URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [testsuite/] [g++.dg/] [tm/] [pr46567.C] - Rev 707
Go to most recent revision | Compare with Previous | Blame | View Log
// { dg-do compile }
// { dg-options "-fgnu-tm -O2" }
typedef __PTRDIFF_TYPE__ ptrdiff_t;
typedef __SIZE_TYPE__ size_t;
namespace std __attribute__ ((__visibility__ ("default"))) {
using ::ptrdiff_t;
using ::size_t;
}
namespace std __attribute__ ((__visibility__ ("default"))) {
void
__throw_bad_exception(void) __attribute__((__noreturn__));
void
__throw_bad_alloc(void) __attribute__((__noreturn__));
void
__throw_bad_cast(void) __attribute__((__noreturn__));
void
__throw_bad_typeid(void) __attribute__((__noreturn__));
void
__throw_logic_error(const char*) __attribute__((__noreturn__));
void
__throw_domain_error(const char*) __attribute__((__noreturn__));
void
__throw_invalid_argument(const char*) __attribute__((__noreturn__));
void
__throw_length_error(const char*) __attribute__((__noreturn__));
void
__throw_out_of_range(const char*) __attribute__((__noreturn__));
void
__throw_runtime_error(const char*) __attribute__((__noreturn__));
void
__throw_range_error(const char*) __attribute__((__noreturn__));
void
__throw_overflow_error(const char*) __attribute__((__noreturn__));
void
__throw_underflow_error(const char*) __attribute__((__noreturn__));
void
__throw_ios_failure(const char*) __attribute__((__noreturn__));
void
__throw_system_error(int) __attribute__((__noreturn__));
}
namespace __gnu_cxx __attribute__ ((__visibility__ ("default"))) {
template<typename _Iterator, typename _Container>
class __normal_iterator;
}
namespace std __attribute__ ((__visibility__ ("default"))) {
struct __true_type { };
struct __false_type { };
template<bool>
struct __truth_type
{ typedef __false_type __type; };
template<>
struct __truth_type<true>
{ typedef __true_type __type; };
template<class _Sp, class _Tp>
struct __traitor
{
enum { __value = bool(_Sp::__value) || bool(_Tp::__value) };
typedef typename __truth_type<__value>::__type __type;
};
template<typename, typename>
struct __are_same
{
enum { __value = 0 };
typedef __false_type __type;
};
template<typename _Tp>
struct __are_same<_Tp, _Tp>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<typename _Tp>
struct __is_void
{
enum { __value = 0 };
typedef __false_type __type;
};
template<>
struct __is_void<void>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<typename _Tp>
struct __is_integer
{
enum { __value = 0 };
typedef __false_type __type;
};
template<>
struct __is_integer<bool>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<>
struct __is_integer<char>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<>
struct __is_integer<signed char>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<>
struct __is_integer<unsigned char>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<>
struct __is_integer<wchar_t>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<>
struct __is_integer<short>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<>
struct __is_integer<unsigned short>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<>
struct __is_integer<int>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<>
struct __is_integer<unsigned int>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<>
struct __is_integer<long>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<>
struct __is_integer<unsigned long>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<>
struct __is_integer<long long>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<>
struct __is_integer<unsigned long long>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<typename _Tp>
struct __is_floating
{
enum { __value = 0 };
typedef __false_type __type;
};
template<>
struct __is_floating<float>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<>
struct __is_floating<double>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<>
struct __is_floating<long double>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<typename _Tp>
struct __is_pointer
{
enum { __value = 0 };
typedef __false_type __type;
};
template<typename _Tp>
struct __is_pointer<_Tp*>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<typename _Tp>
struct __is_normal_iterator
{
enum { __value = 0 };
typedef __false_type __type;
};
template<typename _Iterator, typename _Container>
struct __is_normal_iterator< __gnu_cxx::__normal_iterator<_Iterator,
_Container> >
{
enum { __value = 1 };
typedef __true_type __type;
};
template<typename _Tp>
struct __is_arithmetic
: public __traitor<__is_integer<_Tp>, __is_floating<_Tp> >
{ };
template<typename _Tp>
struct __is_fundamental
: public __traitor<__is_void<_Tp>, __is_arithmetic<_Tp> >
{ };
template<typename _Tp>
struct __is_scalar
: public __traitor<__is_arithmetic<_Tp>, __is_pointer<_Tp> >
{ };
template<typename _Tp>
struct __is_char
{
enum { __value = 0 };
typedef __false_type __type;
};
template<>
struct __is_char<char>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<>
struct __is_char<wchar_t>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<typename _Tp>
struct __is_byte
{
enum { __value = 0 };
typedef __false_type __type;
};
template<>
struct __is_byte<char>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<>
struct __is_byte<signed char>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<>
struct __is_byte<unsigned char>
{
enum { __value = 1 };
typedef __true_type __type;
};
template<typename _Tp>
struct __is_move_iterator
{
enum { __value = 0 };
typedef __false_type __type;
};
}
namespace __gnu_cxx __attribute__ ((__visibility__ ("default"))) {
template<bool, typename>
struct __enable_if
{ };
template<typename _Tp>
struct __enable_if<true, _Tp>
{ typedef _Tp __type; };
template<bool _Cond, typename _Iftrue, typename _Iffalse>
struct __conditional_type
{ typedef _Iftrue __type; };
template<typename _Iftrue, typename _Iffalse>
struct __conditional_type<false, _Iftrue, _Iffalse>
{ typedef _Iffalse __type; };
template<typename _Tp>
struct __add_unsigned
{
private:
typedef __enable_if<std::__is_integer<_Tp>::__value, _Tp> __if_type;
public:
typedef typename __if_type::__type __type;
};
template<>
struct __add_unsigned<char>
{ typedef unsigned char __type; };
template<>
struct __add_unsigned<signed char>
{ typedef unsigned char __type; };
template<>
struct __add_unsigned<short>
{ typedef unsigned short __type; };
template<>
struct __add_unsigned<int>
{ typedef unsigned int __type; };
template<>
struct __add_unsigned<long>
{ typedef unsigned long __type; };
template<>
struct __add_unsigned<long long>
{ typedef unsigned long long __type; };
template<>
struct __add_unsigned<bool>;
template<>
struct __add_unsigned<wchar_t>;
template<typename _Tp>
struct __remove_unsigned
{
private:
typedef __enable_if<std::__is_integer<_Tp>::__value, _Tp> __if_type;
public:
typedef typename __if_type::__type __type;
};
template<>
struct __remove_unsigned<char>
{ typedef signed char __type; };
template<>
struct __remove_unsigned<unsigned char>
{ typedef signed char __type; };
template<>
struct __remove_unsigned<unsigned short>
{ typedef short __type; };
template<>
struct __remove_unsigned<unsigned int>
{ typedef int __type; };
template<>
struct __remove_unsigned<unsigned long>
{ typedef long __type; };
template<>
struct __remove_unsigned<unsigned long long>
{ typedef long long __type; };
template<>
struct __remove_unsigned<bool>;
template<>
struct __remove_unsigned<wchar_t>;
template<typename _Type>
inline bool
__is_null_pointer(_Type* __ptr)
{ return __ptr == 0; }
template<typename _Type>
inline bool
__is_null_pointer(_Type)
{ return false; }
template<typename _Tp, bool = std::__is_integer<_Tp>::__value>
struct __promote
{ typedef double __type; };
template<typename _Tp>
struct __promote<_Tp, false>
{ typedef _Tp __type; };
template<typename _Tp, typename _Up>
struct __promote_2
{
private:
typedef typename __promote<_Tp>::__type __type1;
typedef typename __promote<_Up>::__type __type2;
public:
typedef __typeof__(__type1() + __type2()) __type;
};
template<typename _Tp, typename _Up, typename _Vp>
struct __promote_3
{
private:
typedef typename __promote<_Tp>::__type __type1;
typedef typename __promote<_Up>::__type __type2;
typedef typename __promote<_Vp>::__type __type3;
public:
typedef __typeof__(__type1() + __type2() + __type3()) __type;
};
template<typename _Tp, typename _Up, typename _Vp, typename _Wp>
struct __promote_4
{
private:
typedef typename __promote<_Tp>::__type __type1;
