URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cxg/] [cxg2021.a] - Rev 720
Compare with Previous | Blame | View Log
-- CXG2021.A---- Grant of Unlimited Rights---- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained-- unlimited rights in the software and documentation contained herein.-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making-- this public release, the Government intends to confer upon all-- recipients unlimited rights equal to those held by the Government.-- These rights include rights to use, duplicate, release or disclose the-- released technical data and computer software in whole or in part, in-- any manner and for any purpose whatsoever, and to have or permit others-- to do so.---- DISCLAIMER---- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A-- PARTICULAR PURPOSE OF SAID MATERIAL.--*---- OBJECTIVE:-- Check that the complex SIN and COS functions return-- a result that is within the error bound allowed.---- TEST DESCRIPTION:-- This test consists of a generic package that is-- instantiated to check complex numbers based upon-- both Float and a long float type.-- The test for each floating point type is divided into-- several parts:-- Special value checks where the result is a known constant.-- Checks that use an identity for determining the result.---- SPECIAL REQUIREMENTS-- The Strict Mode for the numerical accuracy must be-- selected. The method by which this mode is selected-- is implementation dependent.---- APPLICABILITY CRITERIA:-- This test applies only to implementations supporting the-- Numerics Annex.-- This test only applies to the Strict Mode for numerical-- accuracy.------ CHANGE HISTORY:-- 27 Mar 96 SAIC Initial release for 2.1-- 22 Aug 96 SAIC No longer skips test for systems with-- more than 20 digits of precision.----!---- References:---- W. J. Cody-- CELEFUNT: A Portable Test Package for Complex Elementary Functions-- Algorithm 714, Collected Algorithms from ACM.-- Published in Transactions On Mathematical Software,-- Vol. 19, No. 1, March, 1993, pp. 1-21.---- CRC Standard Mathematical Tables-- 23rd Edition--with System;with Report;with Ada.Numerics.Generic_Complex_Types;with Ada.Numerics.Generic_Complex_Elementary_Functions;procedure CXG2021 isVerbose : constant Boolean := False;-- Note that Max_Samples is the number of samples taken in-- both the real and imaginary directions. Thus, for Max_Samples-- of 100 the number of values checked is 10000.Max_Samples : constant := 100;E : constant := Ada.Numerics.E;Pi : constant := Ada.Numerics.Pi;generictype Real is digits <>;package Generic_Check isprocedure Do_Test;end Generic_Check;package body Generic_Check ispackage Complex_Type is newAda.Numerics.Generic_Complex_Types (Real);use Complex_Type;package CEF is newAda.Numerics.Generic_Complex_Elementary_Functions (Complex_Type);function Sin (X : Complex) return Complex renames CEF.Sin;function Cos (X : Complex) return Complex renames CEF.Cos;-- flag used to terminate some tests earlyAccuracy_Error_Reported : Boolean := False;-- The following value is a lower bound on the accuracy-- required. It is normally 0.0 so that the lower bound-- is computed from Model_Epsilon. However, for tests-- where the expected result is only known to a certain-- amount of precision this bound takes on a non-zero-- value to account for that level of precision.Error_Low_Bound : Real := 0.0;-- the E_Factor is an additional amount added to the Expected-- value prior to computing the maximum relative error.