URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cxg/] [cxg2021.a] - Rev 720
Compare with Previous | Blame | View Log
-- CXG2021.A
--
-- Grant of Unlimited Rights
--
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
-- unlimited rights in the software and documentation contained herein.
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
-- this public release, the Government intends to confer upon all
-- recipients unlimited rights equal to those held by the Government.
-- These rights include rights to use, duplicate, release or disclose the
-- released technical data and computer software in whole or in part, in
-- any manner and for any purpose whatsoever, and to have or permit others
-- to do so.
--
-- DISCLAIMER
--
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
-- PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- OBJECTIVE:
-- Check that the complex SIN and COS functions return
-- a result that is within the error bound allowed.
--
-- TEST DESCRIPTION:
-- This test consists of a generic package that is
-- instantiated to check complex numbers based upon
-- both Float and a long float type.
-- The test for each floating point type is divided into
-- several parts:
-- Special value checks where the result is a known constant.
-- Checks that use an identity for determining the result.
--
-- SPECIAL REQUIREMENTS
-- The Strict Mode for the numerical accuracy must be
-- selected. The method by which this mode is selected
-- is implementation dependent.
--
-- APPLICABILITY CRITERIA:
-- This test applies only to implementations supporting the
-- Numerics Annex.
-- This test only applies to the Strict Mode for numerical
-- accuracy.
--
--
-- CHANGE HISTORY:
-- 27 Mar 96 SAIC Initial release for 2.1
-- 22 Aug 96 SAIC No longer skips test for systems with
-- more than 20 digits of precision.
--
--!
--
-- References:
--
-- W. J. Cody
-- CELEFUNT: A Portable Test Package for Complex Elementary Functions
-- Algorithm 714, Collected Algorithms from ACM.
-- Published in Transactions On Mathematical Software,
-- Vol. 19, No. 1, March, 1993, pp. 1-21.
--
-- CRC Standard Mathematical Tables
-- 23rd Edition
--
with System;
with Report;
with Ada.Numerics.Generic_Complex_Types;
with Ada.Numerics.Generic_Complex_Elementary_Functions;
procedure CXG2021 is
Verbose : constant Boolean := False;
-- Note that Max_Samples is the number of samples taken in
-- both the real and imaginary directions. Thus, for Max_Samples
-- of 100 the number of values checked is 10000.
Max_Samples : constant := 100;
E : constant := Ada.Numerics.E;
Pi : constant := Ada.Numerics.Pi;
generic
type Real is digits <>;
package Generic_Check is
procedure Do_Test;
end Generic_Check;
package body Generic_Check is
package Complex_Type is new
Ada.Numerics.Generic_Complex_Types (Real);
use Complex_Type;
package CEF is new
Ada.Numerics.Generic_Complex_Elementary_Functions (Complex_Type);
function Sin (X : Complex) return Complex renames CEF.Sin;
function Cos (X : Complex) return Complex renames CEF.Cos;
-- flag used to terminate some tests early
Accuracy_Error_Reported : Boolean := False;
-- The following value is a lower bound on the accuracy
-- required. It is normally 0.0 so that the lower bound
-- is computed from Model_Epsilon. However, for tests
-- where the expected result is only known to a certain
-- amount of precision this bound takes on a non-zero
-- value to account for that level of precision.
Error_Low_Bound : Real := 0.0;
-- the E_Factor is an additional amount added to the Expected
-- value prior to computing the maximum relative error.
-- This is needed because the error analysis (Cody pg 17-20)
-- requires this additional allowance.
procedure Check (Actual, Expected : Real;
Test_Name : String;
MRE : Real;
E_Factor : Real := 0.0) is
Max_Error : Real;
Rel_Error : Real;
Abs_Error : Real;
begin
-- In the case where the expected result is very small or 0
-- we compute the maximum error as a multiple of Model_Epsilon instead
-- of Model_Epsilon and Expected.