typedef typename __promote<_Up>::__type __type2;
typedef typename __promote<_Vp>::__type __type3;
typedef typename __promote<_Wp>::__type __type4;
public:
typedef __typeof__(__type1() + __type2() + __type3() + __type4()) __type;
};
}
namespace __gnu_cxx __attribute__ ((__visibility__ ("default"))) {
template<typename _Value>
struct __numeric_traits_integer
{
static const _Value __min = (((_Value)(-1) < 0) ? (_Value)1 << (sizeof(_Value) * 8 - ((_Value)(-1) < 0)) : (_Value)0);
static const _Value __max = (((_Value)(-1) < 0) ? (((((_Value)1 << ((sizeof(_Value) * 8 - ((_Value)(-1) < 0)) - 1)) - 1) << 1) + 1) : ~(_Value)0);
static const bool __is_signed = ((_Value)(-1) < 0);
static const int __digits = (sizeof(_Value) * 8 - ((_Value)(-1) < 0));
};
template<typename _Value>
const _Value __numeric_traits_integer<_Value>::__min;
template<typename _Value>
const _Value __numeric_traits_integer<_Value>::__max;
template<typename _Value>
const bool __numeric_traits_integer<_Value>::__is_signed;
template<typename _Value>
const int __numeric_traits_integer<_Value>::__digits;
template<typename _Value>
struct __numeric_traits_floating
{
static const int __max_digits10 = (2 + (std::__are_same<_Value, float>::__value ? 24 : std::__are_same<_Value, double>::__value ? 53 : 64) * 3010 / 10000);
static const bool __is_signed = true;
static const int __digits10 = (std::__are_same<_Value, float>::__value ? 6 : std::__are_same<_Value, double>::__value ? 15 : 18);
static const int __max_exponent10 = (std::__are_same<_Value, float>::__value ? 38 : std::__are_same<_Value, double>::__value ? 308 : 4932);
};
template<typename _Value>
const int __numeric_traits_floating<_Value>::__max_digits10;
template<typename _Value>
const bool __numeric_traits_floating<_Value>::__is_signed;
template<typename _Value>
const int __numeric_traits_floating<_Value>::__digits10;
template<typename _Value>
const int __numeric_traits_floating<_Value>::__max_exponent10;
template<typename _Value>
struct __numeric_traits
: public __conditional_type<std::__is_integer<_Value>::__value,
__numeric_traits_integer<_Value>,
__numeric_traits_floating<_Value> >::__type
{ };
}
namespace std __attribute__ ((__visibility__ ("default"))) {
template<typename _Tp>
inline void
swap(_Tp& __a, _Tp& __b)
{
_Tp __tmp = (__a);
__a = (__b);
__b = (__tmp);
}
template<typename _Tp, size_t _Nm>
inline void
swap(_Tp (&__a)[_Nm], _Tp (&__b)[_Nm])
{
for (size_t __n = 0; __n < _Nm; ++__n)
swap(__a[__n], __b[__n]);
}
}
namespace std __attribute__ ((__visibility__ ("default"))) {
template<class _T1, class _T2>
struct pair
{
typedef _T1 first_type;
typedef _T2 second_type;
_T1 first;
_T2 second;
pair()
: first(), second() { }
pair(const _T1& __a, const _T2& __b)
: first(__a), second(__b) { }
template<class _U1, class _U2>
pair(const pair<_U1, _U2>& __p)
: first(__p.first),
second(__p.second) { }
};
template<class _T1, class _T2>
inline bool
operator==(const pair<_T1, _T2>& __x, const pair<_T1, _T2>& __y)
{ return __x.first == __y.first && __x.second == __y.second; }
template<class _T1, class _T2>
inline bool
operator<(const pair<_T1, _T2>& __x, const pair<_T1, _T2>& __y)
{ return __x.first < __y.first
|| (!(__y.first < __x.first) && __x.second < __y.second); }
template<class _T1, class _T2>
inline bool
operator!=(const pair<_T1, _T2>& __x, const pair<_T1, _T2>& __y)
{ return !(__x == __y); }
template<class _T1, class _T2>
inline bool
operator>(const pair<_T1, _T2>& __x, const pair<_T1, _T2>& __y)
{ return __y < __x; }
template<class _T1, class _T2>
inline bool
operator<=(const pair<_T1, _T2>& __x, const pair<_T1, _T2>& __y)
{ return !(__y < __x); }
template<class _T1, class _T2>
inline bool
operator>=(const pair<_T1, _T2>& __x, const pair<_T1, _T2>& __y)
{ return !(__x < __y); }
template<class _T1, class _T2>
inline pair<_T1, _T2>
make_pair(_T1 __x, _T2 __y)
{ return pair<_T1, _T2>(__x, __y); }
}
namespace std __attribute__ ((__visibility__ ("default"))) {
struct input_iterator_tag { };
struct output_iterator_tag { };
struct forward_iterator_tag : public input_iterator_tag { };
struct bidirectional_iterator_tag : public forward_iterator_tag { };
struct random_access_iterator_tag : public bidirectional_iterator_tag { };
template<typename _Category, typename _Tp, typename _Distance = ptrdiff_t,
typename _Pointer = _Tp*, typename _Reference = _Tp&>
struct iterator
{
typedef _Category iterator_category;
typedef _Tp value_type;
typedef _Distance difference_type;
typedef _Pointer pointer;
typedef _Reference reference;
};
template<typename _Iterator>
struct iterator_traits
{
typedef typename _Iterator::iterator_category iterator_category;
typedef typename _Iterator::value_type value_type;
typedef typename _Iterator::difference_type difference_type;
typedef typename _Iterator::pointer pointer;
typedef typename _Iterator::reference reference;
};
template<typename _Tp>
struct iterator_traits<_Tp*>
{
typedef random_access_iterator_tag iterator_category;
typedef _Tp value_type;
typedef ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef _Tp& reference;
};
template<typename _Tp>
struct iterator_traits<const _Tp*>
{
typedef random_access_iterator_tag iterator_category;
typedef _Tp value_type;
typedef ptrdiff_t difference_type;
typedef const _Tp* pointer;
typedef const _Tp& reference;
};
template<typename _Iter>
inline typename iterator_traits<_Iter>::iterator_category
__iterator_category(const _Iter&)
{ return typename iterator_traits<_Iter>::iterator_category(); }
}
namespace std __attribute__ ((__visibility__ ("default"))) {
template<typename _InputIterator>
inline typename iterator_traits<_InputIterator>::difference_type
__distance(_InputIterator __first, _InputIterator __last,
input_iterator_tag)
{
typename iterator_traits<_InputIterator>::difference_type __n = 0;
while (__first != __last)
{
++__first;
++__n;
}
return __n;
}
template<typename _RandomAccessIterator>
inline typename iterator_traits<_RandomAccessIterator>::difference_type
__distance(_RandomAccessIterator __first, _RandomAccessIterator __last,
random_access_iterator_tag)
{
return __last - __first;
}
template<typename _InputIterator>
inline typename iterator_traits<_InputIterator>::difference_type
distance(_InputIterator __first, _InputIterator __last)
{
return std::__distance(__first, __last,
std::__iterator_category(__first));
}
template<typename _InputIterator, typename _Distance>
inline void
__advance(_InputIterator& __i, _Distance __n, input_iterator_tag)
{
while (__n--)
++__i;
}
template<typename _BidirectionalIterator, typename _Distance>
inline void
__advance(_BidirectionalIterator& __i, _Distance __n,
bidirectional_iterator_tag)
{
if (__n > 0)
while (__n--)
++__i;
else
while (__n++)
--__i;
}
template<typename _RandomAccessIterator, typename _Distance>
inline void
__advance(_RandomAccessIterator& __i, _Distance __n,
random_access_iterator_tag)
{
__i += __n;
}
template<typename _InputIterator, typename _Distance>
inline void
advance(_InputIterator& __i, _Distance __n)
{
typename iterator_traits<_InputIterator>::difference_type __d = __n;
std::__advance(__i, __d, std::__iterator_category(__i));
}
}
namespace std __attribute__ ((__visibility__ ("default"))) {
template<typename _Iterator>
class reverse_iterator
: public iterator<typename iterator_traits<_Iterator>::iterator_category,
typename iterator_traits<_Iterator>::value_type,
typename iterator_traits<_Iterator>::difference_type,
typename iterator_traits<_Iterator>::pointer,
typename iterator_traits<_Iterator>::reference>
{
protected:
_Iterator current;
public:
typedef _Iterator iterator_type;
typedef typename iterator_traits<_Iterator>::difference_type
difference_type;
typedef typename iterator_traits<_Iterator>::reference reference;
typedef typename iterator_traits<_Iterator>::pointer pointer;
public:
reverse_iterator() : current() { }
explicit
reverse_iterator(iterator_type __x) : current(__x) { }
reverse_iterator(const reverse_iterator& __x)
: current(__x.current) { }
template<typename _Iter>
reverse_iterator(const reverse_iterator<_Iter>& __x)
: current(__x.base()) { }
iterator_type
base() const
{ return current; }
reference
operator*() const
{
_Iterator __tmp = current;
return *--__tmp;
}
pointer
operator->() const
{ return &(operator*()); }
reverse_iterator&
operator++()
{
--current;
return *this;
}
reverse_iterator
operator++(int)
{
reverse_iterator __tmp = *this;
--current;
return __tmp;
}
reverse_iterator&
operator--()
{
++current;
return *this;
}
reverse_iterator
operator--(int)
{
