OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [lto/] [lto.c] - Rev 718

Go to most recent revision | Compare with Previous | Blame | View Log

/* Top-level LTO routines.
   Copyright 2009, 2010, 2011 Free Software Foundation, Inc.
   Contributed by CodeSourcery, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
 
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "opts.h"
#include "toplev.h"
#include "tree.h"
#include "tree-flow.h"
#include "diagnostic-core.h"
#include "tm.h"
#include "cgraph.h"
#include "ggc.h"
#include "tree-ssa-operands.h"
#include "tree-pass.h"
#include "langhooks.h"
#include "vec.h"
#include "bitmap.h"
#include "pointer-set.h"
#include "ipa-prop.h"
#include "common.h"
#include "debug.h"
#include "timevar.h"
#include "gimple.h"
#include "lto.h"
#include "lto-tree.h"
#include "lto-streamer.h"
#include "tree-streamer.h"
#include "splay-tree.h"
#include "params.h"
#include "ipa-inline.h"
#include "ipa-utils.h"
 
static GTY(()) tree first_personality_decl;
 
/* Returns a hash code for P.  */
 
static hashval_t
hash_name (const void *p)
{
  const struct lto_section_slot *ds = (const struct lto_section_slot *) p;
  return (hashval_t) htab_hash_string (ds->name);
}
 
 
/* Returns nonzero if P1 and P2 are equal.  */
 
static int
eq_name (const void *p1, const void *p2)
{
  const struct lto_section_slot *s1 =
    (const struct lto_section_slot *) p1;
  const struct lto_section_slot *s2 =
    (const struct lto_section_slot *) p2;
 
  return strcmp (s1->name, s2->name) == 0;
}
 
/* Free lto_section_slot */
 
static void
free_with_string (void *arg)
{
  struct lto_section_slot *s = (struct lto_section_slot *)arg;
 
  free (CONST_CAST (char *, s->name));
  free (arg);
}
 
/* Create section hash table */
 
htab_t 
lto_obj_create_section_hash_table (void)
{
  return htab_create (37, hash_name, eq_name, free_with_string);
}
 
/* Delete an allocated integer KEY in the splay tree.  */
 
static void
lto_splay_tree_delete_id (splay_tree_key key)
{
  free ((void *) key);
}
 
/* Compare splay tree node ids A and B.  */
 
static int
lto_splay_tree_compare_ids (splay_tree_key a, splay_tree_key b)
{
  unsigned HOST_WIDE_INT ai;
  unsigned HOST_WIDE_INT bi;
 
  ai = *(unsigned HOST_WIDE_INT *) a;
  bi = *(unsigned HOST_WIDE_INT *) b;
 
  if (ai < bi)
    return -1;
  else if (ai > bi)
    return 1;
  return 0;
}
 
/* Look up splay tree node by ID in splay tree T.  */
 
static splay_tree_node
lto_splay_tree_lookup (splay_tree t, unsigned HOST_WIDE_INT id)
{
  return splay_tree_lookup (t, (splay_tree_key) &id);
}
 
/* Check if KEY has ID.  */
 
static bool
lto_splay_tree_id_equal_p (splay_tree_key key, unsigned HOST_WIDE_INT id)
{
  return *(unsigned HOST_WIDE_INT *) key == id;
}
 
/* Insert a splay tree node into tree T with ID as key and FILE_DATA as value. 
   The ID is allocated separately because we need HOST_WIDE_INTs which may
   be wider than a splay_tree_key. */
 
static void
lto_splay_tree_insert (splay_tree t, unsigned HOST_WIDE_INT id,
		       struct lto_file_decl_data *file_data)
{
  unsigned HOST_WIDE_INT *idp = XCNEW (unsigned HOST_WIDE_INT);
  *idp = id;
  splay_tree_insert (t, (splay_tree_key) idp, (splay_tree_value) file_data);
}
 
/* Create a splay tree.  */
 
static splay_tree
lto_splay_tree_new (void)
{
  return splay_tree_new (lto_splay_tree_compare_ids,
	 	         lto_splay_tree_delete_id,
			 NULL);
}
 
/* Read the constructors and inits.  */
 
static void
lto_materialize_constructors_and_inits (struct lto_file_decl_data * file_data)
{
  size_t len;
  const char *data = lto_get_section_data (file_data, 
					   LTO_section_static_initializer,
					   NULL, &len);
  lto_input_constructors_and_inits (file_data, data);
  lto_free_section_data (file_data, LTO_section_static_initializer, NULL,
			 data, len);
}
 
/* Return true when NODE has a clone that is analyzed (i.e. we need
   to load its body even if the node itself is not needed).  */
 
static bool
has_analyzed_clone_p (struct cgraph_node *node)
{
  struct cgraph_node *orig = node;
  node = node->clones;
  if (node)
    while (node != orig)
      {
	if (node->analyzed)
	  return true;
	if (node->clones)
	  node = node->clones;
	else if (node->next_sibling_clone)
	  node = node->next_sibling_clone;
	else
	  {
	    while (node != orig && !node->next_sibling_clone)
	      node = node->clone_of;
	    if (node != orig)
	      node = node->next_sibling_clone;
	  }
      }
  return false;
}
 
/* Read the function body for the function associated with NODE.  */
 
static void
lto_materialize_function (struct cgraph_node *node)
{
  tree decl;
  struct lto_file_decl_data *file_data;
  const char *data, *name;
  size_t len;
 
  decl = node->decl;
  /* Read in functions with body (analyzed nodes)
     and also functions that are needed to produce virtual clones.  */
  if (cgraph_function_with_gimple_body_p (node) || has_analyzed_clone_p (node))
    {
      /* Clones and thunks don't need to be read.  */
      if (node->clone_of)
	return;
 
      /* Load the function body only if not operating in WPA mode.  In
	 WPA mode, the body of the function is not needed.  */
      if (!flag_wpa)
	{
	  file_data = node->local.lto_file_data;
	  name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
 
	  /* We may have renamed the declaration, e.g., a static function.  */
	  name = lto_get_decl_name_mapping (file_data, name);
 
	  data = lto_get_section_data (file_data, LTO_section_function_body,
				       name, &len);
	  if (!data)
	    fatal_error ("%s: section %s is missing",
			 file_data->file_name,
			 name);
 
	  gcc_assert (DECL_STRUCT_FUNCTION (decl) == NULL);
 
	  allocate_struct_function (decl, false);
	  announce_function (decl);
	  lto_input_function_body (file_data, decl, data);
	  if (DECL_FUNCTION_PERSONALITY (decl) && !first_personality_decl)
	    first_personality_decl = DECL_FUNCTION_PERSONALITY (decl);
	  lto_stats.num_function_bodies++;
	  lto_free_section_data (file_data, LTO_section_function_body, name,
				 data, len);
	  ggc_collect ();
	}
    }
 
  /* Let the middle end know about the function.  */
  rest_of_decl_compilation (decl, 1, 0);
}
 
 
/* Decode the content of memory pointed to by DATA in the in decl
   state object STATE. DATA_IN points to a data_in structure for
   decoding. Return the address after the decoded object in the
   input.  */
 
static const uint32_t *
lto_read_in_decl_state (struct data_in *data_in, const uint32_t *data,
			struct lto_in_decl_state *state)
{
  uint32_t ix;
  tree decl;
  uint32_t i, j;
 
  ix = *data++;
  decl = streamer_tree_cache_get (data_in->reader_cache, ix);
  if (TREE_CODE (decl) != FUNCTION_DECL)
    {
      gcc_assert (decl == void_type_node);
      decl = NULL_TREE;
    }
  state->fn_decl = decl;
 
  for (i = 0; i < LTO_N_DECL_STREAMS; i++)
    {
      uint32_t size = *data++;
      tree *decls = ggc_alloc_vec_tree (size);
 
      for (j = 0; j < size; j++)
	decls[j] = streamer_tree_cache_get (data_in->reader_cache, data[j]);
 
      state->streams[i].size = size;
      state->streams[i].trees = decls;
      data += size;
    }
 
  return data;
}
 
/* A hashtable of trees that potentially refer to variables or functions
   that must be replaced with their prevailing variant.  */
static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node))) htab_t
  tree_with_vars;
 
/* Remember that T is a tree that (potentially) refers to a variable
   or function decl that may be replaced with its prevailing variant.  */
static void
remember_with_vars (tree t)
{
  *(tree *) htab_find_slot (tree_with_vars, t, INSERT) = t;
}
 
#define GIMPLE_REGISTER_TYPE(tt) \
   (TREE_VISITED (tt) ? gimple_register_type (tt) : tt)
 
#define LTO_FIXUP_TREE(tt) \
  do \
    { \
      if (tt) \
	{ \
	  if (TYPE_P (tt)) \
	    (tt) = GIMPLE_REGISTER_TYPE (tt); \
	  if (VAR_OR_FUNCTION_DECL_P (tt) && TREE_PUBLIC (tt)) \
	    remember_with_vars (t); \
	} \
    } while (0)
 
static void lto_fixup_types (tree);
 
/* Fix up fields of a tree_typed T.  */
 
static void
lto_ft_typed (tree t)
{
  LTO_FIXUP_TREE (TREE_TYPE (t));
}
 
/* Fix up fields of a tree_common T.  */
 
static void
lto_ft_common (tree t)
{
  lto_ft_typed (t);
  LTO_FIXUP_TREE (TREE_CHAIN (t));
}
 
/* Fix up fields of a decl_minimal T.  */
 
static void
lto_ft_decl_minimal (tree t)
{
  lto_ft_common (t);
  LTO_FIXUP_TREE (DECL_NAME (t));
  LTO_FIXUP_TREE (DECL_CONTEXT (t));
}
 
/* Fix up fields of a decl_common T.  */
 
static void
lto_ft_decl_common (tree t)
{
  lto_ft_decl_minimal (t);
  LTO_FIXUP_TREE (DECL_SIZE (t));
  LTO_FIXUP_TREE (DECL_SIZE_UNIT (t));
  LTO_FIXUP_TREE (DECL_INITIAL (t));
  LTO_FIXUP_TREE (DECL_ATTRIBUTES (t));
  LTO_FIXUP_TREE (DECL_ABSTRACT_ORIGIN (t));
}
 
/* Fix up fields of a decl_with_vis T.  */
 
static void
lto_ft_decl_with_vis (tree t)
{
  lto_ft_decl_common (t);
 
  /* Accessor macro has side-effects, use field-name here. */
  LTO_FIXUP_TREE (t->decl_with_vis.assembler_name);
  LTO_FIXUP_TREE (DECL_SECTION_NAME (t));
}
 
/* Fix up fields of a decl_non_common T.  */
 
static void
lto_ft_decl_non_common (tree t)
{
  lto_ft_decl_with_vis (t);
  LTO_FIXUP_TREE (DECL_ARGUMENT_FLD (t));
  LTO_FIXUP_TREE (DECL_RESULT_FLD (t));
  LTO_FIXUP_TREE (DECL_VINDEX (t));
  /* The C frontends may create exact duplicates for DECL_ORIGINAL_TYPE
     like for 'typedef enum foo foo'.  We have no way of avoiding to
     merge them and dwarf2out.c cannot deal with this,
     so fix this up by clearing DECL_ORIGINAL_TYPE in this case.  */
  if (TREE_CODE (t) == TYPE_DECL
      && DECL_ORIGINAL_TYPE (t) == TREE_TYPE (t))
    DECL_ORIGINAL_TYPE (t) = NULL_TREE;
}
 
/* Fix up fields of a decl_non_common T.  */
 
static void
lto_ft_function (tree t)
{
  lto_ft_decl_non_common (t);
  LTO_FIXUP_TREE (DECL_FUNCTION_PERSONALITY (t));
}
 
/* Fix up fields of a field_decl T.  */
 
static void
lto_ft_field_decl (tree t)
{
  lto_ft_decl_common (t);
  LTO_FIXUP_TREE (DECL_FIELD_OFFSET (t));
  LTO_FIXUP_TREE (DECL_BIT_FIELD_TYPE (t));
  LTO_FIXUP_TREE (DECL_QUALIFIER (t));
  LTO_FIXUP_TREE (DECL_FIELD_BIT_OFFSET (t));
  LTO_FIXUP_TREE (DECL_FCONTEXT (t));
}
 
/* Fix up fields of a type T.  */
 
static void
lto_ft_type (tree t)
{
  lto_ft_common (t);
  LTO_FIXUP_TREE (TYPE_CACHED_VALUES (t));
  LTO_FIXUP_TREE (TYPE_SIZE (t));
  LTO_FIXUP_TREE (TYPE_SIZE_UNIT (t));
  LTO_FIXUP_TREE (TYPE_ATTRIBUTES (t));
  LTO_FIXUP_TREE (TYPE_NAME (t));
 