-- This is needed because the error analysis (Cody pg 17-20)-- requires this additional allowance.procedure Check (Actual, Expected : Real;Test_Name : String;MRE : Real;E_Factor : Real := 0.0) isMax_Error : Real;Rel_Error : Real;Abs_Error : Real;begin-- In the case where the expected result is very small or 0-- we compute the maximum error as a multiple of Model_Epsilon instead-- of Model_Epsilon and Expected.Rel_Error := MRE * Real'Model_Epsilon * (abs Expected + E_Factor);Abs_Error := MRE * Real'Model_Epsilon;if Rel_Error > Abs_Error thenMax_Error := Rel_Error;elseMax_Error := Abs_Error;end if;-- take into account the low bound on the errorif Max_Error < Error_Low_Bound thenMax_Error := Error_Low_Bound;end if;if abs (Actual - Expected) > Max_Error thenAccuracy_Error_Reported := True;Report.Failed (Test_Name &" actual: " & Real'Image (Actual) &" expected: " & Real'Image (Expected) &" difference: " & Real'Image (Actual - Expected) &" max err:" & Real'Image (Max_Error) &" efactor:" & Real'Image (E_Factor) );elsif Verbose thenif Actual = Expected thenReport.Comment (Test_Name & " exact result");elseReport.Comment (Test_Name & " passed" &" actual: " & Real'Image (Actual) &" expected: " & Real'Image (Expected) &" difference: " & Real'Image (Actual - Expected) &" max err:" & Real'Image (Max_Error) &" efactor:" & Real'Image (E_Factor) );end if;end if;end Check;procedure Check (Actual, Expected : Complex;Test_Name : String;MRE : Real;R_Factor, I_Factor : Real := 0.0) isbeginCheck (Actual.Re, Expected.Re, Test_Name & " real part",MRE, R_Factor);Check (Actual.Im, Expected.Im, Test_Name & " imaginary part",MRE, I_Factor);end Check;procedure Special_Value_Test is-- In the following tests the expected result is accurate-- to the machine precision so the minimum guaranteed error-- bound can be used if the argument is exact.-- Since the argument involves Pi, we must allow for this-- inexact argument.Minimum_Error : constant := 11.0;beginCheck (Sin (Pi/2.0 + 0.0*i),1.0 + 0.0*i,"sin(pi/2+0i)",Minimum_Error + 1.0);Check (Cos (Pi/2.0 + 0.0*i),0.0 + 0.0*i,"cos(pi/2+0i)",Minimum_Error + 1.0);exceptionwhen Constraint_Error =>Report.Failed ("Constraint_Error raised in special value test");when others =>Report.Failed ("exception in special value test");end Special_Value_Test;procedure Exact_Result_Test isNo_Error : constant := 0.0;begin-- G.1.2(36);6.0Check (Sin(0.0 + 0.0*i), 0.0 + 0.0 * i, "sin(0+0i)", No_Error);Check (Cos(0.0 + 0.0*i), 1.0 + 0.0 * i, "cos(0+0i)", No_Error);exceptionwhen Constraint_Error =>Report.Failed ("Constraint_Error raised in Exact_Result Test");when others =>Report.Failed ("exception in Exact_Result Test");end Exact_Result_Test;procedure Identity_Test (RA, RB, IA, IB : Real) is-- Tests an identity over a range of values specified-- by the 4 parameters. RA and RB denote the range for the-- real part while IA and IB denote the range for the-- imaginary part.---- For this test we use the identity-- Sin(Z) = Sin(Z-W) * Cos(W) + Cos(Z-W) * Sin(W)-- and-- Cos(Z) = Cos(Z-W) * Cos(W) - Sin(Z-W) * Sin(W)--X, Y : Real;Z : Complex;W : constant Complex := Compose_From_Cartesian(0.0625, 0.0625);ZmW : Complex; -- Z - WSin_ZmW,Cos_ZmW : Complex;Actual1, Actual2 : Complex;R_Factor : Real; -- additional real error factorI_Factor : Real; -- additional imaginary error factorSin_W : constant Complex := (6.2581348413276935585E-2,6.2418588008436587236E-2);-- numeric stability is enhanced by using Cos(W) - 1.0 instead of-- Cos(W) in the computation.Cos_W_m_1 : constant Complex := (-2.5431314180235545803E-6,-3.9062493377261771826E-3);beginif Real'Digits > 20 then-- constants used here accurate to 20 digits. Allow 1-- additional digit of error for computation.Error_Low_Bound := 0.00000_00000_00000_0001;Report.Comment ("accuracy checked to 19 digits");end