reverse_iterator __tmp = *this;
++current;
return __tmp;
}
reverse_iterator
operator+(difference_type __n) const
{ return reverse_iterator(current - __n); }
reverse_iterator&
operator+=(difference_type __n)
{
current -= __n;
return *this;
}
reverse_iterator
operator-(difference_type __n) const
{ return reverse_iterator(current + __n); }
reverse_iterator&
operator-=(difference_type __n)
{
current += __n;
return *this;
}
reference
operator[](difference_type __n) const
{ return *(*this + __n); }
};
template<typename _Iterator>
inline bool
operator==(const reverse_iterator<_Iterator>& __x,
const reverse_iterator<_Iterator>& __y)
{ return __x.base() == __y.base(); }
template<typename _Iterator>
inline bool
operator<(const reverse_iterator<_Iterator>& __x,
const reverse_iterator<_Iterator>& __y)
{ return __y.base() < __x.base(); }
template<typename _Iterator>
inline bool
operator!=(const reverse_iterator<_Iterator>& __x,
const reverse_iterator<_Iterator>& __y)
{ return !(__x == __y); }
template<typename _Iterator>
inline bool
operator>(const reverse_iterator<_Iterator>& __x,
const reverse_iterator<_Iterator>& __y)
{ return __y < __x; }
template<typename _Iterator>
inline bool
operator<=(const reverse_iterator<_Iterator>& __x,
const reverse_iterator<_Iterator>& __y)
{ return !(__y < __x); }
template<typename _Iterator>
inline bool
operator>=(const reverse_iterator<_Iterator>& __x,
const reverse_iterator<_Iterator>& __y)
{ return !(__x < __y); }
template<typename _Iterator>
inline typename reverse_iterator<_Iterator>::difference_type
operator-(const reverse_iterator<_Iterator>& __x,
const reverse_iterator<_Iterator>& __y)
{ return __y.base() - __x.base(); }
template<typename _Iterator>
inline reverse_iterator<_Iterator>
operator+(typename reverse_iterator<_Iterator>::difference_type __n,
const reverse_iterator<_Iterator>& __x)
{ return reverse_iterator<_Iterator>(__x.base() - __n); }
template<typename _IteratorL, typename _IteratorR>
inline bool
operator==(const reverse_iterator<_IteratorL>& __x,
const reverse_iterator<_IteratorR>& __y)
{ return __x.base() == __y.base(); }
template<typename _IteratorL, typename _IteratorR>
inline bool
operator<(const reverse_iterator<_IteratorL>& __x,
const reverse_iterator<_IteratorR>& __y)
{ return __y.base() < __x.base(); }
template<typename _IteratorL, typename _IteratorR>
inline bool
operator!=(const reverse_iterator<_IteratorL>& __x,
const reverse_iterator<_IteratorR>& __y)
{ return !(__x == __y); }
template<typename _IteratorL, typename _IteratorR>
inline bool
operator>(const reverse_iterator<_IteratorL>& __x,
const reverse_iterator<_IteratorR>& __y)
{ return __y < __x; }
template<typename _IteratorL, typename _IteratorR>
inline bool
operator<=(const reverse_iterator<_IteratorL>& __x,
const reverse_iterator<_IteratorR>& __y)
{ return !(__y < __x); }
template<typename _IteratorL, typename _IteratorR>
inline bool
operator>=(const reverse_iterator<_IteratorL>& __x,
const reverse_iterator<_IteratorR>& __y)
{ return !(__x < __y); }
template<typename _IteratorL, typename _IteratorR>
inline typename reverse_iterator<_IteratorL>::difference_type
operator-(const reverse_iterator<_IteratorL>& __x,
const reverse_iterator<_IteratorR>& __y)
{ return __y.base() - __x.base(); }
template<typename _Container>
class back_insert_iterator
: public iterator<output_iterator_tag, void, void, void, void>
{
protected:
_Container* container;
public:
typedef _Container container_type;
explicit
back_insert_iterator(_Container& __x) : container(&__x) { }
back_insert_iterator&
operator=(typename _Container::const_reference __value)
{
container->push_back(__value);
return *this;
}
back_insert_iterator&
operator*()
{ return *this; }
back_insert_iterator&
operator++()
{ return *this; }
back_insert_iterator
operator++(int)
{ return *this; }
};
template<typename _Container>
inline back_insert_iterator<_Container>
back_inserter(_Container& __x)
{ return back_insert_iterator<_Container>(__x); }
template<typename _Container>
class front_insert_iterator
: public iterator<output_iterator_tag, void, void, void, void>
{
protected:
_Container* container;
public:
typedef _Container container_type;
explicit front_insert_iterator(_Container& __x) : container(&__x) { }
front_insert_iterator&
operator=(typename _Container::const_reference __value)
{
container->push_front(__value);
return *this;
}
front_insert_iterator&
operator*()
{ return *this; }
front_insert_iterator&
operator++()
{ return *this; }
front_insert_iterator
operator++(int)
{ return *this; }
};
template<typename _Container>
inline front_insert_iterator<_Container>
front_inserter(_Container& __x)
{ return front_insert_iterator<_Container>(__x); }
template<typename _Container>
class insert_iterator
: public iterator<output_iterator_tag, void, void, void, void>
{
protected:
_Container* container;
typename _Container::iterator iter;
public:
typedef _Container container_type;
insert_iterator(_Container& __x, typename _Container::iterator __i)
: container(&__x), iter(__i) {}
insert_iterator&
operator=(typename _Container::const_reference __value)
{
iter = container->insert(iter, __value);
++iter;
return *this;
}
insert_iterator&
operator*()
{ return *this; }
insert_iterator&
operator++()
{ return *this; }
insert_iterator&
operator++(int)
{ return *this; }
};
template<typename _Container, typename _Iterator>
inline insert_iterator<_Container>
inserter(_Container& __x, _Iterator __i)
{
return insert_iterator<_Container>(__x,
typename _Container::iterator(__i));
}
}
namespace __gnu_cxx __attribute__ ((__visibility__ ("default"))) {
using std::iterator_traits;
using std::iterator;
template<typename _Iterator, typename _Container>
class __normal_iterator
{
protected:
_Iterator _M_current;
public:
typedef _Iterator iterator_type;
typedef typename iterator_traits<_Iterator>::iterator_category
iterator_category;
typedef typename iterator_traits<_Iterator>::value_type value_type;
typedef typename iterator_traits<_Iterator>::difference_type
difference_type;
typedef typename iterator_traits<_Iterator>::reference reference;
typedef typename iterator_traits<_Iterator>::pointer pointer;
__normal_iterator() : _M_current(_Iterator()) { }
explicit
__normal_iterator(const _Iterator& __i) : _M_current(__i) { }
template<typename _Iter>
__normal_iterator(const __normal_iterator<_Iter,
typename __enable_if<
(std::__are_same<_Iter, typename _Container::pointer>::__value),
_Container>::__type>& __i)
: _M_current(__i.base()) { }
reference
operator*() const
{ return *_M_current; }
pointer
operator->() const
{ return _M_current; }
__normal_iterator&
operator++()
{
++_M_current;
return *this;
}
__normal_iterator
operator++(int)
{ return __normal_iterator(_M_current++); }
__normal_iterator&
operator--()
{
--_M_current;
return *this;
}
__normal_iterator
operator--(int)
{ return __normal_iterator(_M_current--); }
reference
operator[](const difference_type& __n) const
{ return _M_current[__n]; }
__normal_iterator&
operator+=(const difference_type& __n)
{ _M_current += __n; return *this; }
__normal_iterator
operator+(const difference_type& __n) const
{ return __normal_iterator(_M_current + __n); }
__normal_iterator&
operator-=(const difference_type& __n)
{ _M_current -= __n; return *this; }
__normal_iterator
operator-(const difference_type& __n) const
{ return __normal_iterator(_M_current - __n); }
const _Iterator&
base() const
{ return _M_current; }
};
template<typename _IteratorL, typename _IteratorR, typename _Container>
inline bool
operator==(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() == __rhs.base(); }
template<typename _Iterator, typename _Container>
inline bool
operator==(const __normal_iterator<_Iterator, _Container>& __lhs,
const __normal_iterator<_Iterator, _Container>& __rhs)
{ return __lhs.base() == __rhs.base(); }
template<typename _IteratorL, typename _IteratorR, typename _Container>
inline bool
operator!=(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() != __rhs.base(); }
template<typename _Iterator, typename _Container>
inline bool
operator!=(const __normal_iterator<_Iterator, _Container>& __lhs,
const __normal_iterator<_Iterator, _Container>& __rhs)
{ return __lhs.base() != __rhs.base(); }
template<typename _IteratorL, typename _IteratorR, typename _Container>
inline bool
operator<(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() < __rhs.base(); }
template<typename _Iterator, typename _Container>
inline bool
operator<(const __normal_iterator<_Iterator, _Container>& __lhs,