  /* Accessors are for derived node types only. */
  if (!POINTER_TYPE_P (t))
    LTO_FIXUP_TREE (TYPE_MINVAL (t));
  LTO_FIXUP_TREE (TYPE_MAXVAL (t));
 
  /* Accessor is for derived node types only. */
  LTO_FIXUP_TREE (t->type_non_common.binfo);
 
  LTO_FIXUP_TREE (TYPE_CONTEXT (t));
}
 
/* Fix up fields of a BINFO T.  */
 
static void
lto_ft_binfo (tree t)
{
  unsigned HOST_WIDE_INT i, n;
  tree base, saved_base;
 
  lto_ft_common (t);
  LTO_FIXUP_TREE (BINFO_VTABLE (t));
  LTO_FIXUP_TREE (BINFO_OFFSET (t));
  LTO_FIXUP_TREE (BINFO_VIRTUALS (t));
  LTO_FIXUP_TREE (BINFO_VPTR_FIELD (t));
  n = VEC_length (tree, BINFO_BASE_ACCESSES (t));
  for (i = 0; i < n; i++)
    {
      saved_base = base = BINFO_BASE_ACCESS (t, i);
      LTO_FIXUP_TREE (base);
      if (base != saved_base)
	VEC_replace (tree, BINFO_BASE_ACCESSES (t), i, base);
    }
  LTO_FIXUP_TREE (BINFO_INHERITANCE_CHAIN (t));
  LTO_FIXUP_TREE (BINFO_SUBVTT_INDEX (t));
  LTO_FIXUP_TREE (BINFO_VPTR_INDEX (t));
  n = BINFO_N_BASE_BINFOS (t);
  for (i = 0; i < n; i++)
    {
      saved_base = base = BINFO_BASE_BINFO (t, i);
      LTO_FIXUP_TREE (base);
      if (base != saved_base)
	VEC_replace (tree, BINFO_BASE_BINFOS (t), i, base);
    }
}
 
/* Fix up fields of a CONSTRUCTOR T.  */
 
static void
lto_ft_constructor (tree t)
{
  unsigned HOST_WIDE_INT idx;
  constructor_elt *ce;
 
  lto_ft_typed (t);
 
  for (idx = 0;
       VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (t), idx, ce);
       idx++)
    {
      LTO_FIXUP_TREE (ce->index);
      LTO_FIXUP_TREE (ce->value);
    }
}
 
/* Fix up fields of an expression tree T.  */
 
static void
lto_ft_expr (tree t)
{
  int i;
  lto_ft_typed (t);
  for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
    LTO_FIXUP_TREE (TREE_OPERAND (t, i));
}
 
/* Given a tree T fixup fields of T by replacing types with their merged
   variant and other entities by an equal entity from an earlier compilation
   unit, or an entity being canonical in a different way.  This includes
   for instance integer or string constants.  */
 
static void
lto_fixup_types (tree t)
{
  switch (TREE_CODE (t))
    {
    case IDENTIFIER_NODE:
      break;
 
    case TREE_LIST:
      LTO_FIXUP_TREE (TREE_VALUE (t));
      LTO_FIXUP_TREE (TREE_PURPOSE (t));
      LTO_FIXUP_TREE (TREE_CHAIN (t));
      break;
 
    case FIELD_DECL:
      lto_ft_field_decl (t);
      break;
 
    case LABEL_DECL:
    case CONST_DECL:
    case PARM_DECL:
    case RESULT_DECL:
    case IMPORTED_DECL:
      lto_ft_decl_common (t);
      break;
 
    case VAR_DECL:
      lto_ft_decl_with_vis (t);
      break;
 
    case TYPE_DECL:
      lto_ft_decl_non_common (t);
      break;
 
    case FUNCTION_DECL:
      lto_ft_function (t);
      break;
 
    case TREE_BINFO:
      lto_ft_binfo (t);
      break;
 
    case PLACEHOLDER_EXPR:
      lto_ft_common (t);
      break;
 
    case BLOCK:
    case TRANSLATION_UNIT_DECL:
    case OPTIMIZATION_NODE:
    case TARGET_OPTION_NODE:
      break;
 
    default:
      if (TYPE_P (t))
	lto_ft_type (t);
      else if (TREE_CODE (t) == CONSTRUCTOR)
	lto_ft_constructor (t);
      else if (CONSTANT_CLASS_P (t))
	LTO_FIXUP_TREE (TREE_TYPE (t));
      else if (EXPR_P (t))
	{
	  lto_ft_expr (t);
	}
      else
	{
	  remember_with_vars (t);
	}
    }
}
 
 
/* Return the resolution for the decl with index INDEX from DATA_IN. */
 
static enum ld_plugin_symbol_resolution
get_resolution (struct data_in *data_in, unsigned index)
{
  if (data_in->globals_resolution)
    {
      ld_plugin_symbol_resolution_t ret;
      /* We can have references to not emitted functions in
	 DECL_FUNCTION_PERSONALITY at least.  So we can and have
	 to indeed return LDPR_UNKNOWN in some cases.   */
      if (VEC_length (ld_plugin_symbol_resolution_t,
		      data_in->globals_resolution) <= index)
	return LDPR_UNKNOWN;
      ret = VEC_index (ld_plugin_symbol_resolution_t,
		       data_in->globals_resolution,
		       index);
      return ret;
    }
  else
    /* Delay resolution finding until decl merging.  */
    return LDPR_UNKNOWN;
}
 
 
/* Register DECL with the global symbol table and change its
   name if necessary to avoid name clashes for static globals across
   different files.  */
 
static void
lto_register_var_decl_in_symtab (struct data_in *data_in, tree decl)
{
  tree context;
 
  /* Variable has file scope, not local. Need to ensure static variables
     between different files don't clash unexpectedly.  */
  if (!TREE_PUBLIC (decl)
      && !((context = decl_function_context (decl))
	   && auto_var_in_fn_p (decl, context)))
    {
      /* ??? We normally pre-mangle names before we serialize them
	 out.  Here, in lto1, we do not know the language, and
	 thus cannot do the mangling again. Instead, we just
	 append a suffix to the mangled name.  The resulting name,
	 however, is not a properly-formed mangled name, and will
	 confuse any attempt to unmangle it.  */
      const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
      char *label;
 
      ASM_FORMAT_PRIVATE_NAME (label, name, DECL_UID (decl));
      SET_DECL_ASSEMBLER_NAME (decl, get_identifier (label));
      rest_of_decl_compilation (decl, 1, 0);
      VEC_safe_push (tree, gc, lto_global_var_decls, decl);
    }
 
  /* If this variable has already been declared, queue the
     declaration for merging.  */
  if (TREE_PUBLIC (decl))
    {
      unsigned ix;
      if (!streamer_tree_cache_lookup (data_in->reader_cache, decl, &ix))
	gcc_unreachable ();
      lto_symtab_register_decl (decl, get_resolution (data_in, ix),
				data_in->file_data);
    }
}
 
 
/* Register DECL with the global symbol table and change its
   name if necessary to avoid name clashes for static globals across
   different files.  DATA_IN contains descriptors and tables for the
   file being read.  */
 
static void
lto_register_function_decl_in_symtab (struct data_in *data_in, tree decl)
{
  /* Need to ensure static entities between different files
     don't clash unexpectedly.  */
  if (!TREE_PUBLIC (decl))
    {
      /* We must not use the DECL_ASSEMBLER_NAME macro here, as it
	 may set the assembler name where it was previously empty.  */
      tree old_assembler_name = decl->decl_with_vis.assembler_name;
 
      /* FIXME lto: We normally pre-mangle names before we serialize
	 them out.  Here, in lto1, we do not know the language, and
	 thus cannot do the mangling again. Instead, we just append a
	 suffix to the mangled name.  The resulting name, however, is
	 not a properly-formed mangled name, and will confuse any
	 attempt to unmangle it.  */
      const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
      char *label;
 
      ASM_FORMAT_PRIVATE_NAME (label, name, DECL_UID (decl));
      SET_DECL_ASSEMBLER_NAME (decl, get_identifier (label));
 
      /* We may arrive here with the old assembler name not set
	 if the function body is not needed, e.g., it has been
	 inlined away and does not appear in the cgraph.  */
      if (old_assembler_name)
	{
	  tree new_assembler_name = DECL_ASSEMBLER_NAME (decl);
 
	  /* Make the original assembler name available for later use.
	     We may have used it to indicate the section within its
	     object file where the function body may be found.
	     FIXME lto: Find a better way to maintain the function decl
	     to body section mapping so we don't need this hack.  */
	  lto_record_renamed_decl (data_in->file_data,
				   IDENTIFIER_POINTER (old_assembler_name),
				   IDENTIFIER_POINTER (new_assembler_name));
	}
    }
 
  /* If this variable has already been declared, queue the
     declaration for merging.  */
  if (TREE_PUBLIC (decl) && !DECL_ABSTRACT (decl))
    {
      unsigned ix;
      if (!streamer_tree_cache_lookup (data_in->reader_cache, decl, &ix))
	gcc_unreachable ();
      lto_symtab_register_decl (decl, get_resolution (data_in, ix),
				data_in->file_data);
    }
}
 
 
/* Given a streamer cache structure DATA_IN (holding a sequence of trees
   for one compilation unit) go over all trees starting at index FROM until the
   end of the sequence and replace fields of those trees, and the trees
   themself with their canonical variants as per gimple_register_type.  */
 
static void
uniquify_nodes (struct data_in *data_in, unsigned from)
{
  struct streamer_tree_cache_d *cache = data_in->reader_cache;
  unsigned len = VEC_length (tree, cache->nodes);
  unsigned i;
 
  /* Go backwards because children streamed for the first time come
     as part of their parents, and hence are created after them.  */
 
  /* First register all the types in the cache.  This makes sure to
     have the original structure in the type cycles when registering
     them and computing hashes.  */
  for (i = len; i-- > from;)
    {
      tree t = VEC_index (tree, cache->nodes, i);
      if (t && TYPE_P (t))
	{
	  tree newt = gimple_register_type (t);
	  /* Mark non-prevailing types so we fix them up.  No need
	     to reset that flag afterwards - nothing that refers
	     to those types is left and they are collected.  */
	  if (newt != t)
	    TREE_VISITED (t) = 1;
	}
    }
 
  /* Second fixup all trees in the new cache entries.  */
  for (i = len; i-- > from;)
    {
      tree t = VEC_index (tree, cache->nodes, i);
      tree oldt = t;
      if (!t)
	continue;
 
      /* First fixup the fields of T.  */
      lto_fixup_types (t);
 
      if (!TYPE_P (t))
	continue;
 
      /* Now try to find a canonical variant of T itself.  */
      t = GIMPLE_REGISTER_TYPE (t);
 
      if (t == oldt)
	{
	  /* The following re-creates proper variant lists while fixing up
	     the variant leaders.  We do not stream TYPE_NEXT_VARIANT so the
	     variant list state before fixup is broken.  */
	  tree tem, mv;
 
	  /* Remove us from our main variant list if we are not the
	     variant leader.  */
	  if (TYPE_MAIN_VARIANT (t) != t)
	    {
	      tem = TYPE_MAIN_VARIANT (t);
	      while (tem && TYPE_NEXT_VARIANT (tem) != t)
		tem = TYPE_NEXT_VARIANT (tem);
	      if (tem)
		TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
	      TYPE_NEXT_VARIANT (t) = NULL_TREE;
	    }
 
	  /* Query our new main variant.  */
	  mv = GIMPLE_REGISTER_TYPE (TYPE_MAIN_VARIANT (t));
 
	  /* If we were the variant leader and we get replaced ourselves drop
	     all variants from our list.  */
	  if (TYPE_MAIN_VARIANT (t) == t
	      && mv != t)
	    {
	      tem = t;
	      while (tem)
		{
		  tree tem2 = TYPE_NEXT_VARIANT (tem);
		  TYPE_NEXT_VARIANT (tem) = NULL_TREE;
		  tem = tem2;
		}
	    }
 
	  /* If we are not our own variant leader link us into our new leaders
	     variant list.  */
	  if (mv != t)
	    {
	      TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (mv);
	      TYPE_NEXT_VARIANT (mv) = t;
	      if (RECORD_OR_UNION_TYPE_P (t))
		TYPE_BINFO (t) = TYPE_BINFO (mv);
	    }
 
	  /* Finally adjust our main variant and fix it up.  */
	  TYPE_MAIN_VARIANT (t) = mv;
 