if;Accuracy_Error_Reported := False; -- resetfor II in 0..Max_Samples loopX := (RB - RA) * Real (II) / Real (Max_Samples) + RA;for J in 0..Max_Samples loopY := (IB - IA) * Real (J) / Real (Max_Samples) + IA;Z := Compose_From_Cartesian(X,Y);ZmW := Z - W;Sin_ZmW := Sin (ZmW);Cos_ZmW := Cos (ZmW);-- now for the first identity-- Sin(Z) = Sin(Z-W) * Cos(W) + Cos(Z-W) * Sin(W)-- = Sin(Z-W) * (1+(Cos(W)-1)) + Cos(Z-W) * Sin(W)-- = Sin(Z-W) + Sin(Z-W)*(Cos(W)-1) + Cos(Z-W)*Sin(W)Actual1 := Sin (Z);Actual2 := Sin_ZmW + (Sin_ZmW * Cos_W_m_1 + Cos_ZmW * Sin_W);-- The computation of the additional error factors are taken-- from Cody pages 17-20.R_Factor := abs (Re (Sin_ZmW) * Re (1.0 - Cos_W_m_1)) +abs (Im (Sin_ZmW) * Im (1.0 - Cos_W_m_1)) +abs (Re (Cos_ZmW) * Re (Sin_W)) +abs (Re (Cos_ZmW) * Re (1.0 - Cos_W_m_1));I_Factor := abs (Re (Sin_ZmW) * Im (1.0 - Cos_W_m_1)) +abs (Im (Sin_ZmW) * Re (1.0 - Cos_W_m_1)) +abs (Re (Cos_ZmW) * Im (Sin_W)) +abs (Im (Cos_ZmW) * Re (1.0 - Cos_W_m_1));Check (Actual1, Actual2,"Identity_1_Test " & Integer'Image (II) &Integer'Image (J) & ": Sin((" &Real'Image (Z.Re) & ", " &Real'Image (Z.Im) & ")) ",11.0, R_Factor, I_Factor);-- now for the second identity-- Cos(Z) = Cos(Z-W) * Cos(W) - Sin(Z-W) * Sin(W)-- = Cos(Z-W) * (1+(Cos(W)-1) - Sin(Z-W) * Sin(W)Actual1 := Cos (Z);Actual2 := Cos_ZmW + (Cos_ZmW * Cos_W_m_1 - Sin_ZmW * Sin_W);-- The computation of the additional error factors are taken-- from Cody pages 17-20.R_Factor := abs (Re (Sin_ZmW) * Re (Sin_W)) +abs (Im (Sin_ZmW) * Im (Sin_W)) +abs (Re (Cos_ZmW) * Re (1.0 - Cos_W_m_1)) +abs (Im (Cos_ZmW) * Im (1.0 - Cos_W_m_1));I_Factor := abs (Re (Sin_ZmW) * Im (Sin_W)) +abs (Im (Sin_ZmW) * Re (Sin_W)) +abs (Re (Cos_ZmW) * Im (1.0 - Cos_W_m_1)) +abs (Im (Cos_ZmW) * Re (1.0 - Cos_W_m_1));Check (Actual1, Actual2,"Identity_2_Test " & Integer'Image (II) &Integer'Image (J) & ": Cos((" &Real'Image (Z.Re) & ", " &Real'Image (Z.Im) & ")) ",11.0, R_Factor, I_Factor);if Accuracy_Error_Reported then-- only report the first error in this test in order to keep-- lots of failures from producing a huge error logError_Low_Bound := 0.0; -- resetreturn;end if;end loop;end loop;Error_Low_Bound := 0.0; -- resetexceptionwhen Constraint_Error =>Report.Failed("Constraint_Error raised in Identity_Test" &" for Z=(" & Real'Image (X) &", " & Real'Image (Y) & ")");when others =>Report.Failed ("exception in Identity_Test" &" for Z=(" & Real'Image (X) &", " & Real'Image (Y) & ")");end Identity_Test;procedure Do_Test isbeginSpecial_Value_Test;Exact_Result_Test;-- test regions where sin and cos have the same sign and-- about the same magnitude. This will minimize subtraction-- errors in the identities.-- See Cody page 17.Identity_Test (0.0625, 10.0, 0.0625, 10.0);Identity_Test ( 16.0, 17.0, 16.0, 17.0);end Do_Test;end Generic_Check;----------------------------------------------------------------------------------------------------------------------------------------------package Float_Check is new Generic_Check (Float);-- check the floating point type with the most digitstype A_Long_Float is digits System.Max_Digits;package A_Long_Float_Check is new Generic_Check (A_Long_Float);----------------------------------------------------------------------------------------------------------------------------------------------beginReport.Test ("CXG2021","Check the accuracy of the complex SIN and COS functions");if Verbose thenReport.Comment ("checking Standard.Float");end if;Float_Check.Do_Test;if Verbose thenReport.Comment ("checking a digits" &Integer'Image (System.Max_Digits) &" floating point type");end if;A_Long_Float_Check.Do_Test;Report.Result;end CXG2021;