const __normal_iterator<_Iterator, _Container>& __rhs)
{ return __lhs.base() < __rhs.base(); }
template<typename _IteratorL, typename _IteratorR, typename _Container>
inline bool
operator>(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() > __rhs.base(); }
template<typename _Iterator, typename _Container>
inline bool
operator>(const __normal_iterator<_Iterator, _Container>& __lhs,
const __normal_iterator<_Iterator, _Container>& __rhs)
{ return __lhs.base() > __rhs.base(); }
template<typename _IteratorL, typename _IteratorR, typename _Container>
inline bool
operator<=(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() <= __rhs.base(); }
template<typename _Iterator, typename _Container>
inline bool
operator<=(const __normal_iterator<_Iterator, _Container>& __lhs,
const __normal_iterator<_Iterator, _Container>& __rhs)
{ return __lhs.base() <= __rhs.base(); }
template<typename _IteratorL, typename _IteratorR, typename _Container>
inline bool
operator>=(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() >= __rhs.base(); }
template<typename _Iterator, typename _Container>
inline bool
operator>=(const __normal_iterator<_Iterator, _Container>& __lhs,
const __normal_iterator<_Iterator, _Container>& __rhs)
{ return __lhs.base() >= __rhs.base(); }
template<typename _IteratorL, typename _IteratorR, typename _Container>
inline typename __normal_iterator<_IteratorL, _Container>::difference_type
operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() - __rhs.base(); }
template<typename _Iterator, typename _Container>
inline typename __normal_iterator<_Iterator, _Container>::difference_type
operator-(const __normal_iterator<_Iterator, _Container>& __lhs,
const __normal_iterator<_Iterator, _Container>& __rhs)
{ return __lhs.base() - __rhs.base(); }
template<typename _Iterator, typename _Container>
inline __normal_iterator<_Iterator, _Container>
operator+(typename __normal_iterator<_Iterator, _Container>::difference_type
__n, const __normal_iterator<_Iterator, _Container>& __i)
{ return __normal_iterator<_Iterator, _Container>(__i.base() + __n); }
}
namespace std
{
namespace __debug { }
}
namespace __gnu_debug
{
using namespace std::__debug;
}
namespace std __attribute__ ((__visibility__ ("default"))) {
template<bool _BoolType>
struct __iter_swap
{
template<typename _ForwardIterator1, typename _ForwardIterator2>
static void
iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b)
{
typedef typename iterator_traits<_ForwardIterator1>::value_type
_ValueType1;
_ValueType1 __tmp = (*__a);
*__a = (*__b);
*__b = (__tmp);
}
};
template<>
struct __iter_swap<true>
{
template<typename _ForwardIterator1, typename _ForwardIterator2>
static void
iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b)
{
swap(*__a, *__b);
}
};
template<typename _ForwardIterator1, typename _ForwardIterator2>
inline void
iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b)
{
typedef typename iterator_traits<_ForwardIterator1>::value_type
_ValueType1;
typedef typename iterator_traits<_ForwardIterator2>::value_type
_ValueType2;
typedef typename iterator_traits<_ForwardIterator1>::reference
_ReferenceType1;
typedef typename iterator_traits<_ForwardIterator2>::reference
_ReferenceType2;
std::__iter_swap<__are_same<_ValueType1, _ValueType2>::__value
&& __are_same<_ValueType1&, _ReferenceType1>::__value
&& __are_same<_ValueType2&, _ReferenceType2>::__value>::
iter_swap(__a, __b);
}
template<typename _ForwardIterator1, typename _ForwardIterator2>
_ForwardIterator2
swap_ranges(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
_ForwardIterator2 __first2)
{
;
for (; __first1 != __last1; ++__first1, ++__first2)
std::iter_swap(__first1, __first2);
return __first2;
}
template<typename _Tp>
inline const _Tp&
min(const _Tp& __a, const _Tp& __b)
{
if (__b < __a)
return __b;
return __a;
}
template<typename _Tp>
inline const _Tp&
max(const _Tp& __a, const _Tp& __b)
{
if (__a < __b)
return __b;
return __a;
}
template<typename _Tp, typename _Compare>
inline const _Tp&
min(const _Tp& __a, const _Tp& __b, _Compare __comp)
{
if (__comp(__b, __a))
return __b;
return __a;
}
template<typename _Tp, typename _Compare>
inline const _Tp&
max(const _Tp& __a, const _Tp& __b, _Compare __comp)
{
if (__comp(__a, __b))
return __b;
return __a;
}
template<typename _Iterator,
bool _IsNormal = __is_normal_iterator<_Iterator>::__value>
struct __niter_base
{
static _Iterator
__b(_Iterator __it)
{ return __it; }
};
template<typename _Iterator>
struct __niter_base<_Iterator, true>
{
static typename _Iterator::iterator_type
__b(_Iterator __it)
{ return __it.base(); }
};
template<typename _Iterator,
bool _IsMove = __is_move_iterator<_Iterator>::__value>
struct __miter_base
{
static _Iterator
__b(_Iterator __it)
{ return __it; }
};
template<typename _Iterator>
struct __miter_base<_Iterator, true>
{
static typename _Iterator::iterator_type
__b(_Iterator __it)
{ return __it.base(); }
};
template<bool, bool, typename>
struct __copy_move
{
template<typename _II, typename _OI>
static _OI
__copy_m(_II __first, _II __last, _OI __result)
{
for (; __first != __last; ++__result, ++__first)
*__result = *__first;
return __result;
}
};
template<>
struct __copy_move<false, false, random_access_iterator_tag>
{
template<typename _II, typename _OI>
static _OI
__copy_m(_II __first, _II __last, _OI __result)
{
typedef typename iterator_traits<_II>::difference_type _Distance;
for(_Distance __n = __last - __first; __n > 0; --__n)
{
*__result = *__first;
++__first;
++__result;
}
return __result;
}
};
template<bool _IsMove>
struct __copy_move<_IsMove, true, random_access_iterator_tag>
{
template<typename _Tp>
static _Tp*
__copy_m(const _Tp* __first, const _Tp* __last, _Tp* __result)
{
__builtin_memmove(__result, __first,
sizeof(_Tp) * (__last - __first));
return __result + (__last - __first);
}
};
template<bool _IsMove, typename _II, typename _OI>
inline _OI
__copy_move_a(_II __first, _II __last, _OI __result)
{
typedef typename iterator_traits<_II>::value_type _ValueTypeI;
typedef typename iterator_traits<_OI>::value_type _ValueTypeO;
typedef typename iterator_traits<_II>::iterator_category _Category;
const bool __simple = (__is_pod(_ValueTypeI)
&& __is_pointer<_II>::__value
&& __is_pointer<_OI>::__value
&& __are_same<_ValueTypeI, _ValueTypeO>::__value);
return std::__copy_move<_IsMove, __simple,
_Category>::__copy_m(__first, __last, __result);
}
template<typename _CharT>
struct char_traits;
template<typename _CharT, typename _Traits>
class istreambuf_iterator;
template<typename _CharT, typename _Traits>
class ostreambuf_iterator;
template<bool _IsMove, typename _CharT>
typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value,
ostreambuf_iterator<_CharT, char_traits<_CharT> > >::__type
__copy_move_a2(_CharT*, _CharT*,
ostreambuf_iterator<_CharT, char_traits<_CharT> >);
template<bool _IsMove, typename _CharT>
typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value,
ostreambuf_iterator<_CharT, char_traits<_CharT> > >::__type
__copy_move_a2(const _CharT*, const _CharT*,
ostreambuf_iterator<_CharT, char_traits<_CharT> >);
template<bool _IsMove, typename _CharT>
typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value,
_CharT*>::__type
__copy_move_a2(istreambuf_iterator<_CharT, char_traits<_CharT> >,
istreambuf_iterator<_CharT, char_traits<_CharT> >, _CharT*);
template<bool _IsMove, typename _II, typename _OI>
inline _OI
__copy_move_a2(_II __first, _II __last, _OI __result)
{
return _OI(std::__copy_move_a<_IsMove>
(std::__niter_base<_II>::__b(__first),
std::__niter_base<_II>::__b(__last),
std::__niter_base<_OI>::__b(__result)));
}
template<typename _II, typename _OI>
inline _OI
copy(_II __first, _II __last, _OI __result)
{
;
return (std::__copy_move_a2<__is_move_iterator<_II>::__value>
(std::__miter_base<_II>::__b(__first),
std::__miter_base<_II>::__b(__last), __result));
}
template<bool, bool, typename>
struct __copy_move_backward
{
template<typename _BI1, typename _BI2>
static _BI2
__copy_move_b(_BI1 __first, _BI1 __last, _BI2 __result)
{
while (__first != __last)
*--__result = *--__last;
return __result;
}
};
template<>
struct __copy_move_backward<false, false, random_access_iterator_tag>
{
template<typename _BI1, typename _BI2>
static _BI2
__copy_move_b(_BI1 __first, _BI1 __last, _BI2 __result)
{
typename iterator_traits<_BI1>::difference_type __n;
for (__n = __last - __first; __n > 0; --__n)
*--__result = *--__last;
return __result;
}
};
template<bool _IsMove>