	  /* The following reconstructs the pointer chains
	     of the new pointed-to type if we are a main variant.  We do
	     not stream those so they are broken before fixup.  */
	  if (TREE_CODE (t) == POINTER_TYPE
	      && TYPE_MAIN_VARIANT (t) == t)
	    {
	      TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (TREE_TYPE (t));
	      TYPE_POINTER_TO (TREE_TYPE (t)) = t;
	    }
	  else if (TREE_CODE (t) == REFERENCE_TYPE
		   && TYPE_MAIN_VARIANT (t) == t)
	    {
	      TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (TREE_TYPE (t));
	      TYPE_REFERENCE_TO (TREE_TYPE (t)) = t;
	    }
	}
 
      else
	{
	  if (RECORD_OR_UNION_TYPE_P (t))
	    {
	      tree f1, f2;
	      if (TYPE_FIELDS (t) != TYPE_FIELDS (oldt))
		for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (oldt);
		     f1 && f2; f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
		  {
		    unsigned ix;
		    gcc_assert (f1 != f2 && DECL_NAME (f1) == DECL_NAME (f2));
		    if (!streamer_tree_cache_lookup (cache, f2, &ix))
		      gcc_unreachable ();
		    /* If we're going to replace an element which we'd
		       still visit in the next iterations, we wouldn't
		       handle it, so do it here.  We do have to handle it
		       even though the field_decl itself will be removed,
		       as it could refer to e.g. integer_cst which we
		       wouldn't reach via any other way, hence they
		       (and their type) would stay uncollected.  */
		    /* ???  We should rather make sure to replace all
		       references to f2 with f1.  That means handling
		       COMPONENT_REFs and CONSTRUCTOR elements in
		       lto_fixup_types and special-case the field-decl
		       operand handling.  */
		    if (ix < i)
		      lto_fixup_types (f2);
		    streamer_tree_cache_insert_at (cache, f1, ix);
		  }
	    }
 
	  /* If we found a tree that is equal to oldt replace it in the
	     cache, so that further users (in the various LTO sections)
	     make use of it.  */
	  streamer_tree_cache_insert_at (cache, t, i);
	}
    }
 
  /* Finally compute the canonical type of all TREE_TYPEs and register
     VAR_DECL and FUNCTION_DECL nodes in the symbol table.
     From this point there are no longer any types with
     TYPE_STRUCTURAL_EQUALITY_P and its type-based alias problems.
     This step requires the TYPE_POINTER_TO lists being present, so
     make sure it is done last.  */
  for (i = len; i-- > from;)
    {
      tree t = VEC_index (tree, cache->nodes, i);
      if (t == NULL_TREE)
	continue;
 
      if (TREE_CODE (t) == VAR_DECL)
	lto_register_var_decl_in_symtab (data_in, t);
      else if (TREE_CODE (t) == FUNCTION_DECL && !DECL_BUILT_IN (t))
	lto_register_function_decl_in_symtab (data_in, t);
      else if (!flag_wpa
	       && TREE_CODE (t) == TYPE_DECL)
	debug_hooks->type_decl (t, !DECL_FILE_SCOPE_P (t));
      else if (TYPE_P (t) && !TYPE_CANONICAL (t))
	TYPE_CANONICAL (t) = gimple_register_canonical_type (t);
    }
}
 
 
/* Read all the symbols from buffer DATA, using descriptors in DECL_DATA.
   RESOLUTIONS is the set of symbols picked by the linker (read from the
   resolution file when the linker plugin is being used).  */
 
static void
lto_read_decls (struct lto_file_decl_data *decl_data, const void *data,
		VEC(ld_plugin_symbol_resolution_t,heap) *resolutions)
{
  const struct lto_decl_header *header = (const struct lto_decl_header *) data;
  const int decl_offset = sizeof (struct lto_decl_header);
  const int main_offset = decl_offset + header->decl_state_size;
  const int string_offset = main_offset + header->main_size;
  struct lto_input_block ib_main;
  struct data_in *data_in;
  unsigned int i;
  const uint32_t *data_ptr, *data_end;
  uint32_t num_decl_states;
 
  LTO_INIT_INPUT_BLOCK (ib_main, (const char *) data + main_offset, 0,
			header->main_size);
 
  data_in = lto_data_in_create (decl_data, (const char *) data + string_offset,
				header->string_size, resolutions);
 
  /* We do not uniquify the pre-loaded cache entries, those are middle-end
     internal types that should not be merged.  */
 
  /* Read the global declarations and types.  */
  while (ib_main.p < ib_main.len)
    {
      tree t;
      unsigned from = VEC_length (tree, data_in->reader_cache->nodes);
      t = stream_read_tree (&ib_main, data_in);
      gcc_assert (t && ib_main.p <= ib_main.len);
      uniquify_nodes (data_in, from);
    }
 
  /* Read in lto_in_decl_state objects.  */
  data_ptr = (const uint32_t *) ((const char*) data + decl_offset); 
  data_end =
     (const uint32_t *) ((const char*) data_ptr + header->decl_state_size);
  num_decl_states = *data_ptr++;
 
  gcc_assert (num_decl_states > 0);
  decl_data->global_decl_state = lto_new_in_decl_state ();
  data_ptr = lto_read_in_decl_state (data_in, data_ptr,
				     decl_data->global_decl_state);
 
  /* Read in per-function decl states and enter them in hash table.  */
  decl_data->function_decl_states =
    htab_create_ggc (37, lto_hash_in_decl_state, lto_eq_in_decl_state, NULL);
 
  for (i = 1; i < num_decl_states; i++)
    {
      struct lto_in_decl_state *state = lto_new_in_decl_state ();
      void **slot;
 
      data_ptr = lto_read_in_decl_state (data_in, data_ptr, state);
      slot = htab_find_slot (decl_data->function_decl_states, state, INSERT);
      gcc_assert (*slot == NULL);
      *slot = state;
    }
 
  if (data_ptr != data_end)
    internal_error ("bytecode stream: garbage at the end of symbols section");
 
  /* Set the current decl state to be the global state. */
  decl_data->current_decl_state = decl_data->global_decl_state;
 
  lto_data_in_delete (data_in);
}
 
/* Custom version of strtoll, which is not portable.  */
 
static HOST_WIDEST_INT
lto_parse_hex (const char *p)
{
  HOST_WIDEST_INT ret = 0;
 
  for (; *p != '\0'; ++p)
    {
      char c = *p;
      unsigned char part;
      ret <<= 4;
      if (c >= '0' && c <= '9')
        part = c - '0';
      else if (c >= 'a' && c <= 'f')
        part = c - 'a' + 10;
      else if (c >= 'A' && c <= 'F')
        part = c - 'A' + 10;
      else
        internal_error ("could not parse hex number");
      ret |= part;
    }
 
  return ret;
}
 
/* Read resolution for file named FILE_NAME. The resolution is read from
   RESOLUTION. */
 
static void
lto_resolution_read (splay_tree file_ids, FILE *resolution, lto_file *file)
{
  /* We require that objects in the resolution file are in the same
     order as the lto1 command line. */
  unsigned int name_len;
  char *obj_name;
  unsigned int num_symbols;
  unsigned int i;
  struct lto_file_decl_data *file_data;
  unsigned max_index = 0;
  splay_tree_node nd = NULL; 
 
  if (!resolution)
    return;
 
  name_len = strlen (file->filename);
  obj_name = XNEWVEC (char, name_len + 1);
  fscanf (resolution, " ");   /* Read white space. */
 
  fread (obj_name, sizeof (char), name_len, resolution);
  obj_name[name_len] = '\0';
  if (filename_cmp (obj_name, file->filename) != 0)
    internal_error ("unexpected file name %s in linker resolution file. "
		    "Expected %s", obj_name, file->filename);
  if (file->offset != 0)
    {
      int t;
      char offset_p[17];
      HOST_WIDEST_INT offset;
      t = fscanf (resolution, "@0x%16s", offset_p);
      if (t != 1)
        internal_error ("could not parse file offset");
      offset = lto_parse_hex (offset_p);
      if (offset != file->offset)
        internal_error ("unexpected offset");
    }
 
  free (obj_name);
 
  fscanf (resolution, "%u", &num_symbols);
 
  for (i = 0; i < num_symbols; i++)
    {
      int t;
      unsigned index;
      unsigned HOST_WIDE_INT id;
      char r_str[27];
      enum ld_plugin_symbol_resolution r = (enum ld_plugin_symbol_resolution) 0;
      unsigned int j;
      unsigned int lto_resolution_str_len =
	sizeof (lto_resolution_str) / sizeof (char *);
 
      t = fscanf (resolution, "%u " HOST_WIDE_INT_PRINT_HEX_PURE " %26s %*[^\n]\n", 
		  &index, &id, r_str);
      if (t != 3)
        internal_error ("invalid line in the resolution file");
      if (index > max_index)
	max_index = index;
 
      for (j = 0; j < lto_resolution_str_len; j++)
	{
	  if (strcmp (lto_resolution_str[j], r_str) == 0)
	    {
	      r = (enum ld_plugin_symbol_resolution) j;
	      break;
	    }
	}
      if (j == lto_resolution_str_len)
	internal_error ("invalid resolution in the resolution file");
 
      if (!(nd && lto_splay_tree_id_equal_p (nd->key, id)))
	{
	  nd = lto_splay_tree_lookup (file_ids, id);
	  if (nd == NULL)
	    internal_error ("resolution sub id " HOST_WIDE_INT_PRINT_HEX_PURE
			    " not in object file", id);
	}
 
      file_data = (struct lto_file_decl_data *)nd->value;
      VEC_safe_grow_cleared (ld_plugin_symbol_resolution_t, heap, 
			     file_data->resolutions,
			     max_index + 1);
      VEC_replace (ld_plugin_symbol_resolution_t, 
		   file_data->resolutions, index, r);
    }
}
 
/* List of file_decl_datas */
struct file_data_list
  {
    struct lto_file_decl_data *first, *last;
  };
 
/* Is the name for a id'ed LTO section? */
 
static int 
lto_section_with_id (const char *name, unsigned HOST_WIDE_INT *id)
{
  const char *s;
 
  if (strncmp (name, LTO_SECTION_NAME_PREFIX, strlen (LTO_SECTION_NAME_PREFIX)))
    return 0;
  s = strrchr (name, '.');
  return s && sscanf (s, "." HOST_WIDE_INT_PRINT_HEX_PURE, id) == 1;
}
 
/* Create file_data of each sub file id */
 
static int 
create_subid_section_table (struct lto_section_slot *ls, splay_tree file_ids,
                            struct file_data_list *list)
{
  struct lto_section_slot s_slot, *new_slot;
  unsigned HOST_WIDE_INT id;
  splay_tree_node nd;
  void **hash_slot;
  char *new_name;
  struct lto_file_decl_data *file_data;
 
  if (!lto_section_with_id (ls->name, &id))
    return 1;
 
  /* Find hash table of sub module id */
  nd = lto_splay_tree_lookup (file_ids, id);
  if (nd != NULL)
    {
      file_data = (struct lto_file_decl_data *)nd->value;
    }
  else
    {
      file_data = ggc_alloc_lto_file_decl_data ();
      memset(file_data, 0, sizeof (struct lto_file_decl_data));
      file_data->id = id;
      file_data->section_hash_table = lto_obj_create_section_hash_table ();;
      lto_splay_tree_insert (file_ids, id, file_data);
 
      /* Maintain list in linker order */
      if (!list->first)
        list->first = file_data;
      if (list->last)
        list->last->next = file_data;
      list->last = file_data;
    }
 
  /* Copy section into sub module hash table */
  new_name = XDUPVEC (char, ls->name, strlen (ls->name) + 1);
  s_slot.name = new_name;
  hash_slot = htab_find_slot (file_data->section_hash_table, &s_slot, INSERT);
  gcc_assert (*hash_slot == NULL);
 
  new_slot = XDUP (struct lto_section_slot, ls);
  new_slot->name = new_name;
  *hash_slot = new_slot;
  return 1;
}
 
/* Read declarations and other initializations for a FILE_DATA. */
 
static void
lto_file_finalize (struct lto_file_decl_data *file_data, lto_file *file)
{
  const char *data;
  size_t len;
 
  file_data->renaming_hash_table = lto_create_renaming_table ();
  file_data->file_name = file->filename;
  data = lto_get_section_data (file_data, LTO_section_decls, NULL, &len);
  if (data == NULL)
    {
      internal_error ("cannot read LTO decls from %s", file_data->file_name);
      return;
    }
  lto_read_decls (file_data, data, file_data->resolutions);
  lto_free_section_data (file_data, LTO_section_decls, NULL, data, len);
}
 
/* Finalize FILE_DATA in FILE and increase COUNT. */
 
static int 
lto_create_files_from_ids (lto_file *file, struct lto_file_decl_data *file_data, 
			   int *count)
{
  lto_file_finalize (file_data, file);
  if (cgraph_dump_file)
    fprintf (cgraph_dump_file, "Creating file %s with sub id " HOST_WIDE_INT_PRINT_HEX "\n", 
	     file_data->file_name, file_data->id);
  (*count)++;
  return 0;
}
 
/* Generate a TREE representation for all types and external decls
   entities in FILE.  
 
