URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cxg/] [cxg2020.a] - Rev 720
Compare with Previous | Blame | View Log
-- CXG2020.A---- Grant of Unlimited Rights---- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained-- unlimited rights in the software and documentation contained herein.-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making-- this public release, the Government intends to confer upon all-- recipients unlimited rights equal to those held by the Government.-- These rights include rights to use, duplicate, release or disclose the-- released technical data and computer software in whole or in part, in-- any manner and for any purpose whatsoever, and to have or permit others-- to do so.---- DISCLAIMER---- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A-- PARTICULAR PURPOSE OF SAID MATERIAL.--*---- OBJECTIVE:-- Check that the complex SQRT function returns-- a result that is within the error bound allowed.---- TEST DESCRIPTION:-- This test consists of a generic package that is-- instantiated to check complex numbers based upon-- both Float and a long float type.-- The test for each floating point type is divided into-- several parts:-- Special value checks where the result is a known constant.-- Checks that use an identity for determining the result.---- SPECIAL REQUIREMENTS-- The Strict Mode for the numerical accuracy must be-- selected. The method by which this mode is selected-- is implementation dependent.---- APPLICABILITY CRITERIA:-- This test applies only to implementations supporting the-- Numerics Annex.-- This test only applies to the Strict Mode for numerical-- accuracy.------ CHANGE HISTORY:-- 24 Mar 96 SAIC Initial release for 2.1-- 17 Aug 96 SAIC Incorporated reviewer comments.-- 03 Jun 98 EDS Added parens to ensure that the expression is not-- evaluated by multiplying its two large terms-- together and overflowing.--!---- References:---- W. J. Cody-- CELEFUNT: A Portable Test Package for Complex Elementary Functions-- Algorithm 714, Collected Algorithms from ACM.-- Published in Transactions On Mathematical Software,-- Vol. 19, No. 1, March, 1993, pp. 1-21.---- CRC Standard Mathematical Tables-- 23rd Edition--with System;with Report;with Ada.Numerics.Generic_Complex_Types;with Ada.Numerics.Generic_Complex_Elementary_Functions;procedure CXG2020 isVerbose : constant Boolean := False;-- Note that Max_Samples is the number of samples taken in-- both the real and imaginary directions. Thus, for Max_Samples-- of 100 the number of values checked is 10000.Max_Samples : constant := 100;E : constant := Ada.Numerics.E;Pi : constant := Ada.Numerics.Pi;-- CRC Standard Mathematical Tables; 23rd Edition; pg 738Sqrt2 : constant :=1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;Sqrt3 : constant :=1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;generictype Real is digits <>;package Generic_Check isprocedure Do_Test;end Generic_Check;package body Generic_Check ispackage Complex_Type is newAda.Numerics.Generic_Complex_Types (Real);use Complex_Type;package CEF is newAda.Numerics.Generic_Complex_Elementary_Functions (Complex_Type);function Sqrt (X : Complex) return Complex renames CEF.Sqrt;-- flag used to terminate some tests earlyAccuracy_Error_Reported : Boolean := False;procedure Check (Actual, Expected : Real;Test_Name : String;MRE : Real) isMax_Error : Real;Rel_Error : Real;Abs_Error : Real;begin-- In the case where the expected result is very small or 0-- we compute the maximum error as a multiple of Model_Epsilon-- instead of Model_Epsilon and Expected.Rel_Error := MRE * (abs Expected * Real'Model_Epsilon);Abs_Error := MRE * Real'Model_Epsilon;if Rel_Error > Abs_Error thenMax_Error := Rel_Error;elseMax_Error := Abs_Error;end if;if abs (Actual - Expected) > Max_Error thenAccuracy_Error_Reported := True;Report.Failed (Test_Name &" actual: " & Real'Image (Actual) &" expected: " & Real'Image (Expected) &" difference: " & Real'Image (Actual - Expected) &" max err:" & Real'Image (Max_Error) );elsif Verbose thenif Actual = Expected thenReport.Comment (Test_Name & " exact result");elseReport.Comment (Test_Name & " passed");end if;end if;end Check;procedure Check (Actual, Expected : Complex;Test_Name : String;MRE : Real) isbeginCheck (Actual.Re, Expected.Re, Test_Name & " real part", MRE);Check (Actual.Im, Expected.Im, Test_Name & " imaginary part", MRE);end Check;procedure Special_Value_Test is-- In the following tests the expected result is accurate-- to the machine precision so the minimum guaranteed error-- bound can be used if the argument is exact.