struct __copy_move_backward<_IsMove, true, random_access_iterator_tag>
{
template<typename _Tp>
static _Tp*
__copy_move_b(const _Tp* __first, const _Tp* __last, _Tp* __result)
{
const ptrdiff_t _Num = __last - __first;
__builtin_memmove(__result - _Num, __first, sizeof(_Tp) * _Num);
return __result - _Num;
}
};
template<bool _IsMove, typename _BI1, typename _BI2>
inline _BI2
__copy_move_backward_a(_BI1 __first, _BI1 __last, _BI2 __result)
{
typedef typename iterator_traits<_BI1>::value_type _ValueType1;
typedef typename iterator_traits<_BI2>::value_type _ValueType2;
typedef typename iterator_traits<_BI1>::iterator_category _Category;
const bool __simple = (__is_pod(_ValueType1)
&& __is_pointer<_BI1>::__value
&& __is_pointer<_BI2>::__value
&& __are_same<_ValueType1, _ValueType2>::__value);
return std::__copy_move_backward<_IsMove, __simple,
_Category>::__copy_move_b(__first,
__last,
__result);
}
template<bool _IsMove, typename _BI1, typename _BI2>
inline _BI2
__copy_move_backward_a2(_BI1 __first, _BI1 __last, _BI2 __result)
{
return _BI2(std::__copy_move_backward_a<_IsMove>
(std::__niter_base<_BI1>::__b(__first),
std::__niter_base<_BI1>::__b(__last),
std::__niter_base<_BI2>::__b(__result)));
}
template<typename _BI1, typename _BI2>
inline _BI2
copy_backward(_BI1 __first, _BI1 __last, _BI2 __result)
{
;
return (std::__copy_move_backward_a2<__is_move_iterator<_BI1>::__value>
(std::__miter_base<_BI1>::__b(__first),
std::__miter_base<_BI1>::__b(__last), __result));
}
template<typename _ForwardIterator, typename _Tp>
inline typename
__gnu_cxx::__enable_if<!__is_scalar<_Tp>::__value, void>::__type
__fill_a(_ForwardIterator __first, _ForwardIterator __last,
const _Tp& __value)
{
for (; __first != __last; ++__first)
*__first = __value;
}
template<typename _ForwardIterator, typename _Tp>
inline typename
__gnu_cxx::__enable_if<__is_scalar<_Tp>::__value, void>::__type
__fill_a(_ForwardIterator __first, _ForwardIterator __last,
const _Tp& __value)
{
const _Tp __tmp = __value;
for (; __first != __last; ++__first)
*__first = __tmp;
}
template<typename _Tp>
inline typename
__gnu_cxx::__enable_if<__is_byte<_Tp>::__value, void>::__type
__fill_a(_Tp* __first, _Tp* __last, const _Tp& __c)
{
const _Tp __tmp = __c;
__builtin_memset(__first, static_cast<unsigned char>(__tmp),
__last - __first);
}
template<typename _ForwardIterator, typename _Tp>
inline void
fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value)
{
;
std::__fill_a(std::__niter_base<_ForwardIterator>::__b(__first),
std::__niter_base<_ForwardIterator>::__b(__last), __value);
}
template<typename _OutputIterator, typename _Size, typename _Tp>
inline typename
__gnu_cxx::__enable_if<!__is_scalar<_Tp>::__value, _OutputIterator>::__type
__fill_n_a(_OutputIterator __first, _Size __n, const _Tp& __value)
{
for (; __n > 0; --__n, ++__first)
*__first = __value;
return __first;
}
template<typename _OutputIterator, typename _Size, typename _Tp>
inline typename
__gnu_cxx::__enable_if<__is_scalar<_Tp>::__value, _OutputIterator>::__type
__fill_n_a(_OutputIterator __first, _Size __n, const _Tp& __value)
{
const _Tp __tmp = __value;
for (; __n > 0; --__n, ++__first)
*__first = __tmp;
return __first;
}
template<typename _Size, typename _Tp>
inline typename
__gnu_cxx::__enable_if<__is_byte<_Tp>::__value, _Tp*>::__type
__fill_n_a(_Tp* __first, _Size __n, const _Tp& __c)
{
std::__fill_a(__first, __first + __n, __c);
return __first + __n;
}
template<typename _OI, typename _Size, typename _Tp>
inline _OI
fill_n(_OI __first, _Size __n, const _Tp& __value)
{
return _OI(std::__fill_n_a(std::__niter_base<_OI>::__b(__first),
__n, __value));
}
template<bool _BoolType>
struct __equal
{
template<typename _II1, typename _II2>
static bool
equal(_II1 __first1, _II1 __last1, _II2 __first2)
{
for (; __first1 != __last1; ++__first1, ++__first2)
if (!(*__first1 == *__first2))
return false;
return true;
}
};
template<>
struct __equal<true>
{
template<typename _Tp>
static bool
equal(const _Tp* __first1, const _Tp* __last1, const _Tp* __first2)
{
return !__builtin_memcmp(__first1, __first2, sizeof(_Tp)
* (__last1 - __first1));
}
};
template<typename _II1, typename _II2>
inline bool
__equal_aux(_II1 __first1, _II1 __last1, _II2 __first2)
{
typedef typename iterator_traits<_II1>::value_type _ValueType1;
typedef typename iterator_traits<_II2>::value_type _ValueType2;
const bool __simple = (__is_integer<_ValueType1>::__value
&& __is_pointer<_II1>::__value
&& __is_pointer<_II2>::__value
&& __are_same<_ValueType1, _ValueType2>::__value);
return std::__equal<__simple>::equal(__first1, __last1, __first2);
}
template<typename, typename>
struct __lc_rai
{
template<typename _II1, typename _II2>
static _II1
__newlast1(_II1, _II1 __last1, _II2, _II2)
{ return __last1; }
template<typename _II>
static bool
__cnd2(_II __first, _II __last)
{ return __first != __last; }
};
template<>
struct __lc_rai<random_access_iterator_tag, random_access_iterator_tag>
{
template<typename _RAI1, typename _RAI2>
static _RAI1
__newlast1(_RAI1 __first1, _RAI1 __last1,
_RAI2 __first2, _RAI2 __last2)
{
const typename iterator_traits<_RAI1>::difference_type
__diff1 = __last1 - __first1;
const typename iterator_traits<_RAI2>::difference_type
__diff2 = __last2 - __first2;
return __diff2 < __diff1 ? __first1 + __diff2 : __last1;
}
template<typename _RAI>
static bool
__cnd2(_RAI, _RAI)
{ return true; }
};
template<bool _BoolType>
struct __lexicographical_compare
{
template<typename _II1, typename _II2>
static bool __lc(_II1, _II1, _II2, _II2);
};
template<bool _BoolType>
template<typename _II1, typename _II2>
bool
__lexicographical_compare<_BoolType>::
__lc(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2)
{
typedef typename iterator_traits<_II1>::iterator_category _Category1;
typedef typename iterator_traits<_II2>::iterator_category _Category2;
typedef std::__lc_rai<_Category1, _Category2> __rai_type;
__last1 = __rai_type::__newlast1(__first1, __last1,
__first2, __last2);
for (; __first1 != __last1 && __rai_type::__cnd2(__first2, __last2);
++__first1, ++__first2)
{
if (*__first1 < *__first2)
return true;
if (*__first2 < *__first1)
return false;
}
return __first1 == __last1 && __first2 != __last2;
}
template<>
struct __lexicographical_compare<true>
{
template<typename _Tp, typename _Up>
static bool
__lc(const _Tp* __first1, const _Tp* __last1,
const _Up* __first2, const _Up* __last2)
{
const size_t __len1 = __last1 - __first1;
const size_t __len2 = __last2 - __first2;
const int __result = __builtin_memcmp(__first1, __first2,
std::min(__len1, __len2));
return __result != 0 ? __result < 0 : __len1 < __len2;
}
};
template<typename _II1, typename _II2>
inline bool
__lexicographical_compare_aux(_II1 __first1, _II1 __last1,
_II2 __first2, _II2 __last2)
{
typedef typename iterator_traits<_II1>::value_type _ValueType1;
typedef typename iterator_traits<_II2>::value_type _ValueType2;
const bool __simple =
(__is_byte<_ValueType1>::__value && __is_byte<_ValueType2>::__value
&& !__gnu_cxx::__numeric_traits<_ValueType1>::__is_signed
&& !__gnu_cxx::__numeric_traits<_ValueType2>::__is_signed
&& __is_pointer<_II1>::__value
&& __is_pointer<_II2>::__value);
return std::__lexicographical_compare<__simple>::__lc(__first1, __last1,
__first2, __last2);
}
}
namespace std __attribute__ ((__visibility__ ("default"))) {
template<typename _II1, typename _II2>
inline bool
equal(_II1 __first1, _II1 __last1, _II2 __first2)
{
;
return std::__equal_aux(std::__niter_base<_II1>::__b(__first1),
std::__niter_base<_II1>::__b(__last1),
std::__niter_base<_II2>::__b(__first2));
}
template<typename _IIter1, typename _IIter2, typename _BinaryPredicate>
inline bool
equal(_IIter1 __first1, _IIter1 __last1,
_IIter2 __first2, _BinaryPredicate __binary_pred)
{
;
for (; __first1 != __last1; ++__first1, ++__first2)
if (!bool(__binary_pred(*__first1, *__first2)))
return false;
return true;
}
template<typename _II1, typename _II2>
inline bool
lexicographical_compare(_II1 __first1, _II1 __last1,
_II2 __first2, _II2 __last2)
{
typedef typename iterator_traits<_II1>::value_type _ValueType1;
typedef typename iterator_traits<_II2>::value_type _ValueType2;
;
;
return std::__lexicographical_compare_aux
(std::__niter_base<_II1>::__b(__first1),
std::__niter_base<_II1>::__b(__last1),
std::__niter_base<_II2>::__b(__first2),
std::__niter_base<_II2>::__b(__last2));
}
template<typename _II1, typename _II2, typename _Compare>
bool
lexicographical_compare(_II1 __first1, _II1 __last1,