   Read all of the globals out of the file.  Then read the cgraph
   and process the .o index into the cgraph nodes so that it can open
   the .o file to load the functions and ipa information.   */
 
static struct lto_file_decl_data *
lto_file_read (lto_file *file, FILE *resolution_file, int *count)
{
  struct lto_file_decl_data *file_data = NULL;
  splay_tree file_ids;
  htab_t section_hash_table;
  struct lto_section_slot *section;
  struct file_data_list file_list;
  struct lto_section_list section_list;
 
  memset (&section_list, 0, sizeof (struct lto_section_list)); 
  section_hash_table = lto_obj_build_section_table (file, &section_list);
 
  /* Find all sub modules in the object and put their sections into new hash
     tables in a splay tree. */
  file_ids = lto_splay_tree_new ();
  memset (&file_list, 0, sizeof (struct file_data_list));
  for (section = section_list.first; section != NULL; section = section->next)
    create_subid_section_table (section, file_ids, &file_list);
 
  /* Add resolutions to file ids */
  lto_resolution_read (file_ids, resolution_file, file);
 
  /* Finalize each lto file for each submodule in the merged object */
  for (file_data = file_list.first; file_data != NULL; file_data = file_data->next)
    lto_create_files_from_ids (file, file_data, count);
 
  splay_tree_delete (file_ids);
  htab_delete (section_hash_table);
 
  return file_list.first;
}
 
#if HAVE_MMAP_FILE && HAVE_SYSCONF && defined _SC_PAGE_SIZE
#define LTO_MMAP_IO 1
#endif
 
#if LTO_MMAP_IO
/* Page size of machine is used for mmap and munmap calls.  */
static size_t page_mask;
#endif
 
/* Get the section data of length LEN from FILENAME starting at
   OFFSET.  The data segment must be freed by the caller when the
   caller is finished.  Returns NULL if all was not well.  */
 
static char *
lto_read_section_data (struct lto_file_decl_data *file_data,
		       intptr_t offset, size_t len)
{
  char *result;
  static int fd = -1;
  static char *fd_name;
#if LTO_MMAP_IO
  intptr_t computed_len;
  intptr_t computed_offset;
  intptr_t diff;
#endif
 
  /* Keep a single-entry file-descriptor cache.  The last file we
     touched will get closed at exit.
     ???  Eventually we want to add a more sophisticated larger cache
     or rather fix function body streaming to not stream them in
     practically random order.  */
  if (fd != -1
      && filename_cmp (fd_name, file_data->file_name) != 0)
    {
      free (fd_name);
      close (fd);
      fd = -1;
    }
  if (fd == -1)
    {
      fd = open (file_data->file_name, O_RDONLY|O_BINARY);
      if (fd == -1)
        {
	  fatal_error ("Cannot open %s", file_data->file_name);
	  return NULL;
        }
      fd_name = xstrdup (file_data->file_name);
    }
 
#if LTO_MMAP_IO
  if (!page_mask)
    {
      size_t page_size = sysconf (_SC_PAGE_SIZE);
      page_mask = ~(page_size - 1);
    }
 
  computed_offset = offset & page_mask;
  diff = offset - computed_offset;
  computed_len = len + diff;
 
  result = (char *) mmap (NULL, computed_len, PROT_READ, MAP_PRIVATE,
			  fd, computed_offset);
  if (result == MAP_FAILED)
    {
      fatal_error ("Cannot map %s", file_data->file_name);
      return NULL;
    }
 
  return result + diff;
#else
  result = (char *) xmalloc (len);
  if (lseek (fd, offset, SEEK_SET) != offset
      || read (fd, result, len) != (ssize_t) len)
    {
      free (result);
      fatal_error ("Cannot read %s", file_data->file_name);
      result = NULL;
    }
#ifdef __MINGW32__
  /* Native windows doesn't supports delayed unlink on opened file. So
     we close file here again. This produces higher I/O load, but at least
     it prevents to have dangling file handles preventing unlink.  */
  free (fd_name);
  fd_name = NULL;
  close (fd);
  fd = -1;
#endif
  return result;
#endif
}    
 
 
/* Get the section data from FILE_DATA of SECTION_TYPE with NAME.
   NAME will be NULL unless the section type is for a function
   body.  */
 
static const char *
get_section_data (struct lto_file_decl_data *file_data,
		      enum lto_section_type section_type,
		      const char *name,
		      size_t *len)
{
  htab_t section_hash_table = file_data->section_hash_table;
  struct lto_section_slot *f_slot;
  struct lto_section_slot s_slot;
  const char *section_name = lto_get_section_name (section_type, name, file_data);
  char *data = NULL;
 
  *len = 0;
  s_slot.name = section_name;
  f_slot = (struct lto_section_slot *) htab_find (section_hash_table, &s_slot);
  if (f_slot)
    {
      data = lto_read_section_data (file_data, f_slot->start, f_slot->len);
      *len = f_slot->len;
    }
 
  free (CONST_CAST (char *, section_name));
  return data;
}
 
 
/* Free the section data from FILE_DATA of SECTION_TYPE with NAME that
   starts at OFFSET and has LEN bytes.  */
 
static void
free_section_data (struct lto_file_decl_data *file_data ATTRIBUTE_UNUSED,
		   enum lto_section_type section_type ATTRIBUTE_UNUSED,
		   const char *name ATTRIBUTE_UNUSED,
		   const char *offset, size_t len ATTRIBUTE_UNUSED)
{
#if LTO_MMAP_IO
  intptr_t computed_len;
  intptr_t computed_offset;
  intptr_t diff;
#endif
 
#if LTO_MMAP_IO
  computed_offset = ((intptr_t) offset) & page_mask;
  diff = (intptr_t) offset - computed_offset;
  computed_len = len + diff;
 
  munmap ((caddr_t) computed_offset, computed_len);
#else
  free (CONST_CAST(char *, offset));
#endif
}
 
/* Structure describing ltrans partitions.  */
 
struct ltrans_partition_def
{
  cgraph_node_set cgraph_set;
  varpool_node_set varpool_set;
  const char * name;
  int insns;
};
 
typedef struct ltrans_partition_def *ltrans_partition;
DEF_VEC_P(ltrans_partition);
DEF_VEC_ALLOC_P(ltrans_partition,heap);
 
static VEC(ltrans_partition, heap) *ltrans_partitions;
 
static void add_cgraph_node_to_partition (ltrans_partition part, struct cgraph_node *node);
static void add_varpool_node_to_partition (ltrans_partition part, struct varpool_node *vnode);
 
/* Create new partition with name NAME.  */
static ltrans_partition
new_partition (const char *name)
{
  ltrans_partition part = XCNEW (struct ltrans_partition_def);
  part->cgraph_set = cgraph_node_set_new ();
  part->varpool_set = varpool_node_set_new ();
  part->name = name;
  part->insns = 0;
  VEC_safe_push (ltrans_partition, heap, ltrans_partitions, part);
  return part;
}
 
/* Free memory used by ltrans datastructures.  */
static void
free_ltrans_partitions (void)
{
  unsigned int idx;
  ltrans_partition part;
  for (idx = 0; VEC_iterate (ltrans_partition, ltrans_partitions, idx, part); idx++)
    {
      free_cgraph_node_set (part->cgraph_set);
      free (part);
    }
  VEC_free (ltrans_partition, heap, ltrans_partitions);
}
 
/* See all references that go to comdat objects and bring them into partition too.  */
static void
add_references_to_partition (ltrans_partition part, struct ipa_ref_list *refs)
{
  int i;
  struct ipa_ref *ref;
  for (i = 0; ipa_ref_list_reference_iterate (refs, i, ref); i++)
    {
      if (ref->refered_type == IPA_REF_CGRAPH
	  && DECL_COMDAT (cgraph_function_node (ipa_ref_node (ref), NULL)->decl)
	  && !cgraph_node_in_set_p (ipa_ref_node (ref), part->cgraph_set))
	add_cgraph_node_to_partition (part, ipa_ref_node (ref));
      else
	if (ref->refered_type == IPA_REF_VARPOOL
	    && DECL_COMDAT (ipa_ref_varpool_node (ref)->decl)
	    && !varpool_node_in_set_p (ipa_ref_varpool_node (ref), part->varpool_set))
	  add_varpool_node_to_partition (part, ipa_ref_varpool_node (ref));
    }
}
 
/* Worker for add_cgraph_node_to_partition.  */
 
static bool
add_cgraph_node_to_partition_1 (struct cgraph_node *node, void *data)
{
  ltrans_partition part = (ltrans_partition) data;
 
  /* non-COMDAT aliases of COMDAT functions needs to be output just once.  */
  if (!DECL_COMDAT (node->decl)
      && !node->global.inlined_to
      && node->aux)
    {
      gcc_assert (node->thunk.thunk_p || node->alias);
      return false;
    }
 
  if (node->aux)
    {
      node->in_other_partition = 1;
      if (cgraph_dump_file)
        fprintf (cgraph_dump_file, "Node %s/%i now used in multiple partitions\n",
		 cgraph_node_name (node), node->uid);
    }
  node->aux = (void *)((size_t)node->aux + 1);
  cgraph_node_set_add (part->cgraph_set, node);
  return false;
}
 
/* Add NODE to partition as well as the inline callees and referred comdats into partition PART. */
 
static void
add_cgraph_node_to_partition (ltrans_partition part, struct cgraph_node *node)
{
  struct cgraph_edge *e;
  cgraph_node_set_iterator csi;
  struct cgraph_node *n;
 
  /* We always decide on functions, not associated thunks and aliases.  */
  node = cgraph_function_node (node, NULL);
 
  /* If NODE is already there, we have nothing to do.  */
  csi = cgraph_node_set_find (part->cgraph_set, node);
  if (!csi_end_p (csi))
    return;
 
  cgraph_for_node_thunks_and_aliases (node, add_cgraph_node_to_partition_1, part, true);
 
  part->insns += inline_summary (node)->self_size;
 
 
  cgraph_node_set_add (part->cgraph_set, node);
 
  for (e = node->callees; e; e = e->next_callee)
    if ((!e->inline_failed
	 || DECL_COMDAT (cgraph_function_node (e->callee, NULL)->decl))
	&& !cgraph_node_in_set_p (e->callee, part->cgraph_set))
      add_cgraph_node_to_partition (part, e->callee);
 
  add_references_to_partition (part, &node->ref_list);
 
  if (node->same_comdat_group)
    for (n = node->same_comdat_group; n != node; n = n->same_comdat_group)
      add_cgraph_node_to_partition (part, n);
}
 
/* Add VNODE to partition as well as comdat references partition PART. */
 
static void
add_varpool_node_to_partition (ltrans_partition part, struct varpool_node *vnode)
{
  varpool_node_set_iterator vsi;
 
  vnode = varpool_variable_node (vnode, NULL);
 
  /* If NODE is already there, we have nothing to do.  */
  vsi = varpool_node_set_find (part->varpool_set, vnode);
  if (!vsi_end_p (vsi))
    return;
 
  varpool_node_set_add (part->varpool_set, vnode);
 
  if (vnode->aux)
    {
      vnode->in_other_partition = 1;
      if (cgraph_dump_file)
        fprintf (cgraph_dump_file, "Varpool node %s now used in multiple partitions\n",
		 varpool_node_name (vnode));
    }
  vnode->aux = (void *)((size_t)vnode->aux + 1);
 
  add_references_to_partition (part, &vnode->ref_list);
 
  if (vnode->same_comdat_group
      && !varpool_node_in_set_p (vnode->same_comdat_group, part->varpool_set))
    add_varpool_node_to_partition (part, vnode->same_comdat_group);
}
 
