val, int *src) { int i, *reg_costs; int len; if (*vec != NULL) return; *vec = reg_costs = ira_allocate_cost_vector (aclass); len = ira_class_hard_regs_num[aclass]; if (src != NULL) memcpy (reg_costs, src, sizeof (int) * len); else { for (i = 0; i < len; i++) reg_costs[i] = val; } }
Go to most recent revision | Compare with Previous | Blame | View Log