_II2 __first2, _II2 __last2, _Compare __comp)
{
typedef typename iterator_traits<_II1>::iterator_category _Category1;
typedef typename iterator_traits<_II2>::iterator_category _Category2;
typedef std::__lc_rai<_Category1, _Category2> __rai_type;
;
;
__last1 = __rai_type::__newlast1(__first1, __last1, __first2, __last2);
for (; __first1 != __last1 && __rai_type::__cnd2(__first2, __last2);
++__first1, ++__first2)
{
if (__comp(*__first1, *__first2))
return true;
if (__comp(*__first2, *__first1))
return false;
}
return __first1 == __last1 && __first2 != __last2;
}
template<typename _InputIterator1, typename _InputIterator2>
pair<_InputIterator1, _InputIterator2>
mismatch(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2)
{
;
while (__first1 != __last1 && *__first1 == *__first2)
{
++__first1;
++__first2;
}
return pair<_InputIterator1, _InputIterator2>(__first1, __first2);
}
template<typename _InputIterator1, typename _InputIterator2,
typename _BinaryPredicate>
pair<_InputIterator1, _InputIterator2>
mismatch(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _BinaryPredicate __binary_pred)
{
;
while (__first1 != __last1 && bool(__binary_pred(*__first1, *__first2)))
{
++__first1;
++__first2;
}
return pair<_InputIterator1, _InputIterator2>(__first1, __first2);
}
}
extern "C++" {
namespace std
{
class exception
{
public:
exception() throw() { }
virtual ~exception() throw();
virtual const char* what() const throw();
};
class bad_exception : public exception
{
public:
bad_exception() throw() { }
virtual ~bad_exception() throw();
virtual const char* what() const throw();
};
typedef void (*terminate_handler) ();
typedef void (*unexpected_handler) ();
terminate_handler set_terminate(terminate_handler) throw();
void terminate() __attribute__ ((__noreturn__));
unexpected_handler set_unexpected(unexpected_handler) throw();
void unexpected() __attribute__ ((__noreturn__));
bool uncaught_exception() throw();
}
namespace __gnu_cxx __attribute__ ((__visibility__ ("default"))) {
void __verbose_terminate_handler();
}
}
extern "C++" {
namespace std
{
class bad_alloc : public exception
{
public:
bad_alloc() throw() { }
virtual ~bad_alloc() throw();
virtual const char* what() const throw();
};
struct nothrow_t { };
extern const nothrow_t nothrow;
typedef void (*new_handler)();
new_handler set_new_handler(new_handler) throw();
}
void* operator new(std::size_t) throw (std::bad_alloc);
void* operator new[](std::size_t) throw (std::bad_alloc);
void operator delete(void*) throw();
void operator delete[](void*) throw();
void* operator new(std::size_t, const std::nothrow_t&) throw();
void* operator new[](std::size_t, const std::nothrow_t&) throw();
void operator delete(void*, const std::nothrow_t&) throw();
void operator delete[](void*, const std::nothrow_t&) throw();
inline void* operator new(std::size_t, void* __p) throw() { return __p; }
inline void* operator new[](std::size_t, void* __p) throw() { return __p; }
inline void operator delete (void*, void*) throw() { }
inline void operator delete[](void*, void*) throw() { }
}
namespace __gnu_cxx __attribute__ ((__visibility__ ("default"))) {
using std::size_t;
using std::ptrdiff_t;
template<typename _Tp>
class new_allocator
{
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1>
struct rebind
{ typedef new_allocator<_Tp1> other; };
new_allocator() throw() { }
new_allocator(const new_allocator&) throw() { }
template<typename _Tp1>
new_allocator(const new_allocator<_Tp1>&) throw() { }
~new_allocator() throw() { }
pointer
address(reference __x) const { return &__x; }
const_pointer
address(const_reference __x) const { return &__x; }
pointer
allocate(size_type __n, const void* = 0)
{
if (__builtin_expect(__n > this->max_size(), false))
std::__throw_bad_alloc();
return static_cast<_Tp*>(::operator new(__n * sizeof(_Tp)));
}
void
deallocate(pointer __p, size_type)
{ ::operator delete(__p); }
size_type
max_size() const throw()
{ return size_t(-1) / sizeof(_Tp); }
void
construct(pointer __p, const _Tp& __val)
{ ::new((void *)__p) _Tp(__val); }
void
destroy(pointer __p) { __p->~_Tp(); }
};
template<typename _Tp>
inline bool
operator==(const new_allocator<_Tp>&, const new_allocator<_Tp>&)
{ return true; }
template<typename _Tp>
inline bool
operator!=(const new_allocator<_Tp>&, const new_allocator<_Tp>&)
{ return false; }
}
namespace std __attribute__ ((__visibility__ ("default"))) {
template<typename _Tp>
class allocator;
template<>
class allocator<void>
{
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef void* pointer;
typedef const void* const_pointer;
typedef void value_type;
template<typename _Tp1>
struct rebind
{ typedef allocator<_Tp1> other; };
};
template<typename _Tp>
class allocator: public __gnu_cxx::new_allocator<_Tp>
{
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1>
struct rebind
{ typedef allocator<_Tp1> other; };
allocator() throw() { }
allocator(const allocator& __a) throw()
: __gnu_cxx::new_allocator<_Tp>(__a) { }
template<typename _Tp1>
allocator(const allocator<_Tp1>&) throw() { }
~allocator() throw() { }
};
template<typename _T1, typename _T2>
inline bool
operator==(const allocator<_T1>&, const allocator<_T2>&)
{ return true; }
template<typename _Tp>
inline bool
operator==(const allocator<_Tp>&, const allocator<_Tp>&)
{ return true; }
template<typename _T1, typename _T2>
inline bool
operator!=(const allocator<_T1>&, const allocator<_T2>&)
{ return false; }
template<typename _Tp>
inline bool
operator!=(const allocator<_Tp>&, const allocator<_Tp>&)
{ return false; }
extern template class allocator<char>;
extern template class allocator<wchar_t>;
template<typename _Alloc, bool = __is_empty(_Alloc)>
struct __alloc_swap
{ static void _S_do_it(_Alloc&, _Alloc&) { } };
template<typename _Alloc>
struct __alloc_swap<_Alloc, false>
{
static void
_S_do_it(_Alloc& __one, _Alloc& __two)
{
if (__one != __two)
swap(__one, __two);
}
};
template<typename _Alloc, bool = __is_empty(_Alloc)>
struct __alloc_neq
{
static bool
_S_do_it(const _Alloc&, const _Alloc&)
{ return false; }
};
template<typename _Alloc>
struct __alloc_neq<_Alloc, false>
{
static bool
_S_do_it(const _Alloc& __one, const _Alloc& __two)
{ return __one != __two; }
};
}
namespace std __attribute__ ((__visibility__ ("default"))) {
struct _List_node_base
{
_List_node_base* _M_next;
_List_node_base* _M_prev;
static void
swap(_List_node_base& __x, _List_node_base& __y);
void
transfer(_List_node_base * const __first,
_List_node_base * const __last);
void
reverse();
void
hook(_List_node_base * const __position);
void
unhook();
};
template<typename _Tp>
struct _List_node : public _List_node_base
{
_Tp _M_data;
};
template<typename _Tp>
struct _List_iterator
{
typedef _List_iterator<_Tp> _Self;
typedef _List_node<_Tp> _Node;
typedef ptrdiff_t difference_type;
typedef std::bidirectional_iterator_tag iterator_category;
typedef _Tp value_type;
typedef _Tp* pointer;
typedef _Tp& reference;
_List_iterator()
: _M_node() { }
explicit
_List_iterator(_List_node_base* __x)
: _M_node(__x) { }
reference
operator*() const
{ return static_cast<_Node*>(_M_node)->_M_data; }
pointer
operator->() const
{ return &static_cast<_Node*>(_M_node)->_M_data; }
_Self&
operator++()
{
_M_node = _M_node->_M_next;
return *this;
}
_Self
operator++(int)
{
_Self __tmp = *this;
_M_node = _M_node->_M_next;
return __tmp;
}
_Self&
operator--()
{
_M_node = _M_node->_M_prev;
return *this;
}
_Self
operator--(int)
{
_Self __tmp = *this;
_M_node = _M_node->_M_prev;
return __tmp;
}
bool
operator==(const _Self& __x) const
{ return _M_node == __x._M_node; }
bool
operator!=(const _Self& __x) const
{ return _M_node != __x._M_node; }
_List_node_base* _M_node;
};
template<typename _Tp>
struct _List_const_iterator
{
typedef _List_const_iterator<_Tp> _Self;
typedef const _List_node<_Tp> _Node;
typedef _List_iterator<_Tp> iterator;
typedef ptrdiff_t difference_type;
typedef std::bidirectional_iterator_tag iterator_category;
typedef _Tp value_type;
typedef const _Tp* pointer;
typedef const _Tp& reference;
_List_const_iterator()
: _M_node() { }
explicit
_List_const_iterator(const _List_node_base* __x)
: _M_node(__x) { }
_List_const_iterator(const iterator& __x)
: _M_node(__x._M_node) { }
reference
operator*() const
{ return static_cast<_Node*>(_M_node)->_M_data; }
pointer
operator->() const
{ return &static_cast<_Node*>(_M_node)->_M_data; }
_Self&
operator++()
{
_M_node = _M_node->_M_next;
return *this;
}
_Self
operator++(int)
{
_Self __tmp = *this;
_M_node = _M_node->_M_next;
return __tmp;