/* Undo all additions until number of cgraph nodes in PARITION is N_CGRAPH_NODES
   and number of varpool nodes is N_VARPOOL_NODES.  */
 
static void
undo_partition (ltrans_partition partition, unsigned int n_cgraph_nodes,
		unsigned int n_varpool_nodes)
{
  while (VEC_length (cgraph_node_ptr, partition->cgraph_set->nodes) >
	 n_cgraph_nodes)
    {
      struct cgraph_node *node = VEC_index (cgraph_node_ptr,
					    partition->cgraph_set->nodes,
					    n_cgraph_nodes);
      partition->insns -= inline_summary (node)->self_size;
      cgraph_node_set_remove (partition->cgraph_set, node);
      node->aux = (void *)((size_t)node->aux - 1);
    }
  while (VEC_length (varpool_node_ptr, partition->varpool_set->nodes) >
	 n_varpool_nodes)
    {
      struct varpool_node *node = VEC_index (varpool_node_ptr,
					     partition->varpool_set->nodes,
					     n_varpool_nodes);
      varpool_node_set_remove (partition->varpool_set, node);
      node->aux = (void *)((size_t)node->aux - 1);
    }
}
 
/* Return true if NODE should be partitioned.
   This means that partitioning algorithm should put NODE into one of partitions.
   This apply to most functions with bodies.  Functions that are not partitions
   are put into every unit needing them.  This is the case of i.e. COMDATs.  */
 
static bool
partition_cgraph_node_p (struct cgraph_node *node)
{
  /* We will get proper partition based on function they are inlined to.  */
  if (node->global.inlined_to)
    return false;
  /* Nodes without a body do not need partitioning.  */
  if (!node->analyzed)
    return false;
  /* Extern inlines and comdat are always only in partitions they are needed.  */
  if (DECL_EXTERNAL (node->decl)
      || (DECL_COMDAT (node->decl)
	  && !cgraph_used_from_object_file_p (node)))
    return false;
  if (lookup_attribute ("weakref", DECL_ATTRIBUTES (node->decl)))
    return false;
  return true;
}
 
/* Return true if VNODE should be partitioned. 
   This means that partitioning algorithm should put VNODE into one of partitions. */
 
static bool
partition_varpool_node_p (struct varpool_node *vnode)
{
  if (vnode->alias || !vnode->needed)
    return false;
  /* Constant pool and comdat are always only in partitions they are needed.  */
  if (DECL_IN_CONSTANT_POOL (vnode->decl)
      || (DECL_COMDAT (vnode->decl)
	  && !vnode->force_output
	  && !varpool_used_from_object_file_p (vnode)))
    return false;
  if (lookup_attribute ("weakref", DECL_ATTRIBUTES (vnode->decl)))
    return false;
  return true;
}
 
/* Group cgrah nodes by input files.  This is used mainly for testing
   right now.  */
 
static void
lto_1_to_1_map (void)
{
  struct cgraph_node *node;
  struct varpool_node *vnode;
  struct lto_file_decl_data *file_data;
  struct pointer_map_t *pmap;
  ltrans_partition partition;
  void **slot;
  int npartitions = 0;
 
  timevar_push (TV_WHOPR_WPA);
 
  pmap = pointer_map_create ();
 
  for (node = cgraph_nodes; node; node = node->next)
    {
      if (!partition_cgraph_node_p (node)
	  || node->aux)
	continue;
 
      file_data = node->local.lto_file_data;
 
      if (file_data)
	{
          slot = pointer_map_contains (pmap, file_data);
          if (slot)
	    partition = (ltrans_partition) *slot;
	  else
	    {
	      partition = new_partition (file_data->file_name);
	      slot = pointer_map_insert (pmap, file_data);
	      *slot = partition;
	      npartitions++;
	    }
	}
      else if (!file_data
	       && VEC_length (ltrans_partition, ltrans_partitions))
	partition = VEC_index (ltrans_partition, ltrans_partitions, 0);
      else
	{
	  partition = new_partition ("");
	  slot = pointer_map_insert (pmap, NULL);
	  *slot = partition;
	  npartitions++;
	}
 
      add_cgraph_node_to_partition (partition, node);
    }
 
  for (vnode = varpool_nodes; vnode; vnode = vnode->next)
    {
      if (!partition_varpool_node_p (vnode)
	  || vnode->aux)
	continue;
      file_data = vnode->lto_file_data;
      slot = pointer_map_contains (pmap, file_data);
      if (slot)
	partition = (ltrans_partition) *slot;
      else
	{
	  partition = new_partition (file_data->file_name);
	  slot = pointer_map_insert (pmap, file_data);
	  *slot = partition;
	  npartitions++;
	}
 
      add_varpool_node_to_partition (partition, vnode);
    }
  for (node = cgraph_nodes; node; node = node->next)
    node->aux = NULL;
  for (vnode = varpool_nodes; vnode; vnode = vnode->next)
    vnode->aux = NULL;
 
  /* If the cgraph is empty, create one cgraph node set so that there is still
     an output file for any variables that need to be exported in a DSO.  */
  if (!npartitions)
    new_partition ("empty");
 
  pointer_map_destroy (pmap);
 
  timevar_pop (TV_WHOPR_WPA);
 
  lto_stats.num_cgraph_partitions += VEC_length (ltrans_partition, 
						 ltrans_partitions);
}
 
/* Helper function for qsort; sort nodes by order.  */
static int
node_cmp (const void *pa, const void *pb)
{
  const struct cgraph_node *a = *(const struct cgraph_node * const *) pa;
  const struct cgraph_node *b = *(const struct cgraph_node * const *) pb;
  return b->order - a->order;
}
 
/* Helper function for qsort; sort nodes by order.  */
static int
varpool_node_cmp (const void *pa, const void *pb)
{
  const struct varpool_node *a = *(const struct varpool_node * const *) pa;
  const struct varpool_node *b = *(const struct varpool_node * const *) pb;
  return b->order - a->order;
}
 
/* Group cgraph nodes into equally-sized partitions.
 
   The partitioning algorithm is simple: nodes are taken in predefined order.
   The order corresponds to the order we want functions to have in the final
   output.  In the future this will be given by function reordering pass, but
   at the moment we use the topological order, which is a good approximation.
 
   The goal is to partition this linear order into intervals (partitions) so
   that all the partitions have approximately the same size and the number of
   callgraph or IPA reference edges crossing boundaries is minimal.
 
   This is a lot faster (O(n) in size of callgraph) than algorithms doing
   priority-based graph clustering that are generally O(n^2) and, since
   WHOPR is designed to make things go well across partitions, it leads
   to good results.
 
   We compute the expected size of a partition as:
 
     max (total_size / lto_partitions, min_partition_size)
 
   We use dynamic expected size of partition so small programs are partitioned
   into enough partitions to allow use of multiple CPUs, while large programs
   are not partitioned too much.  Creating too many partitions significantly
   increases the streaming overhead.
 
   In the future, we would like to bound the maximal size of partitions so as
   to prevent the LTRANS stage from consuming too much memory.  At the moment,
   however, the WPA stage is the most memory intensive for large benchmarks,
   since too many types and declarations are read into memory.
 
   The function implements a simple greedy algorithm.  Nodes are being added
   to the current partition until after 3/4 of the expected partition size is
   reached.  Past this threshold, we keep track of boundary size (number of
   edges going to other partitions) and continue adding functions until after
   the current partition has grown to twice the expected partition size.  Then
   the process is undone to the point where the minimal ratio of boundary size
   and in-partition calls was reached.  */
 
static void
lto_balanced_map (void)
{
  int n_nodes = 0;
  int n_varpool_nodes = 0, varpool_pos = 0;
  struct cgraph_node **postorder =
    XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
  struct cgraph_node **order = XNEWVEC (struct cgraph_node *, cgraph_max_uid);
  struct varpool_node **varpool_order = NULL;
  int i, postorder_len;
  struct cgraph_node *node;
  int total_size = 0, best_total_size = 0;
  int partition_size;
  ltrans_partition partition;
  unsigned int last_visited_cgraph_node = 0, last_visited_varpool_node = 0;
  struct varpool_node *vnode;
  int cost = 0, internal = 0;
  int best_n_nodes = 0, best_n_varpool_nodes = 0, best_i = 0, best_cost =
    INT_MAX, best_internal = 0;
  int npartitions;
  int current_order = -1;
 
  for (vnode = varpool_nodes; vnode; vnode = vnode->next)
    gcc_assert (!vnode->aux);
  /* Until we have better ordering facility, use toplogical order.
     Include only nodes we will partition and compute estimate of program
     size.  Note that since nodes that are not partitioned might be put into
     multiple partitions, this is just an estimate of real size.  This is why
     we keep partition_size updated after every partition is finalized.  */
  postorder_len = ipa_reverse_postorder (postorder);
 
  for (i = 0; i < postorder_len; i++)
    {
      node = postorder[i];
      if (partition_cgraph_node_p (node))
	{
	  order[n_nodes++] = node;
          total_size += inline_summary (node)->size;
	}
    }
  free (postorder);
 
  if (!flag_toplevel_reorder)
    {
      qsort (order, n_nodes, sizeof (struct cgraph_node *), node_cmp);
 
      for (vnode = varpool_nodes; vnode; vnode = vnode->next)
	if (partition_varpool_node_p (vnode))
	  n_varpool_nodes++;
      varpool_order = XNEWVEC (struct varpool_node *, n_varpool_nodes);
 
      n_varpool_nodes = 0;
      for (vnode = varpool_nodes; vnode; vnode = vnode->next)
	if (partition_varpool_node_p (vnode))
	  varpool_order[n_varpool_nodes++] = vnode;
      qsort (varpool_order, n_varpool_nodes, sizeof (struct varpool_node *),
	     varpool_node_cmp);
    }
 
  /* Compute partition size and create the first partition.  */
  partition_size = total_size / PARAM_VALUE (PARAM_LTO_PARTITIONS);
  if (partition_size < PARAM_VALUE (MIN_PARTITION_SIZE))
    partition_size = PARAM_VALUE (MIN_PARTITION_SIZE);
  npartitions = 1;
  partition = new_partition ("");
  if (cgraph_dump_file)
    fprintf (cgraph_dump_file, "Total unit size: %i, partition size: %i\n",
	     total_size, partition_size);
 
  for (i = 0; i < n_nodes; i++)
    {
      if (order[i]->aux)
	continue;
 
      current_order = order[i]->order;
 
      if (!flag_toplevel_reorder)
	while (varpool_pos < n_varpool_nodes && varpool_order[varpool_pos]->order < current_order)
	  {
	    if (!varpool_order[varpool_pos]->aux)
	      add_varpool_node_to_partition (partition, varpool_order[varpool_pos]);
	    varpool_pos++;
	  }
 
      add_cgraph_node_to_partition (partition, order[i]);
      total_size -= inline_summary (order[i])->size;
 
 
      /* Once we added a new node to the partition, we also want to add
         all referenced variables unless they was already added into some
         earlier partition.
	 add_cgraph_node_to_partition adds possibly multiple nodes and
	 variables that are needed to satisfy needs of ORDER[i].
         We remember last visited cgraph and varpool node from last iteration
         of outer loop that allows us to process every new addition. 
 
