URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cxg/] [cxg2010.a] - Rev 720
Compare with Previous | Blame | View Log
-- CXG2010.A---- Grant of Unlimited Rights---- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained-- unlimited rights in the software and documentation contained herein.-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making-- this public release, the Government intends to confer upon all-- recipients unlimited rights equal to those held by the Government.-- These rights include rights to use, duplicate, release or disclose the-- released technical data and computer software in whole or in part, in-- any manner and for any purpose whatsoever, and to have or permit others-- to do so.---- DISCLAIMER---- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A-- PARTICULAR PURPOSE OF SAID MATERIAL.--*---- OBJECTIVE:-- Check that the exp function returns-- results that are within the error bound allowed.---- TEST DESCRIPTION:-- This test contains three test packages that are almost-- identical. The first two packages differ only in the-- floating point type that is being tested. The first-- and third package differ only in whether the generic-- elementary functions package or the pre-instantiated-- package is used.-- The test package is not generic so that the arguments-- and expected results for some of the test values-- can be expressed as universal real instead of being-- computed at runtime.---- SPECIAL REQUIREMENTS-- The Strict Mode for the numerical accuracy must be-- selected. The method by which this mode is selected-- is implementation dependent.---- APPLICABILITY CRITERIA:-- This test applies only to implementations supporting the-- Numerics Annex and where the Machine_Radix is 2, 4, 8, or 16.-- This test only applies to the Strict Mode for numerical-- accuracy.------ CHANGE HISTORY:-- 1 Mar 96 SAIC Initial release for 2.1-- 2 Sep 96 SAIC Improved check routine----!---- References:---- Software Manual for the Elementary Functions-- William J. Cody, Jr. and William Waite-- Prentice-Hall, 1980---- CRC Standard Mathematical Tables-- 23rd Edition---- Implementation and Testing of Function Software-- W. J. Cody-- Problems and Methodologies in Mathematical Software Production-- editors P. C. Messina and A. Murli-- Lecture Notes in Computer Science Volume 142-- Springer Verlag, 1982------ Notes on derivation of error bound for exp(p)*exp(-p)---- Let a = true value of exp(p) and ac be the computed value.-- Then a = ac(1+e1), where |e1| <= 4*Model_Epsilon.-- Similarly, let b = true value of exp(-p) and bc be the computed value.-- Then b = bc(1+e2), where |e2| <= 4*ME.---- The product of x and y is (x*y)(1+e3), where |e3| <= 1.0ME---- Hence, the computed ab is [ac(1+e1)*bc(1+e2)](1+e3) =-- (ac*bc)[1 + e1 + e2 + e3 + e1e2 + e1e3 + e2e3 + e1e2e3).---- Throwing away the last four tiny terms, we have (ac*bc)(1 + eta),---- where |eta| <= (4+4+1)ME = 9.0Model_Epsilon.with System;with Report;with Ada.Numerics.Generic_Elementary_Functions;with Ada.Numerics.Elementary_Functions;procedure CXG2010 isVerbose : constant Boolean := False;Max_Samples : constant := 1000;Accuracy_Error_Reported : Boolean := False;package Float_Check issubtype Real is Float;procedure Do_Test;end Float_Check;package body Float_Check ispackage Elementary_Functions is newAda.Numerics.Generic_Elementary_Functions (Real);function Sqrt (X : Real) return Real renamesElementary_Functions.Sqrt;function Exp (X : Real) return Real renamesElementary_Functions.Exp;-- The following value is a lower bound on the accuracy-- required. It is normally 0.0 so that the lower bound-- is computed from Model_Epsilon. However, for