}
_Self&
operator--()
{
_M_node = _M_node->_M_prev;
return *this;
}
_Self
operator--(int)
{
_Self __tmp = *this;
_M_node = _M_node->_M_prev;
return __tmp;
}
bool
operator==(const _Self& __x) const
{ return _M_node == __x._M_node; }
bool
operator!=(const _Self& __x) const
{ return _M_node != __x._M_node; }
const _List_node_base* _M_node;
};
template<typename _Val>
inline bool
operator==(const _List_iterator<_Val>& __x,
const _List_const_iterator<_Val>& __y)
{ return __x._M_node == __y._M_node; }
template<typename _Val>
inline bool
operator!=(const _List_iterator<_Val>& __x,
const _List_const_iterator<_Val>& __y)
{ return __x._M_node != __y._M_node; }
template<typename _Tp, typename _Alloc>
class _List_base
{
protected:
typedef typename _Alloc::template rebind<_List_node<_Tp> >::other
_Node_alloc_type;
typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
struct _List_impl
: public _Node_alloc_type
{
_List_node_base _M_node;
_List_impl()
: _Node_alloc_type(), _M_node()
{ }
_List_impl(const _Node_alloc_type& __a)
: _Node_alloc_type(__a), _M_node()
{ }
};
_List_impl _M_impl;
_List_node<_Tp>*
_M_get_node()
{ return _M_impl._Node_alloc_type::allocate(1); }
void
_M_put_node(_List_node<_Tp>* __p)
{ _M_impl._Node_alloc_type::deallocate(__p, 1); }
public:
typedef _Alloc allocator_type;
_Node_alloc_type&
_M_get_Node_allocator()
{ return *static_cast<_Node_alloc_type*>(&this->_M_impl); }
const _Node_alloc_type&
_M_get_Node_allocator() const
{ return *static_cast<const _Node_alloc_type*>(&this->_M_impl); }
_Tp_alloc_type
_M_get_Tp_allocator() const
{ return _Tp_alloc_type(_M_get_Node_allocator()); }
allocator_type
get_allocator() const
{ return allocator_type(_M_get_Node_allocator()); }
_List_base()
: _M_impl()
{ _M_init(); }
_List_base(const allocator_type& __a)
: _M_impl(__a)
{ _M_init(); }
~_List_base()
{ _M_clear(); }
void
_M_clear();
void
_M_init()
{
this->_M_impl._M_node._M_next = &this->_M_impl._M_node;
this->_M_impl._M_node._M_prev = &this->_M_impl._M_node;
}
};
template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
class list : protected _List_base<_Tp, _Alloc>
{
typedef typename _Alloc::value_type _Alloc_value_type;
typedef _List_base<_Tp, _Alloc> _Base;
typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
public:
typedef _Tp value_type;
typedef typename _Tp_alloc_type::pointer pointer;
typedef typename _Tp_alloc_type::const_pointer const_pointer;
typedef typename _Tp_alloc_type::reference reference;
typedef typename _Tp_alloc_type::const_reference const_reference;
typedef _List_iterator<_Tp> iterator;
typedef _List_const_iterator<_Tp> const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Alloc allocator_type;
protected:
typedef _List_node<_Tp> _Node;
using _Base::_M_impl;
using _Base::_M_put_node;
using _Base::_M_get_node;
using _Base::_M_get_Tp_allocator;
using _Base::_M_get_Node_allocator;
_Node*
_M_create_node(const value_type& __x)
{
_Node* __p = this->_M_get_node();
try
{
_M_get_Tp_allocator().construct(&__p->_M_data, __x);
}
catch(...)
{
_M_put_node(__p);
throw;
}
return __p;
}
public:
list()
: _Base() { }
explicit
list(const allocator_type& __a)
: _Base(__a) { }
explicit
list(size_type __n, const value_type& __value = value_type(),
const allocator_type& __a = allocator_type())
: _Base(__a)
{ _M_fill_initialize(__n, __value); }
list(const list& __x)
: _Base(__x._M_get_Node_allocator())
{ _M_initialize_dispatch(__x.begin(), __x.end(), __false_type()); }
template<typename _InputIterator>
list(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: _Base(__a)
{
typedef typename std::__is_integer<_InputIterator>::__type _Integral;
_M_initialize_dispatch(__first, __last, _Integral());
}
list&
operator=(const list& __x);
void
assign(size_type __n, const value_type& __val)
{ _M_fill_assign(__n, __val); }
template<typename _InputIterator>
void
assign(_InputIterator __first, _InputIterator __last)
{
typedef typename std::__is_integer<_InputIterator>::__type _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
allocator_type
get_allocator() const
{ return _Base::get_allocator(); }
iterator
begin()
{ return iterator(this->_M_impl._M_node._M_next); }
const_iterator
begin() const
{ return const_iterator(this->_M_impl._M_node._M_next); }
iterator
end()
{ return iterator(&this->_M_impl._M_node); }
const_iterator
end() const
{ return const_iterator(&this->_M_impl._M_node); }
reverse_iterator
rbegin()
{ return reverse_iterator(end()); }
const_reverse_iterator
rbegin() const
{ return const_reverse_iterator(end()); }
reverse_iterator
rend()
{ return reverse_iterator(begin()); }
const_reverse_iterator
rend() const
{ return const_reverse_iterator(begin()); }
bool
empty() const
{ return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; }
size_type
size() const
{ return std::distance(begin(), end()); }
size_type
max_size() const
{ return _M_get_Node_allocator().max_size(); }
void
resize(size_type __new_size, value_type __x = value_type());
reference
front()
{ return *begin(); }
const_reference
front() const
{ return *begin(); }
reference
back()
{
iterator __tmp = end();
--__tmp;
return *__tmp;
}
const_reference
back() const
{
const_iterator __tmp = end();
--__tmp;
return *__tmp;
}
void
push_front(const value_type& __x)
{ this->_M_insert(begin(), __x); }
void
pop_front()
{ this->_M_erase(begin()); }
void
push_back(const value_type& __x)
{ this->_M_insert(end(), __x); }
void
pop_back()
{ this->_M_erase(iterator(this->_M_impl._M_node._M_prev)); }
iterator
insert(iterator __position, const value_type& __x);
void
insert(iterator __position, size_type __n, const value_type& __x)
{
list __tmp(__n, __x, _M_get_Node_allocator());
splice(__position, __tmp);
}
template<typename _InputIterator>
void
insert(iterator __position, _InputIterator __first,
_InputIterator __last)
{
list __tmp(__first, __last, _M_get_Node_allocator());
splice(__position, __tmp);
}
iterator
erase(iterator __position);
iterator
erase(iterator __first, iterator __last)
{
while (__first != __last)
__first = erase(__first);
return __last;
}
void
swap(list& __x)
{
_List_node_base::swap(this->_M_impl._M_node, __x._M_impl._M_node);
std::__alloc_swap<typename _Base::_Node_alloc_type>::
_S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator());
}
void
clear()
{
_Base::_M_clear();
_Base::_M_init();
}
void
splice(iterator __position, list& __x)
{
if (!__x.empty())
{
_M_check_equal_allocators(__x);
this->_M_transfer(__position, __x.begin(), __x.end());
}
}
void
splice(iterator __position, list& __x, iterator __i)
{
iterator __j = __i;
++__j;
if (__position == __i || __position == __j)
return;
if (this != &__x)
_M_check_equal_allocators(__x);
this->_M_transfer(__position, __i, __j);
}
void
splice(iterator __position, list& __x, iterator __first,
iterator __last)
{
if (__first != __last)
{
if (this != &__x)
_M_check_equal_allocators(__x);
this->_M_transfer(__position, __first, __last);
}
}
void
remove(const _Tp& __value);
template<typename _Predicate>
void
remove_if(_Predicate);
void
unique();
template<typename _BinaryPredicate>
void
unique(_BinaryPredicate);
void
merge(list& __x);
template<typename _StrictWeakOrdering>
void
merge(list&, _StrictWeakOrdering);
void
reverse()
{ this->_M_impl._M_node.reverse(); }
void
sort();
template<typename _StrictWeakOrdering>
void
sort(_StrictWeakOrdering);
protected:
template<typename _Integer>
void
_M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
{ _M_fill_initialize(static_cast<size_type>(__n), __x); }
template<typename _InputIterator>
void
_M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
__false_type)
{
for (; __first != __last; ++__first)
push_back(*__first);
}
void
_M_fill_initialize(size_type __n, const value_type& __x)
{
for (; __n > 0; --__n)
push_back(__x);
}
template<typename _Integer>
void
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign(__n, __val); }
template<typename _InputIterator>
void
_M_assign_dispatch(_InputIterator __first, _InputIterator __last,
__false_type);
void
_M_fill_assign(size_type __n, const value_type& __val);
void
_M_transfer(iterator __position, iterator __first, iterator __last)
{ __position._M_node->transfer(__first._M_node, __last._M_node); }
void
_M_insert(iterator __position, const value_type& __x)
{
_Node* __tmp = _M_create_node(__x);
__tmp->hook(__position._M_node);
}
void
_M_erase(iterator __position)
{
__position._M_node->unhook();
_Node* __n = static_cast<_Node*>(__position._M_node);
_M_get_Tp_allocator().destroy(&__n->_M_data);
_M_put_node(__n);