	 At the same time we compute size of the boundary into COST.  Every
         callgraph or IPA reference edge leaving the partition contributes into
         COST.  Every edge inside partition was earlier computed as one leaving
	 it and thus we need to subtract it from COST.  */
      while (last_visited_cgraph_node <
	     VEC_length (cgraph_node_ptr, partition->cgraph_set->nodes)
	     || last_visited_varpool_node < VEC_length (varpool_node_ptr,
							partition->varpool_set->
							nodes))
	{
	  struct ipa_ref_list *refs;
	  int j;
	  struct ipa_ref *ref;
	  bool cgraph_p = false;
 
	  if (last_visited_cgraph_node <
	      VEC_length (cgraph_node_ptr, partition->cgraph_set->nodes))
	    {
	      struct cgraph_edge *edge;
 
	      cgraph_p = true;
	      node = VEC_index (cgraph_node_ptr, partition->cgraph_set->nodes,
				last_visited_cgraph_node);
	      refs = &node->ref_list;
 
	      last_visited_cgraph_node++;
 
	      gcc_assert (node->analyzed);
 
	      /* Compute boundary cost of callgraph edges.  */
	      for (edge = node->callees; edge; edge = edge->next_callee)
		if (edge->callee->analyzed)
		  {
		    int edge_cost = edge->frequency;
		    cgraph_node_set_iterator csi;
 
		    if (!edge_cost)
		      edge_cost = 1;
		    gcc_assert (edge_cost > 0);
		    csi = cgraph_node_set_find (partition->cgraph_set, edge->callee);
		    if (!csi_end_p (csi)
		        && csi.index < last_visited_cgraph_node - 1)
		      cost -= edge_cost, internal+= edge_cost;
		    else
		      cost += edge_cost;
		  }
	      for (edge = node->callers; edge; edge = edge->next_caller)
		{
		  int edge_cost = edge->frequency;
		  cgraph_node_set_iterator csi;
 
		  gcc_assert (edge->caller->analyzed);
		  if (!edge_cost)
		    edge_cost = 1;
		  gcc_assert (edge_cost > 0);
		  csi = cgraph_node_set_find (partition->cgraph_set, edge->caller);
		  if (!csi_end_p (csi)
		      && csi.index < last_visited_cgraph_node)
		    cost -= edge_cost;
		  else
		    cost += edge_cost;
		}
	    }
	  else
	    {
	      refs =
		&VEC_index (varpool_node_ptr, partition->varpool_set->nodes,
			    last_visited_varpool_node)->ref_list;
	      last_visited_varpool_node++;
	    }
 
	  /* Compute boundary cost of IPA REF edges and at the same time look into
	     variables referenced from current partition and try to add them.  */
	  for (j = 0; ipa_ref_list_reference_iterate (refs, j, ref); j++)
	    if (ref->refered_type == IPA_REF_VARPOOL)
	      {
		varpool_node_set_iterator vsi;
 
		vnode = ipa_ref_varpool_node (ref);
		if (!vnode->finalized)
		  continue;
		if (!vnode->aux && flag_toplevel_reorder
		    && partition_varpool_node_p (vnode))
		  add_varpool_node_to_partition (partition, vnode);
		vsi = varpool_node_set_find (partition->varpool_set, vnode);
		if (!vsi_end_p (vsi)
		    && vsi.index < last_visited_varpool_node - !cgraph_p)
		  cost--, internal++;
		else
		  cost++;
	      }
	    else
	      {
		cgraph_node_set_iterator csi;
 
		node = ipa_ref_node (ref);
		if (!node->analyzed)
		  continue;
		csi = cgraph_node_set_find (partition->cgraph_set, node);
		if (!csi_end_p (csi)
		    && csi.index < last_visited_cgraph_node - cgraph_p)
		  cost--, internal++;
		else
		  cost++;
	      }
	  for (j = 0; ipa_ref_list_refering_iterate (refs, j, ref); j++)
	    if (ref->refering_type == IPA_REF_VARPOOL)
	      {
		varpool_node_set_iterator vsi;
 
		vnode = ipa_ref_refering_varpool_node (ref);
		gcc_assert (vnode->finalized);
		if (!vnode->aux && flag_toplevel_reorder
		    && partition_varpool_node_p (vnode))
		  add_varpool_node_to_partition (partition, vnode);
		vsi = varpool_node_set_find (partition->varpool_set, vnode);
		if (!vsi_end_p (vsi)
		    && vsi.index < last_visited_varpool_node)
		  cost--;
		else
		  cost++;
	      }
	    else
	      {
		cgraph_node_set_iterator csi;
 
		node = ipa_ref_refering_node (ref);
		gcc_assert (node->analyzed);
		csi = cgraph_node_set_find (partition->cgraph_set, node);
		if (!csi_end_p (csi)
		    && csi.index < last_visited_cgraph_node)
		  cost--;
		else
		  cost++;
	      }
	}
 
      /* If the partition is large enough, start looking for smallest boundary cost.  */
      if (partition->insns < partition_size * 3 / 4
	  || best_cost == INT_MAX
	  || ((!cost 
	       || (best_internal * (HOST_WIDE_INT) cost
		   > (internal * (HOST_WIDE_INT)best_cost)))
  	      && partition->insns < partition_size * 5 / 4))
	{
	  best_cost = cost;
	  best_internal = internal;
	  best_i = i;
	  best_n_nodes = VEC_length (cgraph_node_ptr,
				     partition->cgraph_set->nodes);
	  best_n_varpool_nodes = VEC_length (varpool_node_ptr,
					     partition->varpool_set->nodes);
	  best_total_size = total_size;
	}
      if (cgraph_dump_file)
	fprintf (cgraph_dump_file, "Step %i: added %s/%i, size %i, cost %i/%i best %i/%i, step %i\n", i,
		 cgraph_node_name (order[i]), order[i]->uid, partition->insns, cost, internal,
		 best_cost, best_internal, best_i);
      /* Partition is too large, unwind into step when best cost was reached and
	 start new partition.  */
      if (partition->insns > 2 * partition_size)
	{
	  if (best_i != i)
	    {
	      if (cgraph_dump_file)
		fprintf (cgraph_dump_file, "Unwinding %i insertions to step %i\n",
			 i - best_i, best_i);
	      undo_partition (partition, best_n_nodes, best_n_varpool_nodes);
	    }
	  i = best_i;
 	  /* When we are finished, avoid creating empty partition.  */
	  while (i < n_nodes - 1 && order[i + 1]->aux)
	    i++;
	  if (i == n_nodes - 1)
	    break;
	  partition = new_partition ("");
	  last_visited_cgraph_node = 0;
	  last_visited_varpool_node = 0;
	  total_size = best_total_size;
	  cost = 0;
 
	  if (cgraph_dump_file)
	    fprintf (cgraph_dump_file, "New partition\n");
	  best_n_nodes = 0;
	  best_n_varpool_nodes = 0;
	  best_cost = INT_MAX;
 
	  /* Since the size of partitions is just approximate, update the size after
	     we finished current one.  */
	  if (npartitions < PARAM_VALUE (PARAM_LTO_PARTITIONS))
	    partition_size = total_size
	      / (PARAM_VALUE (PARAM_LTO_PARTITIONS) - npartitions);
	  else
	    partition_size = INT_MAX;
 
	  if (partition_size < PARAM_VALUE (MIN_PARTITION_SIZE))
	    partition_size = PARAM_VALUE (MIN_PARTITION_SIZE);
	  npartitions ++;
	}
    }
 
  /* Varables that are not reachable from the code go into last partition.  */
  if (flag_toplevel_reorder)
    {
      for (vnode = varpool_nodes; vnode; vnode = vnode->next)
        if (partition_varpool_node_p (vnode) && !vnode->aux)
	  add_varpool_node_to_partition (partition, vnode);
    }
  else
    {
      while (varpool_pos < n_varpool_nodes)
	{
	  if (!varpool_order[varpool_pos]->aux)
	    add_varpool_node_to_partition (partition, varpool_order[varpool_pos]);
	  varpool_pos++;
	}
      free (varpool_order);
    }
  free (order);
}
 
/* Promote variable VNODE to be static.  */
 
static bool
promote_var (struct varpool_node *vnode)
{
  if (TREE_PUBLIC (vnode->decl) || DECL_EXTERNAL (vnode->decl))
    return false;
  gcc_assert (flag_wpa);
  TREE_PUBLIC (vnode->decl) = 1;
  DECL_VISIBILITY (vnode->decl) = VISIBILITY_HIDDEN;
  DECL_VISIBILITY_SPECIFIED (vnode->decl) = true;
  if (cgraph_dump_file)
    fprintf (cgraph_dump_file,
	    "Promoting var as hidden: %s\n", varpool_node_name (vnode));
  return true;
}
 
/* Promote function NODE to be static.  */
 
static bool
promote_fn (struct cgraph_node *node)
{
  gcc_assert (flag_wpa);
  if (TREE_PUBLIC (node->decl) || DECL_EXTERNAL (node->decl))
    return false;
  TREE_PUBLIC (node->decl) = 1;
  DECL_VISIBILITY (node->decl) = VISIBILITY_HIDDEN;
  DECL_VISIBILITY_SPECIFIED (node->decl) = true;
  if (cgraph_dump_file)
    fprintf (cgraph_dump_file,
	     "Promoting function as hidden: %s/%i\n",
	     cgraph_node_name (node), node->uid);
  return true;
}
 
/* Find out all static decls that need to be promoted to global because
   of cross file sharing.  This function must be run in the WPA mode after
   all inlinees are added.  */
 
static void
lto_promote_cross_file_statics (void)
{
  struct varpool_node *vnode;
  unsigned i, n_sets;
  cgraph_node_set set;
  varpool_node_set vset;
  cgraph_node_set_iterator csi;
  varpool_node_set_iterator vsi;
  VEC(varpool_node_ptr, heap) *promoted_initializers = NULL;
  struct pointer_set_t *inserted = pointer_set_create ();
 
  gcc_assert (flag_wpa);
 
  n_sets = VEC_length (ltrans_partition, ltrans_partitions);
  for (i = 0; i < n_sets; i++)
    {
      ltrans_partition part
	= VEC_index (ltrans_partition, ltrans_partitions, i);
      set = part->cgraph_set;
      vset = part->varpool_set;
 
      /* If node called or referred to from other partition, it needs to be
	 globalized.  */
      for (csi = csi_start (set); !csi_end_p (csi); csi_next (&csi))
	{
	  struct cgraph_node *node = csi_node (csi);
	  if (node->local.externally_visible)
	    continue;
	  if (node->global.inlined_to)
	    continue;
	  if ((!DECL_EXTERNAL (node->decl) && !DECL_COMDAT (node->decl))
	      && (referenced_from_other_partition_p (&node->ref_list, set, vset)
		  || reachable_from_other_partition_p (node, set)))
	    promote_fn (node);
	}
      for (vsi = vsi_start (vset); !vsi_end_p (vsi); vsi_next (&vsi))
	{
	  vnode = vsi_node (vsi);
	  /* Constant pool references use internal labels and thus can not
	     be made global.  It is sensible to keep those ltrans local to
	     allow better optimization.  */
	  if (!DECL_IN_CONSTANT_POOL (vnode->decl) && !DECL_COMDAT (vnode->decl)
	      && !vnode->externally_visible && vnode->analyzed
	      && referenced_from_other_partition_p (&vnode->ref_list,
						    set, vset))
	    promote_var (vnode);
	}
 
      /* We export the initializer of a read-only var into each partition
	 referencing the var.  Folding might take declarations from the
	 initializer and use them, so everything referenced from the
	 initializer can be accessed from this partition after folding.
 
	 This means that we need to promote all variables and functions
	 referenced from all initializers of read-only vars referenced
	 from this partition that are not in this partition.  This needs
	 to be done recursively.  */
      for (vnode = varpool_nodes; vnode; vnode = vnode->next)
	if (const_value_known_p (vnode->decl)
	    && DECL_INITIAL (vnode->decl)
	    && !varpool_node_in_set_p (vnode, vset)
	    && referenced_from_this_partition_p (&vnode->ref_list, set, vset)
	    && !pointer_set_insert (inserted, vnode))
	VEC_safe_push (varpool_node_ptr, heap, promoted_initializers, vnode);
 
      while (!VEC_empty (varpool_node_ptr, promoted_initializers))
	{
	  int i;
	  struct ipa_ref *ref;
 
	  vnode = VEC_pop (varpool_node_ptr, promoted_initializers);
	  for (i = 0;
	       ipa_ref_list_reference_iterate (&vnode->ref_list, i, ref);
	       i++)
	    {
	      if (ref->refered_type == IPA_REF_CGRAPH)
		{
		  struct cgraph_node *n = ipa_ref_node (ref);
		  gcc_assert (!n->global.inlined_to);
		  if (!n->local.externally_visible
		      && !cgraph_node_in_set_p (n, set))
		    promote_fn (n);
		}
	      else
		{
		  struct varpool_node *v = ipa_ref_varpool_node (ref);
		  if (varpool_node_in_set_p (v, vset))
		    continue;
 
		  /* Constant pool references use internal labels and thus
		     cannot be made global.  It is sensible to keep those
		     ltrans local to allow better optimization.  */
		  if (DECL_IN_CONSTANT_POOL (v->decl))
		    {
		      if (!pointer_set_insert (inserted, vnode))
			VEC_safe_push (varpool_node_ptr, heap,
				       promoted_initializers, v);
		    }
		  else if (!v->externally_visible && v->analyzed)
		    {
		      if (promote_var (v)
			  && DECL_INITIAL (v->decl)
			  && const_value_known_p (v->decl)
			  && !pointer_set_insert (inserted, vnode))
			VEC_safe_push (varpool_node_ptr, heap,
				       promoted_initializers, v);
		    }
		}
	    }
	}
    }
  pointer_set_destroy (inserted);
}
 
static lto_file *current_lto_file;
 
/* Helper for qsort; compare partitions and return one with smaller size.
   We sort from greatest to smallest so parallel build doesn't stale on the
   longest compilation being executed too late.  */
 
static int
cmp_partitions_size (const void *a, const void *b)
{
  const struct ltrans_partition_def *pa
     = *(struct ltrans_partition_def *const *)a;
  const struct ltrans_partition_def *pb
     = *(struct ltrans_partition_def *const *)b;
  return pb->insns - pa->insns;
}
 