Rel_Error := MRE * Real'Model_Epsilon * (abs Expected + E_Factor);
Abs_Error := MRE * Real'Model_Epsilon;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
-- take into account the low bound on the error
if Max_Error < Error_Low_Bound then
Max_Error := Error_Low_Bound;
end if;
if abs (Actual - Expected) > Max_Error then
Accuracy_Error_Reported := True;
Report.Failed (Test_Name &
" actual: " & Real'Image (Actual) &
" expected: " & Real'Image (Expected) &
" difference: " & Real'Image (Actual - Expected) &
" max err:" & Real'Image (Max_Error) &
" efactor:" & Real'Image (E_Factor) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result");
else
Report.Comment (Test_Name & " passed" &
" actual: " & Real'Image (Actual) &
" expected: " & Real'Image (Expected) &
" difference: " & Real'Image (Actual - Expected) &
" max err:" & Real'Image (Max_Error) &
" efactor:" & Real'Image (E_Factor) );
end if;
end if;
end Check;
procedure Check (Actual, Expected : Complex;
Test_Name : String;
MRE : Real;
R_Factor, I_Factor : Real := 0.0) is
begin
Check (Actual.Re, Expected.Re, Test_Name & " real part",
MRE, R_Factor);
Check (Actual.Im, Expected.Im, Test_Name & " imaginary part",
MRE, I_Factor);
end Check;
procedure Special_Value_Test is
-- In the following tests the expected result is accurate
-- to the machine precision so the minimum guaranteed error
-- bound can be used if the argument is exact.
-- Since the argument involves Pi, we must allow for this
-- inexact argument.
Minimum_Error : constant := 11.0;
begin
Check (Sin (Pi/2.0 + 0.0*i),
1.0 + 0.0*i,
"sin(pi/2+0i)",
Minimum_Error + 1.0);
Check (Cos (Pi/2.0 + 0.0*i),
0.0 + 0.0*i,
"cos(pi/2+0i)",
Minimum_Error + 1.0);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in special value test");
when others =>
Report.Failed ("exception in special value test");
end Special_Value_Test;
procedure Exact_Result_Test is
No_Error : constant := 0.0;
begin
-- G.1.2(36);6.0
Check (Sin(0.0 + 0.0*i), 0.0 + 0.0 * i, "sin(0+0i)", No_Error);
Check (Cos(0.0 + 0.0*i), 1.0 + 0.0 * i, "cos(0+0i)", No_Error);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in Exact_Result Test");
when others =>
Report.Failed ("exception in Exact_Result Test");
end Exact_Result_Test;
procedure Identity_Test (RA, RB, IA, IB : Real) is
-- Tests an identity over a range of values specified
-- by the 4 parameters. RA and RB denote the range for the
-- real part while IA and IB denote the range for the
-- imaginary part.
--
-- For this test we use the identity
-- Sin(Z) = Sin(Z-W) * Cos(W) + Cos(Z-W) * Sin(W)
-- and
-- Cos(Z) = Cos(Z-W) * Cos(W) - Sin(Z-W) * Sin(W)
--
X, Y : Real;
Z : Complex;
W : constant Complex := Compose_From_Cartesian(0.0625, 0.0625);
ZmW : Complex; -- Z - W
Sin_ZmW,
Cos_ZmW : Complex;
Actual1, Actual2 : Complex;
R_Factor : Real; -- additional real error factor
I_Factor : Real; -- additional imaginary error factor
Sin_W : constant Complex := (6.2581348413276935585E-2,
6.2418588008436587236E-2);
-- numeric stability is enhanced by using Cos(W) - 1.0 instead of
-- Cos(W) in the computation.
Cos_W_m_1 : constant Complex := (-2.5431314180235545803E-6,
-3.9062493377261771826E-3);
begin
if Real'Digits > 20 then
-- constants used here accurate to 20 digits. Allow 1
-- additional digit of error for computation.
Error_Low_Bound := 0.00000_00000_00000_0001;
Report.Comment ("accuracy checked to 19 digits");
end if;
Accuracy_Error_Reported := False; -- reset
for II in 0..Max_Samples loop
X := (RB - RA) * Real (II) / Real (Max_Samples) + RA;
for J in 0..Max_Samples loop
Y := (IB - IA) * Real (J) / Real (Max_Samples) + IA;
Z := Compose_From_Cartesian(X,Y);
ZmW := Z - W;
Sin_ZmW := Sin (ZmW);
Cos_ZmW := Cos (ZmW);
-- now for the first identity
-- Sin(Z) = Sin(Z-W) * Cos(W) + Cos(Z-W) * Sin(W)
-- = Sin(Z-W) * (1+(Cos(W)-1)) + Cos(Z-W) * Sin(W)
-- = Sin(Z-W) + Sin(Z-W)*(Cos(W)-1) + Cos(Z-W)*Sin(W)
Actual1 := Sin (Z);
Actual2 := Sin_ZmW + (Sin_ZmW * Cos_W_m_1 + Cos_ZmW * Sin_W);
-- The computation of the additional error factors are taken
-- from Cody pages 17-20.