}
void
_M_check_equal_allocators(list& __x)
{
if (std::__alloc_neq<typename _Base::_Node_alloc_type>::
_S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator()))
__throw_runtime_error(("list::_M_check_equal_allocators"));
}
};
template<typename _Tp, typename _Alloc>
inline bool
operator==(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
{
typedef typename list<_Tp, _Alloc>::const_iterator const_iterator;
const_iterator __end1 = __x.end();
const_iterator __end2 = __y.end();
const_iterator __i1 = __x.begin();
const_iterator __i2 = __y.begin();
while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
{
++__i1;
++__i2;
}
return __i1 == __end1 && __i2 == __end2;
}
template<typename _Tp, typename _Alloc>
inline bool
operator<(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
{ return std::lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end()); }
template<typename _Tp, typename _Alloc>
inline bool
operator!=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
{ return !(__x == __y); }
template<typename _Tp, typename _Alloc>
inline bool
operator>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
{ return __y < __x; }
template<typename _Tp, typename _Alloc>
inline bool
operator<=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
{ return !(__y < __x); }
template<typename _Tp, typename _Alloc>
inline bool
operator>=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
{ return !(__x < __y); }
template<typename _Tp, typename _Alloc>
inline void
swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
{ __x.swap(__y); }
}
namespace std __attribute__ ((__visibility__ ("default"))) {
template<typename _Tp, typename _Alloc>
void
_List_base<_Tp, _Alloc>::
_M_clear()
{
typedef _List_node<_Tp> _Node;
_Node* __cur = static_cast<_Node*>(this->_M_impl._M_node._M_next);
while (__cur != &this->_M_impl._M_node)
{
_Node* __tmp = __cur;
__cur = static_cast<_Node*>(__cur->_M_next);
_M_get_Tp_allocator().destroy(&__tmp->_M_data);
_M_put_node(__tmp);
}
}
template<typename _Tp, typename _Alloc>
typename list<_Tp, _Alloc>::iterator
list<_Tp, _Alloc>::
insert(iterator __position, const value_type& __x)
{
_Node* __tmp = _M_create_node(__x);
__tmp->hook(__position._M_node);
return iterator(__tmp);
}
template<typename _Tp, typename _Alloc>
typename list<_Tp, _Alloc>::iterator
list<_Tp, _Alloc>::
erase(iterator __position)
{
iterator __ret = iterator(__position._M_node->_M_next);
_M_erase(__position);
return __ret;
}
template<typename _Tp, typename _Alloc>
void
list<_Tp, _Alloc>::
resize(size_type __new_size, value_type __x)
{
iterator __i = begin();
size_type __len = 0;
for (; __i != end() && __len < __new_size; ++__i, ++__len)
;
if (__len == __new_size)
erase(__i, end());
else
insert(end(), __new_size - __len, __x);
}
template<typename _Tp, typename _Alloc>
list<_Tp, _Alloc>&
list<_Tp, _Alloc>::
operator=(const list& __x)
{
if (this != &__x)
{
iterator __first1 = begin();
iterator __last1 = end();
const_iterator __first2 = __x.begin();
const_iterator __last2 = __x.end();
for (; __first1 != __last1 && __first2 != __last2;
++__first1, ++__first2)
*__first1 = *__first2;
if (__first2 == __last2)
erase(__first1, __last1);
else
insert(__last1, __first2, __last2);
}
return *this;
}
template<typename _Tp, typename _Alloc>
void
list<_Tp, _Alloc>::
_M_fill_assign(size_type __n, const value_type& __val)
{
iterator __i = begin();
for (; __i != end() && __n > 0; ++__i, --__n)
*__i = __val;
if (__n > 0)
insert(end(), __n, __val);
else
erase(__i, end());
}
template<typename _Tp, typename _Alloc>
template <typename _InputIterator>
void
list<_Tp, _Alloc>::
_M_assign_dispatch(_InputIterator __first2, _InputIterator __last2,
__false_type)
{
iterator __first1 = begin();
iterator __last1 = end();
for (; __first1 != __last1 && __first2 != __last2;
++__first1, ++__first2)
*__first1 = *__first2;
if (__first2 == __last2)
erase(__first1, __last1);
else
insert(__last1, __first2, __last2);
}
template<typename _Tp, typename _Alloc>
void
list<_Tp, _Alloc>::
remove(const value_type& __value)
{
iterator __first = begin();
iterator __last = end();
iterator __extra = __last;
while (__first != __last)
{
iterator __next = __first;
++__next;
if (*__first == __value)
{
if (&*__first != &__value)
_M_erase(__first);
else
__extra = __first;
}
__first = __next;
}
if (__extra != __last)
_M_erase(__extra);
}
template<typename _Tp, typename _Alloc>
void
list<_Tp, _Alloc>::
unique()
{
iterator __first = begin();
iterator __last = end();
if (__first == __last)
return;
iterator __next = __first;
while (++__next != __last)
{
if (*__first == *__next)
_M_erase(__next);
else
__first = __next;
__next = __first;
}
}
template<typename _Tp, typename _Alloc>
void
list<_Tp, _Alloc>::
merge(list& __x)
{
if (this != &__x)
{
_M_check_equal_allocators(__x);
iterator __first1 = begin();
iterator __last1 = end();
iterator __first2 = __x.begin();
iterator __last2 = __x.end();
while (__first1 != __last1 && __first2 != __last2)
if (*__first2 < *__first1)
{
iterator __next = __first2;
_M_transfer(__first1, __first2, ++__next);
__first2 = __next;
}
else
++__first1;
if (__first2 != __last2)
_M_transfer(__last1, __first2, __last2);
}
}
template<typename _Tp, typename _Alloc>
template <typename _StrictWeakOrdering>
void
list<_Tp, _Alloc>::
merge(list& __x, _StrictWeakOrdering __comp)
{
if (this != &__x)
{
_M_check_equal_allocators(__x);
iterator __first1 = begin();
iterator __last1 = end();
iterator __first2 = __x.begin();
iterator __last2 = __x.end();
while (__first1 != __last1 && __first2 != __last2)
if (__comp(*__first2, *__first1))
{
iterator __next = __first2;
_M_transfer(__first1, __first2, ++__next);
__first2 = __next;
}
else
++__first1;
if (__first2 != __last2)
_M_transfer(__last1, __first2, __last2);
}
}
template<typename _Tp, typename _Alloc>
void
list<_Tp, _Alloc>::
sort()
{
if (this->_M_impl._M_node._M_next != &this->_M_impl._M_node
&& this->_M_impl._M_node._M_next->_M_next != &this->_M_impl._M_node)
{
list __carry;
list __tmp[64];
list * __fill = &__tmp[0];
list * __counter;
do
{
__carry.splice(__carry.begin(), *this, begin());
for(__counter = &__tmp[0];
__counter != __fill && !__counter->empty();
++__counter)
{
__counter->merge(__carry);
__carry.swap(*__counter);
}
__carry.swap(*__counter);
if (__counter == __fill)
++__fill;
}
while ( !empty() );
for (__counter = &__tmp[1]; __counter != __fill; ++__counter)
__counter->merge(*(__counter - 1));
swap( *(__fill - 1) );
}
}
template<typename _Tp, typename _Alloc>
template <typename _Predicate>
void
list<_Tp, _Alloc>::
remove_if(_Predicate __pred)
{
iterator __first = begin();
iterator __last = end();
while (__first != __last)
{
iterator __next = __first;
++__next;
if (__pred(*__first))
_M_erase(__first);
__first = __next;
}
}
template<typename _Tp, typename _Alloc>
template <typename _BinaryPredicate>
void
list<_Tp, _Alloc>::
unique(_BinaryPredicate __binary_pred)
{
iterator __first = begin();
iterator __last = end();
if (__first == __last)
return;
iterator __next = __first;
while (++__next != __last)
{
if (__binary_pred(*__first, *__next))
_M_erase(__next);
else
__first = __next;
__next = __first;
}
}
template<typename _Tp, typename _Alloc>
template <typename _StrictWeakOrdering>
void
list<_Tp, _Alloc>::
sort(_StrictWeakOrdering __comp)
{
if (this->_M_impl._M_node._M_next != &this->_M_impl._M_node
&& this->_M_impl._M_node._M_next->_M_next != &this->_M_impl._M_node)
{
list __carry;
list __tmp[64];
list * __fill = &__tmp[0];
list * __counter;
do
{
__carry.splice(__carry.begin(), *this, begin());
for(__counter = &__tmp[0];
__counter != __fill && !__counter->empty();
++__counter)
{
__counter->merge(__carry, __comp);
__carry.swap(*__counter);
}
__carry.swap(*__counter);
if (__counter == __fill)
++__fill;
}
while ( !empty() );
for (__counter = &__tmp[1]; __counter != __fill; ++__counter)
__counter->merge(*(__counter - 1), __comp);
swap(*(__fill - 1));
}
}
}
extern void foobarit(void);
class Game
{
public:
struct BuildProject
{
int posX;
};
std::list<BuildProject> buildProjects;
};
static Game game;
static std::list<std::list<Game::BuildProject>::iterator>
erasableBuildProjects;
void *buildProjectSyncStepConcurrently(int id, int localTeam)
{
__transaction_relaxed {
std::list<std::list<Game::BuildProject>::iterator>::iterator it
= erasableBuildProjects.begin();
foobarit();
game.buildProjects.erase( (std::list<Game::BuildProject>
::iterator) *it);
}
return 0;
}
Go to most recent revision | Compare with Previous | Blame | View Log