/* Helper for qsort; compare partitions and return one with smaller order.  */
 
static int
cmp_partitions_order (const void *a, const void *b)
{
  const struct ltrans_partition_def *pa
     = *(struct ltrans_partition_def *const *)a;
  const struct ltrans_partition_def *pb
     = *(struct ltrans_partition_def *const *)b;
  int ordera = -1, orderb = -1;
 
  if (VEC_length (cgraph_node_ptr, pa->cgraph_set->nodes))
    ordera = VEC_index (cgraph_node_ptr, pa->cgraph_set->nodes, 0)->order;
  else if (VEC_length (varpool_node_ptr, pa->varpool_set->nodes))
    ordera = VEC_index (varpool_node_ptr, pa->varpool_set->nodes, 0)->order;
  if (VEC_length (cgraph_node_ptr, pb->cgraph_set->nodes))
    orderb = VEC_index (cgraph_node_ptr, pb->cgraph_set->nodes, 0)->order;
  else if (VEC_length (varpool_node_ptr, pb->varpool_set->nodes))
    orderb = VEC_index (varpool_node_ptr, pb->varpool_set->nodes, 0)->order;
  return orderb - ordera;
}
 
/* Write all output files in WPA mode and the file with the list of
   LTRANS units.  */
 
static void
lto_wpa_write_files (void)
{
  unsigned i, n_sets;
  lto_file *file;
  cgraph_node_set set;
  varpool_node_set vset;
  ltrans_partition part;
  FILE *ltrans_output_list_stream;
  char *temp_filename;
  size_t blen;
 
  /* Open the LTRANS output list.  */
  if (!ltrans_output_list)
    fatal_error ("no LTRANS output list filename provided");
  ltrans_output_list_stream = fopen (ltrans_output_list, "w");
  if (ltrans_output_list_stream == NULL)
    fatal_error ("opening LTRANS output list %s: %m", ltrans_output_list);
 
  timevar_push (TV_WHOPR_WPA);
 
  FOR_EACH_VEC_ELT (ltrans_partition, ltrans_partitions, i, part)
    lto_stats.num_output_cgraph_nodes += VEC_length (cgraph_node_ptr,
						     part->cgraph_set->nodes);
 
  /* Find out statics that need to be promoted
     to globals with hidden visibility because they are accessed from multiple
     partitions.  */
  lto_promote_cross_file_statics ();
 
  timevar_pop (TV_WHOPR_WPA);
 
  timevar_push (TV_WHOPR_WPA_IO);
 
  /* Generate a prefix for the LTRANS unit files.  */
  blen = strlen (ltrans_output_list);
  temp_filename = (char *) xmalloc (blen + sizeof ("2147483648.o"));
  strcpy (temp_filename, ltrans_output_list);
  if (blen > sizeof (".out")
      && strcmp (temp_filename + blen - sizeof (".out") + 1,
		 ".out") == 0)
    temp_filename[blen - sizeof (".out") + 1] = '\0';
  blen = strlen (temp_filename);
 
  n_sets = VEC_length (ltrans_partition, ltrans_partitions);
 
  /* Sort partitions by size so small ones are compiled last.
     FIXME: Even when not reordering we may want to output one list for parallel make
     and other for final link command.  */
  VEC_qsort (ltrans_partition, ltrans_partitions,
	    flag_toplevel_reorder ? cmp_partitions_size : cmp_partitions_order);
  for (i = 0; i < n_sets; i++)
    {
      size_t len;
      ltrans_partition part = VEC_index (ltrans_partition, ltrans_partitions, i);
 
      set = part->cgraph_set;
      vset = part->varpool_set;
 
      /* Write all the nodes in SET.  */
      sprintf (temp_filename + blen, "%u.o", i);
      file = lto_obj_file_open (temp_filename, true);
      if (!file)
	fatal_error ("lto_obj_file_open() failed");
 
      if (!quiet_flag)
	fprintf (stderr, " %s (%s %i insns)", temp_filename, part->name, part->insns);
      if (cgraph_dump_file)
	{
	  fprintf (cgraph_dump_file, "Writing partition %s to file %s, %i insns\n",
		   part->name, temp_filename, part->insns);
	  fprintf (cgraph_dump_file, "cgraph nodes:");
	  dump_cgraph_node_set (cgraph_dump_file, set);
	  fprintf (cgraph_dump_file, "varpool nodes:");
	  dump_varpool_node_set (cgraph_dump_file, vset);
	}
      gcc_checking_assert (cgraph_node_set_nonempty_p (set)
			   || varpool_node_set_nonempty_p (vset) || !i);
 
      lto_set_current_out_file (file);
 
      ipa_write_optimization_summaries (set, vset);
 
      lto_set_current_out_file (NULL);
      lto_obj_file_close (file);
 
      len = strlen (temp_filename);
      if (fwrite (temp_filename, 1, len, ltrans_output_list_stream) < len
	  || fwrite ("\n", 1, 1, ltrans_output_list_stream) < 1)
	fatal_error ("writing to LTRANS output list %s: %m",
		     ltrans_output_list);
    }
 
  lto_stats.num_output_files += n_sets;
 
  /* Close the LTRANS output list.  */
  if (fclose (ltrans_output_list_stream))
    fatal_error ("closing LTRANS output list %s: %m", ltrans_output_list);
 
  free_ltrans_partitions();
 
  timevar_pop (TV_WHOPR_WPA_IO);
}
 
 
/* If TT is a variable or function decl replace it with its
   prevailing variant.  */
#define LTO_SET_PREVAIL(tt) \
  do {\
    if ((tt) && VAR_OR_FUNCTION_DECL_P (tt)) \
      tt = lto_symtab_prevailing_decl (tt); \
  } while (0)
 
/* Ensure that TT isn't a replacable var of function decl.  */
#define LTO_NO_PREVAIL(tt) \
  gcc_assert (!(tt) || !VAR_OR_FUNCTION_DECL_P (tt))
 
/* Given a tree T replace all fields referring to variables or functions
   with their prevailing variant.  */
static void
lto_fixup_prevailing_decls (tree t)
{
  enum tree_code code = TREE_CODE (t);
  LTO_NO_PREVAIL (TREE_TYPE (t));
  if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
    LTO_NO_PREVAIL (TREE_CHAIN (t));
  if (DECL_P (t))
    {
      LTO_NO_PREVAIL (DECL_NAME (t));
      LTO_SET_PREVAIL (DECL_CONTEXT (t));
      if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
	{
	  LTO_SET_PREVAIL (DECL_SIZE (t));
	  LTO_SET_PREVAIL (DECL_SIZE_UNIT (t));
	  LTO_SET_PREVAIL (DECL_INITIAL (t));
	  LTO_NO_PREVAIL (DECL_ATTRIBUTES (t));
	  LTO_SET_PREVAIL (DECL_ABSTRACT_ORIGIN (t));
	}
      if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
	{
	  LTO_NO_PREVAIL (t->decl_with_vis.assembler_name);
	  LTO_NO_PREVAIL (DECL_SECTION_NAME (t));
	}
      if (CODE_CONTAINS_STRUCT (code, TS_DECL_NON_COMMON))
	{
	  LTO_NO_PREVAIL (DECL_ARGUMENT_FLD (t));
	  LTO_NO_PREVAIL (DECL_RESULT_FLD (t));
	  LTO_NO_PREVAIL (DECL_VINDEX (t));
	}
      if (CODE_CONTAINS_STRUCT (code, TS_FUNCTION_DECL))
	LTO_SET_PREVAIL (DECL_FUNCTION_PERSONALITY (t));
      if (CODE_CONTAINS_STRUCT (code, TS_FIELD_DECL))
	{
	  LTO_NO_PREVAIL (DECL_FIELD_OFFSET (t));
	  LTO_NO_PREVAIL (DECL_BIT_FIELD_TYPE (t));
	  LTO_NO_PREVAIL (DECL_QUALIFIER (t));
	  LTO_NO_PREVAIL (DECL_FIELD_BIT_OFFSET (t));
	  LTO_NO_PREVAIL (DECL_FCONTEXT (t));
	}
    }
  else if (TYPE_P (t))
    {
      LTO_NO_PREVAIL (TYPE_CACHED_VALUES (t));
      LTO_SET_PREVAIL (TYPE_SIZE (t));
      LTO_SET_PREVAIL (TYPE_SIZE_UNIT (t));
      LTO_NO_PREVAIL (TYPE_ATTRIBUTES (t));
      LTO_NO_PREVAIL (TYPE_NAME (t));
 
      LTO_SET_PREVAIL (TYPE_MINVAL (t));
      LTO_SET_PREVAIL (TYPE_MAXVAL (t));
      LTO_SET_PREVAIL (t->type_non_common.binfo);
 
      LTO_SET_PREVAIL (TYPE_CONTEXT (t));
 
      LTO_NO_PREVAIL (TYPE_CANONICAL (t));
      LTO_NO_PREVAIL (TYPE_MAIN_VARIANT (t));
      LTO_NO_PREVAIL (TYPE_NEXT_VARIANT (t));
    }
  else if (EXPR_P (t))
    {
      int i;
      LTO_NO_PREVAIL (t->exp.block);
      for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
	LTO_SET_PREVAIL (TREE_OPERAND (t, i));
    }
  else
    {
      switch (code)
	{
	case TREE_LIST:
	  LTO_SET_PREVAIL (TREE_VALUE (t));
	  LTO_SET_PREVAIL (TREE_PURPOSE (t));
	  break;
	default:
	  gcc_unreachable ();
	}
    }
}
#undef LTO_SET_PREVAIL
#undef LTO_NO_PREVAIL
 
/* Helper function of lto_fixup_decls. Walks the var and fn streams in STATE,
   replaces var and function decls with the corresponding prevailing def.  */
 
static void
lto_fixup_state (struct lto_in_decl_state *state)
{
  unsigned i, si;
  struct lto_tree_ref_table *table;
 
  /* Although we only want to replace FUNCTION_DECLs and VAR_DECLs,
     we still need to walk from all DECLs to find the reachable
     FUNCTION_DECLs and VAR_DECLs.  */
  for (si = 0; si < LTO_N_DECL_STREAMS; si++)
    {
      table = &state->streams[si];
      for (i = 0; i < table->size; i++)
	{
	  tree *tp = table->trees + i;
	  if (VAR_OR_FUNCTION_DECL_P (*tp))
	    *tp = lto_symtab_prevailing_decl (*tp);
	}
    }
}
 
/* A callback of htab_traverse. Just extracts a state from SLOT
   and calls lto_fixup_state. */
 
static int
lto_fixup_state_aux (void **slot, void *aux ATTRIBUTE_UNUSED)
{
  struct lto_in_decl_state *state = (struct lto_in_decl_state *) *slot;
  lto_fixup_state (state);
  return 1;
}
 
/* Fix the decls from all FILES. Replaces each decl with the corresponding
   prevailing one.  */
 
static void
lto_fixup_decls (struct lto_file_decl_data **files)
{
  unsigned int i;
  htab_iterator hi;
  tree t;
 
  FOR_EACH_HTAB_ELEMENT (tree_with_vars, t, tree, hi)
    lto_fixup_prevailing_decls (t);
 
  for (i = 0; files[i]; i++)
    {
      struct lto_file_decl_data *file = files[i];
      struct lto_in_decl_state *state = file->global_decl_state;
      lto_fixup_state (state);
 
      htab_traverse (file->function_decl_states, lto_fixup_state_aux, NULL);
    }
}
 
static GTY((length ("lto_stats.num_input_files + 1"))) struct lto_file_decl_data **all_file_decl_data;
 
/* Turn file datas for sub files into a single array, so that they look
   like separate files for further passes. */
 
static void
lto_flatten_files (struct lto_file_decl_data **orig, int count, int last_file_ix)
{
  struct lto_file_decl_data *n, *next;
  int i, k;
 
  lto_stats.num_input_files = count;
  all_file_decl_data
    = ggc_alloc_cleared_vec_lto_file_decl_data_ptr (count + 1);
  /* Set the hooks so that all of the ipa passes can read in their data.  */
  lto_set_in_hooks (all_file_decl_data, get_section_data, free_section_data);
  for (i = 0, k = 0; i < last_file_ix; i++) 
    {
      for (n = orig[i]; n != NULL; n = next)
	{
	  all_file_decl_data[k++] = n;
	  next = n->next;
	  n->next = NULL;
	}
    }
  all_file_decl_data[k] = NULL;
  gcc_assert (k == count);
}
 