R_Factor := abs (Re (Sin_ZmW) * Re (1.0 - Cos_W_m_1)) +
abs (Im (Sin_ZmW) * Im (1.0 - Cos_W_m_1)) +
abs (Re (Cos_ZmW) * Re (Sin_W)) +
abs (Re (Cos_ZmW) * Re (1.0 - Cos_W_m_1));
I_Factor := abs (Re (Sin_ZmW) * Im (1.0 - Cos_W_m_1)) +
abs (Im (Sin_ZmW) * Re (1.0 - Cos_W_m_1)) +
abs (Re (Cos_ZmW) * Im (Sin_W)) +
abs (Im (Cos_ZmW) * Re (1.0 - Cos_W_m_1));
Check (Actual1, Actual2,
"Identity_1_Test " & Integer'Image (II) &
Integer'Image (J) & ": Sin((" &
Real'Image (Z.Re) & ", " &
Real'Image (Z.Im) & ")) ",
11.0, R_Factor, I_Factor);
-- now for the second identity
-- Cos(Z) = Cos(Z-W) * Cos(W) - Sin(Z-W) * Sin(W)
-- = Cos(Z-W) * (1+(Cos(W)-1) - Sin(Z-W) * Sin(W)
Actual1 := Cos (Z);
Actual2 := Cos_ZmW + (Cos_ZmW * Cos_W_m_1 - Sin_ZmW * Sin_W);
-- The computation of the additional error factors are taken
-- from Cody pages 17-20.
R_Factor := abs (Re (Sin_ZmW) * Re (Sin_W)) +
abs (Im (Sin_ZmW) * Im (Sin_W)) +
abs (Re (Cos_ZmW) * Re (1.0 - Cos_W_m_1)) +
abs (Im (Cos_ZmW) * Im (1.0 - Cos_W_m_1));
I_Factor := abs (Re (Sin_ZmW) * Im (Sin_W)) +
abs (Im (Sin_ZmW) * Re (Sin_W)) +
abs (Re (Cos_ZmW) * Im (1.0 - Cos_W_m_1)) +
abs (Im (Cos_ZmW) * Re (1.0 - Cos_W_m_1));
Check (Actual1, Actual2,
"Identity_2_Test " & Integer'Image (II) &
Integer'Image (J) & ": Cos((" &
Real'Image (Z.Re) & ", " &
Real'Image (Z.Im) & ")) ",
11.0, R_Factor, I_Factor);
if Accuracy_Error_Reported then
-- only report the first error in this test in order to keep
-- lots of failures from producing a huge error log
Error_Low_Bound := 0.0; -- reset
return;
end if;
end loop;
end loop;
Error_Low_Bound := 0.0; -- reset
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in Identity_Test" &
" for Z=(" & Real'Image (X) &
", " & Real'Image (Y) & ")");
when others =>
Report.Failed ("exception in Identity_Test" &
" for Z=(" & Real'Image (X) &
", " & Real'Image (Y) & ")");
end Identity_Test;
procedure Do_Test is
begin
Special_Value_Test;
Exact_Result_Test;
-- test regions where sin and cos have the same sign and
-- about the same magnitude. This will minimize subtraction
-- errors in the identities.
-- See Cody page 17.
Identity_Test (0.0625, 10.0, 0.0625, 10.0);
Identity_Test ( 16.0, 17.0, 16.0, 17.0);
end Do_Test;
end Generic_Check;
-----------------------------------------------------------------------
-----------------------------------------------------------------------
package Float_Check is new Generic_Check (Float);
-- check the floating point type with the most digits
type A_Long_Float is digits System.Max_Digits;
package A_Long_Float_Check is new Generic_Check (A_Long_Float);
-----------------------------------------------------------------------
-----------------------------------------------------------------------
begin
Report.Test ("CXG2021",
"Check the accuracy of the complex SIN and COS functions");
if Verbose then
Report.Comment ("checking Standard.Float");
end if;
Float_Check.Do_Test;
if Verbose then
Report.Comment ("checking a digits" &
Integer'Image (System.Max_Digits) &
" floating point type");
end if;
A_Long_Float_Check.Do_Test;
Report.Result;
end CXG2021;