tests-- where the expected result is only known to a certain-- amount of precision this bound takes on a non-zero-- value to account for that level of precision.Error_Low_Bound : Real := 0.0;procedure Check (Actual, Expected : Real;Test_Name : String;MRE : Real) isMax_Error : Real;Rel_Error : Real;Abs_Error : Real;begin-- In the case where the expected result is very small or 0-- we compute the maximum error as a multiple of Model_Epsilon-- instead of Model_Epsilon and Expected.Rel_Error := MRE * abs Expected * Real'Model_Epsilon;Abs_Error := MRE * Real'Model_Epsilon;if Rel_Error > Abs_Error thenMax_Error := Rel_Error;elseMax_Error := Abs_Error;end if;-- take into account the low bound on the errorif Max_Error < Error_Low_Bound thenMax_Error := Error_Low_Bound;end if;if abs (Actual - Expected) > Max_Error thenAccuracy_Error_Reported := True;Report.Failed (Test_Name &" actual: " & Real'Image (Actual) &" expected: " & Real'Image (Expected) &" difference: " & Real'Image (Actual - Expected) &" max err:" & Real'Image (Max_Error) );elsif Verbose thenif Actual = Expected thenReport.Comment (Test_Name & " exact result");elseReport.Comment (Test_Name & " passed");end if;end if;end Check;procedure Argument_Range_Check_1 (A, B : Real;Test : String) is-- test a evenly distributed selection of-- arguments selected from the range A to B.-- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)-- The parameter One_Minus_Exp_Minus_V is the value-- 1.0 - Exp (-V)-- accurate to machine precision.-- This procedure is a translation of part of Cody's testX : Real;Y : Real;ZX, ZY : Real;V : constant := 1.0 / 16.0;One_Minus_Exp_Minus_V : constant := 6.058693718652421388E-2;beginAccuracy_Error_Reported := False;for I in 1..Max_Samples loopX := (B - A) * Real (I) / Real (Max_Samples) + A;Y := X - V;if Y < 0.0 thenX := Y + V;end if;ZX := Exp (X);ZY := Exp (Y);-- ZX := Exp(X) - Exp(X) * (1 - Exp(-V);-- which simplifies to ZX := Exp (X-V);ZX := ZX - ZX * One_Minus_Exp_Minus_V;-- note that since the expected value is computed, we-- must take the error in that computation into account.Check (ZY, ZX,"test " & Test & " -" &Integer'Image (I) &" exp (" & Real'Image (X) & ")",9.0);exit when Accuracy_Error_Reported;end loop;exceptionwhen Constraint_Error =>Report.Failed("Constraint_Error raised in argument range check 1");when others =>Report.Failed ("exception in argument range check 1");end Argument_Range_Check_1;procedure Argument_Range_Check_2 (A, B : Real;Test : String) is-- test a evenly distributed selection of-- arguments selected from the range A to B.-- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)-- The parameter One_Minus_Exp_Minus_V is the value-- 1.0 - Exp (-V)-- accurate to machine precision.-- This procedure is a translation of part of Cody's testX : Real;Y : Real;ZX, ZY : Real;V : constant := 45.0 / 16.0;-- 1/16 - Exp(45/16)Coeff : constant := 2.4453321046920570389E-3;beginAccuracy_Error_Reported := False;for I in 1..Max_Samples loopX := (B - A) * Real (I) / Real (Max_Samples) + A;Y := X - V;if Y < 0.0 thenX := Y + V;end if;ZX := Exp (X);ZY := Exp (Y);-- ZX := Exp(X) * 1/16 - Exp(X) * Coeff;-- where Coeff is 1/16 - Exp(45/16)-- which simplifies to ZX := Exp (X-V);ZX := ZX * 0.0625 - ZX * Coeff;-- note that since the expected value is computed, we-- must take the error in that computation into account.Check (ZY, ZX,"test " & Test & " -" &Integer'Image (I) &" exp (" & Real'Image (X) & ")",9.0);exit when Accuracy_Error_Reported;end loop;exceptionwhen Constraint_Error =>Report.Failed("Constraint_Error raised in argument range check 2");when others =>Report.Failed ("exception in argument range check 2");end