/* Input file data before flattening (i.e. splitting them to subfiles to support
   incremental linking.  */
static int real_file_count;
static GTY((length ("real_file_count + 1"))) struct lto_file_decl_data **real_file_decl_data;
 
/* Read all the symbols from the input files FNAMES.  NFILES is the
   number of files requested in the command line.  Instantiate a
   global call graph by aggregating all the sub-graphs found in each
   file.  */
 
static void
read_cgraph_and_symbols (unsigned nfiles, const char **fnames)
{
  unsigned int i, last_file_ix;
  FILE *resolution;
  struct cgraph_node *node;
  int count = 0;
  struct lto_file_decl_data **decl_data;
 
  init_cgraph ();
 
  timevar_push (TV_IPA_LTO_DECL_IN);
 
  real_file_decl_data
    = decl_data = ggc_alloc_cleared_vec_lto_file_decl_data_ptr (nfiles + 1);
  real_file_count = nfiles;
 
  /* Read the resolution file.  */
  resolution = NULL;
  if (resolution_file_name)
    {
      int t;
      unsigned num_objects;
 
      resolution = fopen (resolution_file_name, "r");
      if (resolution == NULL)
	fatal_error ("could not open symbol resolution file: %m");
 
      t = fscanf (resolution, "%u", &num_objects);
      gcc_assert (t == 1);
 
      /* True, since the plugin splits the archives.  */
      gcc_assert (num_objects == nfiles);
    }
 
  tree_with_vars = htab_create_ggc (101, htab_hash_pointer, htab_eq_pointer,
				    NULL);
 
  if (!quiet_flag)
    fprintf (stderr, "Reading object files:");
 
  /* Read all of the object files specified on the command line.  */
  for (i = 0, last_file_ix = 0; i < nfiles; ++i)
    {
      struct lto_file_decl_data *file_data = NULL;
      if (!quiet_flag)
	{
	  fprintf (stderr, " %s", fnames[i]);
	  fflush (stderr);
	}
 
      current_lto_file = lto_obj_file_open (fnames[i], false);
      if (!current_lto_file)
	break;
 
      file_data = lto_file_read (current_lto_file, resolution, &count);
      if (!file_data)
	{
	  lto_obj_file_close (current_lto_file);
	  current_lto_file = NULL;
	  break;
	}
 
      decl_data[last_file_ix++] = file_data;
 
      lto_obj_file_close (current_lto_file);
      current_lto_file = NULL;
      ggc_collect ();
    }
 
  lto_flatten_files (decl_data, count, last_file_ix);
  lto_stats.num_input_files = count;
  ggc_free(decl_data);
  real_file_decl_data = NULL;
 
  if (resolution_file_name)
    fclose (resolution);
 
  /* Set the hooks so that all of the ipa passes can read in their data.  */
  lto_set_in_hooks (all_file_decl_data, get_section_data, free_section_data);
 
  timevar_pop (TV_IPA_LTO_DECL_IN);
 
  if (!quiet_flag)
    fprintf (stderr, "\nReading the callgraph\n");
 
  timevar_push (TV_IPA_LTO_CGRAPH_IO);
  /* Read the callgraph.  */
  input_cgraph ();
  timevar_pop (TV_IPA_LTO_CGRAPH_IO);
 
  if (!quiet_flag)
    fprintf (stderr, "Merging declarations\n");
 
  timevar_push (TV_IPA_LTO_DECL_MERGE);
  /* Merge global decls.  */
  lto_symtab_merge_decls ();
 
  /* If there were errors during symbol merging bail out, we have no
     good way to recover here.  */
  if (seen_error ())
    fatal_error ("errors during merging of translation units");
 
  /* Fixup all decls and types and free the type hash tables.  */
  lto_fixup_decls (all_file_decl_data);
  htab_delete (tree_with_vars);
  tree_with_vars = NULL;
  free_gimple_type_tables ();
  ggc_collect ();
 
  timevar_pop (TV_IPA_LTO_DECL_MERGE);
  /* Each pass will set the appropriate timer.  */
 
  if (!quiet_flag)
    fprintf (stderr, "Reading summaries\n");
 
  /* Read the IPA summary data.  */
  if (flag_ltrans)
    ipa_read_optimization_summaries ();
  else
    ipa_read_summaries ();
 
  /* Finally merge the cgraph according to the decl merging decisions.  */
  timevar_push (TV_IPA_LTO_CGRAPH_MERGE);
  if (cgraph_dump_file)
    {
      fprintf (cgraph_dump_file, "Before merging:\n");
      dump_cgraph (cgraph_dump_file);
      dump_varpool (cgraph_dump_file);
    }
  lto_symtab_merge_cgraph_nodes ();
  ggc_collect ();
 
  if (flag_ltrans)
    for (node = cgraph_nodes; node; node = node->next)
      {
	/* FIXME: ipa_transforms_to_apply holds list of passes that have optimization
	   summaries computed and needs to apply changes.  At the moment WHOPR only
	   supports inlining, so we can push it here by hand.  In future we need to stream
	   this field into ltrans compilation.  */
	if (node->analyzed)
	  VEC_safe_push (ipa_opt_pass, heap,
			 node->ipa_transforms_to_apply,
			 (ipa_opt_pass)&pass_ipa_inline);
      }
  lto_symtab_free ();
 
  timevar_pop (TV_IPA_LTO_CGRAPH_MERGE);
 
  timevar_push (TV_IPA_LTO_DECL_INIT_IO);
 
  /* FIXME lto. This loop needs to be changed to use the pass manager to
     call the ipa passes directly.  */
  if (!seen_error ())
    for (i = 0; i < last_file_ix; i++)
      {
	struct lto_file_decl_data *file_data = all_file_decl_data [i];
	lto_materialize_constructors_and_inits (file_data);
      }
 
  /* Indicate that the cgraph is built and ready.  */
  cgraph_function_flags_ready = true;
 
  timevar_pop (TV_IPA_LTO_DECL_INIT_IO);
  ggc_free (all_file_decl_data);
  all_file_decl_data = NULL;
}
 
 
/* Materialize all the bodies for all the nodes in the callgraph.  */
 
static void
materialize_cgraph (void)
{
  tree decl;
  struct cgraph_node *node; 
  unsigned i;
  timevar_id_t lto_timer;
 
  if (!quiet_flag)
    fprintf (stderr,
	     flag_wpa ? "Materializing decls:" : "Reading function bodies:");
 
 
  /* Now that we have input the cgraph, we need to clear all of the aux
     nodes and read the functions if we are not running in WPA mode.  */
  timevar_push (TV_IPA_LTO_GIMPLE_IN);
 
  for (node = cgraph_nodes; node; node = node->next)
    {
      if (node->local.lto_file_data)
	{
	  lto_materialize_function (node);
	  lto_stats.num_input_cgraph_nodes++;
	}
    }
 
  timevar_pop (TV_IPA_LTO_GIMPLE_IN);
 
  /* Start the appropriate timer depending on the mode that we are
     operating in.  */
  lto_timer = (flag_wpa) ? TV_WHOPR_WPA
	      : (flag_ltrans) ? TV_WHOPR_LTRANS
	      : TV_LTO;
  timevar_push (lto_timer);
 
  current_function_decl = NULL;
  set_cfun (NULL);
 
  /* Inform the middle end about the global variables we have seen.  */
  FOR_EACH_VEC_ELT (tree, lto_global_var_decls, i, decl)
    rest_of_decl_compilation (decl, 1, 0);
 
  if (!quiet_flag)
    fprintf (stderr, "\n");
 
  timevar_pop (lto_timer);
}
 
 
/* Perform whole program analysis (WPA) on the callgraph and write out the
   optimization plan.  */
 
static void
do_whole_program_analysis (void)
{
  /* Note that since we are in WPA mode, materialize_cgraph will not
     actually read in all the function bodies.  It only materializes
     the decls and cgraph nodes so that analysis can be performed.  */
  materialize_cgraph ();
 
  /* Reading in the cgraph uses different timers, start timing WPA now.  */
  timevar_push (TV_WHOPR_WPA);
 
  if (pre_ipa_mem_report)
    {
      fprintf (stderr, "Memory consumption before IPA\n");
      dump_memory_report (false);
    }
 
  cgraph_function_flags_ready = true;
 
  if (cgraph_dump_file)
    {
      dump_cgraph (cgraph_dump_file);
      dump_varpool (cgraph_dump_file);
    }
  bitmap_obstack_initialize (NULL);
  cgraph_state = CGRAPH_STATE_IPA_SSA;
 
  execute_ipa_pass_list (all_regular_ipa_passes);
 
  if (cgraph_dump_file)
    {
      fprintf (cgraph_dump_file, "Optimized ");
      dump_cgraph (cgraph_dump_file);
      dump_varpool (cgraph_dump_file);
    }
  verify_cgraph ();
  bitmap_obstack_release (NULL);
 
  /* We are about to launch the final LTRANS phase, stop the WPA timer.  */
  timevar_pop (TV_WHOPR_WPA);
 
  if (flag_lto_partition_1to1)
    lto_1_to_1_map ();
  else
    lto_balanced_map ();
 
  if (!quiet_flag)
    {
      fprintf (stderr, "\nStreaming out");
      fflush (stderr);
    }
  lto_wpa_write_files ();
  ggc_collect ();
  if (!quiet_flag)
    fprintf (stderr, "\n");
 
  if (post_ipa_mem_report)
    {
      fprintf (stderr, "Memory consumption after IPA\n");
      dump_memory_report (false);
    }
 
  /* Show the LTO report before launching LTRANS.  */
  if (flag_lto_report)
    print_lto_report ();
}
 
 
static GTY(()) tree lto_eh_personality_decl;
 
/* Return the LTO personality function decl.  */
 
tree
lto_eh_personality (void)
{
  if (!lto_eh_personality_decl)
    {
      /* Use the first personality DECL for our personality if we don't
	 support multiple ones.  This ensures that we don't artificially
	 create the need for them in a single-language program.  */
      if (first_personality_decl && !dwarf2out_do_cfi_asm ())
	lto_eh_personality_decl = first_personality_decl;
      else
	lto_eh_personality_decl = lhd_gcc_personality ();
    }
 
  return lto_eh_personality_decl;
}
 
/* Set the process name based on the LTO mode. */
 
static void 
lto_process_name (void)
{
  if (flag_lto)
    setproctitle ("lto1-lto");
  if (flag_wpa)
    setproctitle ("lto1-wpa");
  if (flag_ltrans)
    setproctitle ("lto1-ltrans");
}
 
 
/* Initialize the LTO front end.  */
 
static void
lto_init (void)
{
  lto_process_name ();
  lto_streamer_hooks_init ();
  lto_reader_init ();
  lto_set_in_hooks (NULL, get_section_data, free_section_data);
  memset (&lto_stats, 0, sizeof (lto_stats));
  bitmap_obstack_initialize (NULL);
  gimple_register_cfg_hooks ();
}
 
 
/* Main entry point for the GIMPLE front end.  This front end has
   three main personalities:
 
   - LTO (-flto).  All the object files on the command line are
     loaded in memory and processed as a single translation unit.
     This is the traditional link-time optimization behavior.
 
   - WPA (-fwpa).  Only the callgraph and summary information for
     files in the command file are loaded.  A single callgraph
     (without function bodies) is instantiated for the whole set of
     files.  IPA passes are only allowed to analyze the call graph
     and make transformation decisions.  The callgraph is
     partitioned, each partition is written to a new object file
     together with the transformation decisions.
 
   - LTRANS (-fltrans).  Similar to -flto but it prevents the IPA
     summary files from running again.  Since WPA computed summary
     information and decided what transformations to apply, LTRANS
     simply applies them.  */
 
void
lto_main (void)
{
  /* Initialize the LTO front end.  */
  lto_init ();
 
  /* Read all the symbols and call graph from all the files in the
     command line.  */
  read_cgraph_and_symbols (num_in_fnames, in_fnames);
 
  if (!seen_error ())
    {
      /* If WPA is enabled analyze the whole call graph and create an
	 optimization plan.  Otherwise, read in all the function
	 bodies and continue with optimization.  */
      if (flag_wpa)
	do_whole_program_analysis ();
      else
	{
	  materialize_cgraph ();
 
	  /* Let the middle end know that we have read and merged all of
	     the input files.  */ 
	  cgraph_optimize ();
 
	  /* FIXME lto, if the processes spawned by WPA fail, we miss
	     the chance to print WPA's report, so WPA will call
	     print_lto_report before launching LTRANS.  If LTRANS was
	     launched directly by the driver we would not need to do
	     this.  */
	  if (flag_lto_report)
	    print_lto_report ();
	}
    }
}
 
#include "gt-lto-lto.h"
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.