---- One or i is added to the actual and expected results in-- order to prevent the expected result from having a-- real or imaginary part of 0. This is to allow a reasonable-- relative error for that component.Minimum_Error : constant := 6.0;Z1, Z2 : Complex;beginCheck (Sqrt(9.0+0.0*i) + i,3.0+1.0*i,"sqrt(9+0i)+i",Minimum_Error);Check (Sqrt (-2.0 + 0.0 * i) + 1.0,1.0 + Sqrt2 * i,"sqrt(-2)+1 ",Minimum_Error);-- make sure no exception occurs when taking the sqrt of-- very large and very small values.Z1 := (Real'Safe_Last * 0.9, Real'Safe_Last * 0.9);Z2 := Sqrt (Z1);beginCheck (Z2 * Z2,Z1,"sqrt((big,big))",Minimum_Error + 5.0); -- +5 for multiplyexceptionwhen others =>Report.Failed ("unexpected exception in sqrt((big,big))");end;Z1 := (Real'Model_Epsilon * 10.0, Real'Model_Epsilon * 10.0);Z2 := Sqrt (Z1);beginCheck (Z2 * Z2,Z1,"sqrt((little,little))",Minimum_Error + 5.0); -- +5 for multiplyexceptionwhen others =>Report.Failed ("unexpected exception in " &"sqrt((little,little))");end;exceptionwhen Constraint_Error =>Report.Failed ("Constraint_Error raised in special value test");when others =>Report.Failed ("exception in special value test");end Special_Value_Test;procedure Exact_Result_Test isNo_Error : constant := 0.0;begin-- G.1.2(36);6.0Check (Sqrt(0.0 + 0.0*i), 0.0 + 0.0 * i, "sqrt(0+0i)", No_Error);-- G.1.2(37);6.0Check (Sqrt(1.0 + 0.0*i), 1.0 + 0.0 * i, "sqrt(1+0i)", No_Error);-- G.1.2(38-39);6.0Check (Sqrt(-1.0 + 0.0*i), 0.0 + 1.0 * i, "sqrt(-1+0i)", No_Error);-- G.1.2(40);6.0if Real'Signed_Zeros thenCheck (Sqrt(-1.0-0.0*i), 0.0 - 1.0 * i, "sqrt(-1-0i)", No_Error);end if;exceptionwhen Constraint_Error =>Report.Failed ("Constraint_Error raised in Exact_Result Test");when others =>Report.Failed ("exception in Exact_Result Test");end Exact_Result_Test;procedure Identity_Test (RA, RB, IA, IB : Real) is-- Tests an identity over a range of values specified-- by the 4 parameters. RA and RB denote the range for the-- real part while IA and IB denote the range for the-- imaginary part of the result.---- For this test we use the identity-- Sqrt(Z*Z) = Z--Scale : Real := Real (Real'Machine_Radix) ** (Real'Mantissa / 2 + 4);W, X, Y, Z : Real;CX : Complex;Actual, Expected : Complex;beginAccuracy_Error_Reported := False; -- resetfor II in 1..Max_Samples loopX := (RB - RA) * Real (II) / Real (Max_Samples) + RA;for J in 1..Max_Samples loopY := (IB - IA) * Real (J) / Real (Max_Samples) + IA;-- purify the arguments to minimize roundoff error.-- We construct the values so that the products X*X,-- Y*Y, and X*Y are all exact machine numbers.-- See Cody page 7 and CELEFUNT code.Z := X * Scale;W := Z + X;X := W - Z;Z := Y * Scale;W := Z + Y;Y := W - Z;-- G.1.2(21);6.0 - real part of result is non-negativeExpected := Compose_From_Cartesian( abs X,Y);Z := X*X - Y*Y;W := X*Y;CX := Compose_From_Cartesian(Z,W+W);-- The arguments are now ready so on with the-- identity computation.Actual := Sqrt(CX);Check (Actual, Expected,"Identity_1_Test " & Integer'Image (II) &Integer'Image (J) & ": Sqrt((" &Real'Image (CX.Re) & ", " &Real'Image (CX.Im) & ")) ",8.5); -- 6.0 from sqrt, 2.5 from argument.-- See Cody pg 7-8 for analysis of additional error amount.if Accuracy_Error_Reported then-- only report the first error in this test in order to keep-- lots of failures from producing a huge error logreturn;end if;end loop;end loop;exceptionwhen Constraint_Error =>Report.Failed("Constraint_Error raised in Identity_Test" &" for X=(" & Real'Image (X) &", " & Real'Image (X) & ")");when others =>Report.Failed ("exception in Identity_Test" &" for X=(" & Real'Image (X) &", " & Real'Image (X) & ")");end Identity_Test;procedure Do_Test isbeginSpecial_Value_Test;Exact_Result_Test;-- ranges where the sign is the same and where it-- differs.Identity_Test ( 0.0, 10.0, 0.0, 10.0);Identity_Test ( 0.0, 100.0, -100.0, 0.0);end Do_Test;end Generic_Check;----------------------------------------------------------------------------------------------------------------------------------------------package Float_Check is new Generic_Check (Float);-- check the floating point type with the most digitstype A_Long_Float is digits System.Max_Digits;package A_Long_Float_Check is new Generic_Check (A_Long_Float);----------------------------------------------------------------------------------------------------------------------------------------------beginReport.Test ("CXG2020","Check the accuracy of the complex SQRT function");if Verbose thenReport.Comment ("checking Standard.Float");end if;Float_Check.Do_Test;if Verbose thenReport.Comment ("checking a digits" &Integer'Image (System.Max_Digits) &" floating point type");end if;A_Long_Float_Check.Do_Test;Report.Result;end CXG2020;