Argument_Range_Check_2;procedure Do_Test isbegin--- test 1 ---declareY : Real;beginY := Exp(1.0);-- normal accuracy requirementsCheck (Y, Ada.Numerics.e, "test 1 -- exp(1)", 4.0);exceptionwhen Constraint_Error =>Report.Failed ("Constraint_Error raised in test 1");when others =>Report.Failed ("exception in test 1");end;--- test 2 ---declareY : Real;beginY := Exp(16.0) * Exp(-16.0);Check (Y, 1.0, "test 2 -- exp(16)*exp(-16)", 9.0);exceptionwhen Constraint_Error =>Report.Failed ("Constraint_Error raised in test 2");when others =>Report.Failed ("exception in test 2");end;--- test 3 ---declareY : Real;beginY := Exp (Ada.Numerics.Pi) * Exp (-Ada.Numerics.Pi);Check (Y, 1.0, "test 3 -- exp(pi)*exp(-pi)", 9.0);exceptionwhen Constraint_Error =>Report.Failed ("Constraint_Error raised in test 3");when others =>Report.Failed ("exception in test 3");end;--- test 4 ---declareY : Real;beginY := Exp(0.0);Check (Y, 1.0, "test 4 -- exp(0.0)",0.0); -- no error allowedexceptionwhen Constraint_Error =>Report.Failed ("Constraint_Error raised in test 4");when others =>Report.Failed ("exception in test 4");end;--- test 5 ----- constants used here only have 19 digits of precisionif Real'Digits > 19 thenError_Low_Bound := 0.00000_00000_00000_0001;Report.Comment ("exp accuracy checked to 19 digits");end if;Argument_Range_Check_1 ( 1.0/Sqrt(Real(Real'Machine_Radix)),1.0,"5");Error_Low_Bound := 0.0; -- reset--- test 6 ----- constants used here only have 19 digits of precisionif Real'Digits > 19 thenError_Low_Bound := 0.00000_00000_00000_0001;Report.Comment ("exp accuracy checked to 19 digits");end if;Argument_Range_Check_2 (1.0,Sqrt(Real(Real'Machine_Radix)),"6");Error_Low_Bound := 0.0; -- resetend Do_Test;end Float_Check;------------------------------------------------------------------------------------------------------------------------------------------------ check the floating point type with the most digitstype A_Long_Float is digits System.Max_Digits;package A_Long_Float_Check issubtype Real is A_Long_Float;procedure Do_Test;end A_Long_Float_Check;package body A_Long_Float_Check ispackage Elementary_Functions is newAda.Numerics.Generic_Elementary_Functions (Real);function Sqrt (X : Real) return Real renamesElementary_Functions.Sqrt;function Exp (X : Real) return Real renamesElementary_Functions.Exp;-- The following value is a lower bound on the accuracy-- required. It is normally 0.0 so that the lower bound-- is computed from Model_Epsilon. However, for tests-- where the expected result is only known to a certain-- amount of precision this bound takes on a non-zero-- value to account for that level of precision.Error_Low_Bound : Real := 0.0;procedure Check (Actual, Expected : Real;Test_Name : String;MRE : Real) isMax_Error : Real;Rel_Error : Real;Abs_Error : Real;begin-- In the case where the expected result is very small or 0-- we compute the maximum error as a multiple of Model_Epsilon-- instead of Model_Epsilon and Expected.Rel_Error := MRE * abs Expected * Real'Model_Epsilon;Abs_Error := MRE * Real'Model_Epsilon;if Rel_Error > Abs_Error thenMax_Error := Rel_Error;elseMax_Error := Abs_Error;end if;-- take into account the low bound on the errorif Max_Error < Error_Low_Bound thenMax_Error := Error_Low_Bound;end if;if abs (Actual - Expected) > Max_Error thenAccuracy_Error_Reported := True;Report.Failed (Test_Name &" actual: " & Real'Image (Actual) &" expected: " & Real'Image (Expected) &" difference: " & Real'Image (Actual - Expected) &" max err:" & Real'Image (Max_Error) );elsif Verbose thenif Actual = Expected thenReport.Comment (Test_Name & " exact result");elseReport.Comment (Test_Name & " passed");end if;end if;end Check;procedure Argument_Range_Check_1 (A, B : Real;Test : String) is-- test a evenly distributed selection of-- arguments selected from the range A to B.-- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)-- The parameter One_Minus_Exp_Minus_V is the value-- 1.0 - Exp (-V)-- accurate to machine precision.-- This procedure is a translation of part of Cody's testX : Real;Y : Real;ZX, ZY : Real;V : constant := 1.0 / 16.0;One_Minus_Exp_Minus_V : constant := 6.058693718652421388E-2;beginAccuracy_Error_Reported := False;for I in 1..Max_Samples loopX := (B - A) * Real (I) / Real (Max_Samples) + A;Y := X - V;if Y < 0.0 thenX := Y + V;end if;ZX := Exp (X);ZY := Exp (Y);-- ZX := Exp(X) - Exp(X) * (1 - Exp(-V);-- which simplifies to ZX := Exp (X-V);ZX := ZX - ZX * One_Minus_Exp_Minus_V;-- note that since the expected value is computed, we-- must take the error in that computation into account.Check (ZY, ZX,"test " & Test & " -" &Integer'Image (I) &" exp (" & Real'Image (X) & ")",9.0);exit when Accuracy_Error_Reported;end loop;exceptionwhen Constraint_Error =>Report.Failed("Constraint_Error raised in argument range check 1");when others =>Report.Failed ("exception in argument range check 1");end Argument_Range_Check_1;procedure Argument_Range_Check_2 (A, B : Real;Test : String) is-- test a evenly distributed selection of-- arguments selected from the range A to B.-- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)-- The parameter One_Minus_Exp_Minus_V is the value-- 1.0 - Exp (-V)-- accurate to machine precision.-- This procedure is a translation of part of Cody's testX : Real;Y : Real;ZX, ZY : Real;V : constant := 45.0 / 16.0;-- 1/16 - Exp(45/16)Coeff : constant := 2.4453321046920570389E-3;beginAccuracy_Error_Reported := False;for I in 1..Max_Samples loopX := (B - A) * Real (I) / Real (Max_Samples) + A;Y := X - V;if Y < 0.0 thenX := Y + V;end if;ZX := Exp (X);ZY := Exp (Y);-- ZX := Exp(X) * 1/16 - Exp(X) * Coeff;-- where Coeff is 1/16 - Exp(45/16)-- which simplifies to ZX := Exp (X-V);ZX := ZX * 0.0625 - ZX * Coeff;-- note that since the expected value is computed, we-- must take the error in that computation into account.Check (ZY, ZX,"test " & Test & " -" &Integer'Image (I) &" exp (" & Real'Image (X) & ")",9.0);exit when Accuracy_Error_Reported;end loop;exceptionwhen Constraint_Error =>Report.Failed("Constraint_Error raised in argument range check 2");when others =>Report.Failed ("exception in argument range check 2");end Argument_Range_Check_2;procedure Do_Test isbegin--- test 1 ---declareY : Real;beginY := Exp(1.0);-- normal accuracy requirementsCheck (Y, Ada.Numerics.e, "test 1 -- exp(1)", 4.0);exceptionwhen Constraint_Error =>Report.Failed ("Constraint_Error raised in test 1");when others =>Report.Failed ("exception in test 1");end;--- test 2 ---declareY : Real;beginY := Exp(16.0) * Exp(-16.0);Check (Y, 1.0, "test 2 -- exp(16)*exp(-16)", 9.0);exceptionwhen Constraint_Error =>Report.Failed ("Constraint_Error raised in test 2");when others =>Report.Failed ("exception in test 2");end;--- test 3 ---declareY : Real;beginY := Exp (Ada.Numerics.Pi) * Exp (-Ada.Numerics.Pi);Check (Y, 1.0, "test 3 -- exp(pi)*exp(-pi)", 9.0);exceptionwhen Constraint_Error =>Report.Failed ("Constraint_Error raised in test 3");when others =>Report.Failed ("exception in test 3");end;--- test 4 ---declareY : Real;beginY := Exp(0.0);Check (Y, 1.0, "test 4 -- exp(0.0)",0.0); -- no error allowedexceptionwhen Constraint_Error =>Report.Failed ("Constraint_Error raised in test 4");when others =>Report.Failed ("exception in test 4");end;--- test 5 ----- constants used here only have 19 digits of precisionif Real'Digits > 19 thenError_Low_Bound := 0.00000_00000_00000_0001;Report.Comment ("exp accuracy checked to 19 digits");end if;Argument_Range_Check_1 ( 1.0/Sqrt(Real(Real'Machine_Radix)),1.0,"5");Error_Low_Bound := 0.0; -- reset--- test 6 ----- constants used here only have 19 digits of precisionif Real'Digits > 19 thenError_Low_Bound := 0.00000_00000_00000_0001;Report.Comment ("exp accuracy checked to 19 digits");end if;Argument_Range_Check_2 (1.0,Sqrt(Real(Real'Machine_Radix)),"6");Error_Low_Bound := 0.0; -- resetend Do_Test;end A_Long_Float_Check;----------------------------------------------------------------------------------------------------------------------------------------------package Non_Generic_Check isprocedure Do_Test;subtype Real is Float;end Non_Generic_Check;package body Non_Generic_Check ispackage Elementary_Functions renamesAda.Numerics.Elementary_Functions;function Sqrt (X : Real) return Real renamesElementary_Functions.Sqrt;function Exp (X : Real) return Real renamesElementary_Functions.Exp;-- The following value is a lower bound on the accuracy-- required. It is normally 0.0 so that the lower bound-- is computed from Model_Epsilon. However, for tests-- where the expected result is only known to a certain-- amount of precision this bound takes on a non-zero-- value to account for that level of precision.Error_Low_Bound : Real := 0.0;procedure Check (Actual, Expected : Real;Test_Name : String;MRE : Real) isMax_Error : Real;Rel_Error : Real;Abs_Error : Real;begin-- In the case where the expected result is very small or 0-- we compute the maximum error as a multiple of Model_Epsilon-- instead of Model_Epsilon and Expected.Rel_Error := MRE * abs Expected * Real'Model_Epsilon;Abs_Error := MRE * Real'Model_Epsilon;if Rel_Error > Abs_Error thenMax_Error := Rel_Error;elseMax_Error := Abs_Error;end if;-- take into account the low bound on the errorif Max_Error < Error_Low_Bound thenMax_Error := Error_Low_Bound;end if;if abs (Actual - Expected) > Max_Error thenAccuracy_Error_Reported := True;Report.Failed (Test_Name &" actual: " & Real'Image (Actual) &" expected: " & Real'Image (Expected) &" difference: " & Real'Image (Actual - Expected) &" max err:" & Real'Image (Max_Error) );elsif Verbose thenif Actual = Expected thenReport.Comment (Test_Name & " exact result");elseReport.Comment (Test_Name & " passed");end if;end if;end Check;procedure Argument_Range_Check_1 (A, B : Real;Test : String) is-- test a evenly distributed selection of-- arguments selected from the range A to B.-- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)-- The parameter One_Minus_Exp_Minus_V is the value-- 1.0 - Exp (-V)-- accurate to machine precision.-- This procedure is a translation of part of Cody's testX : Real;Y : Real;ZX, ZY : Real;V : constant := 1.0 / 16.0;One_Minus_Exp_Minus_V : constant := 6.058693718652421388E-2;beginAccuracy_Error_Reported := False;for I in 1..Max_Samples loopX := (B - A) * Real (I) / Real (Max_Samples) + A;Y := X - V;if Y < 0.0 thenX := Y + V;end if;ZX := Exp (X);ZY := Exp (Y);-- ZX := Exp(X) - Exp(X) * (1 - Exp(-V);-- which simplifies to ZX := Exp (X-V);ZX := ZX - ZX * One_Minus_Exp_Minus_V;-- note that since the expected value is computed, we-- must take the error in that computation into account.Check (ZY, ZX,"test " & Test & " -" &Integer'Image (I) &" exp (" & Real'Image (X) & ")",9.0);exit when Accuracy_Error_Reported;end loop;exceptionwhen Constraint_Error =>Report.Failed("Constraint_Error raised in argument range check 1");when others =>Report.Failed ("exception in argument range check 1");end Argument_Range_Check_1;procedure Argument_Range_Check_2 (A, B : Real;Test : String) is-- test a evenly distributed selection of-- arguments selected from the range A to B.-- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)-- The parameter One_Minus_Exp_Minus_V is the value-- 1.0 - Exp (-V)-- accurate to machine precision.-- This procedure is a translation of part of Cody's testX : Real;Y : Real;ZX, ZY : Real;V : constant := 45.0 / 16.0;-- 1/16 - Exp(45/16)Coeff : constant := 2.4453321046920570389E-3;beginAccuracy_Error_Reported := False;for I in 1..Max_Samples loopX := (B - A) * Real (I) / Real (Max_Samples) + A;Y := X - V;if Y < 0.0 thenX := Y + V;end if;ZX := Exp (X);ZY := Exp (Y);-- ZX := Exp(X) * 1/16 - Exp(X) * Coeff;-- where Coeff is 1/16 - Exp(45/16)-- which simplifies to ZX := Exp (X-V);ZX := ZX * 0.0625 - ZX * Coeff;-- note that since the expected value is computed, we-- must take the error in that computation into account.Check (ZY, ZX,"test " & Test & " -" &Integer'Image (I) &" exp (" & Real'Image (X) & ")",9.0);exit when Accuracy_Error_Reported;end loop;exceptionwhen Constraint_Error =>Report.Failed("Constraint_Error raised in argument range check 2");when others =>Report.Failed ("exception in argument range check 2");end Argument_Range_Check_2;procedure Do_Test isbegin--- test 1 ---declareY : Real;beginY := Exp(1.0);-- normal accuracy requirementsCheck (Y, Ada.Numerics.e, "test 1 -- exp(1)", 4.0);exceptionwhen Constraint_Error =>Report.Failed ("Constraint_Error raised in test 1");when others =>Report.Failed ("exception in test 1");end;--- test 2 ---declareY : Real;beginY := Exp(16.0) * Exp(-16.0);Check (Y, 1.0, "test 2 -- exp(16)*exp(-16)", 9.0);exceptionwhen Constraint_Error =>Report.Failed ("Constraint_Error raised in test 2");when others =>Report.Failed ("exception in test 2");end;--- test 3 ---declareY : Real;beginY := Exp (Ada.Numerics.Pi) * Exp (-Ada.Numerics.Pi);Check (Y, 1.0, "test 3 -- exp(pi)*exp(-pi)", 9.0);exceptionwhen Constraint_Error =>Report.Failed ("Constraint_Error raised in test 3");when others =>Report.Failed ("exception in test 3");end;--- test 4 ---declareY : Real;beginY := Exp(0.0);Check (Y, 1.0, "test 4 -- exp(0.0)",0.0); -- no error allowedexceptionwhen Constraint_Error =>Report.Failed ("Constraint_Error raised in test 4");when others =>Report.Failed ("exception in test 4");end;--- test 5 ----- constants used here only have 19 digits of precisionif Real'Digits > 19 thenError_Low_Bound := 0.00000_00000_00000_0001;Report.Comment ("exp accuracy checked to 19 digits");end if;Argument_Range_Check_1 ( 1.0/Sqrt(Real(Real'Machine_Radix)),1.0,"5");Error_Low_Bound := 0.0; -- reset--- test 6 ----- constants used here only have 19 digits of precisionif Real'Digits > 19 thenError_Low_Bound := 0.00000_00000_00000_0001;Report.Comment ("exp accuracy checked to 19 digits");end if;Argument_Range_Check_2 (1.0,Sqrt(Real(Real'Machine_Radix)),"6");Error_Low_Bound := 0.0; -- resetend Do_Test;end Non_Generic_Check;----------------------------------------------------------------------------------------------------------------------------------------------beginReport.Test ("CXG2010","Check the accuracy of the exp function");-- the test only applies to machines with a radix of 2,4,8, or 16case Float'Machine_Radix iswhen 2 | 4 | 8 | 16 => null;when others =>Report.Not_Applicable ("only applicable to binary radix");Report.Result;return;end case;if Verbose thenReport.Comment ("checking Standard.Float");end if;Float_Check.Do_Test;if Verbose thenReport.Comment ("checking a digits" &Integer'Image (System.Max_Digits) &" floating point type");end if;A_Long_Float_Check.Do_Test;if Verbose thenReport.Comment ("checking non-generic package");end if;Non_Generic_Check.Do_Test;Report.Result;end CXG2010;
