URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [testsuite/] [gfortran.dg/] [g77/] [f90-intrinsic-numeric.f] - Rev 694
Compare with Previous | Blame | View Log
c { dg-do run } c f90-intrinsic-numeric.f c c Test Fortran 90 intrinsic numeric functions - Section 13.10.2 and 13.13 c David Billinghurst <David.Billinghurst@riotinto.com> c c Notes: c * g77 does not fully comply with F90. Noncompliances noted in comments. c * Section 13.12: Specific names for intrinsic functions tested in c intrinsic77.f logical fail integer(kind=2) j, j2, ja integer(kind=1) k, k2, ka common /flags/ fail fail = .false. c ABS - Section 13.13.1 j = -9 ja = 9 k = j ka = ja call c_i(ABS(-7),7,'ABS(integer)') call c_i2(ABS(j),ja,'ABS(integer(2))') call c_i1(ABS(k),ka,'ABS(integer(1))') call c_r(ABS(-7.),7.,'ABS(real)') call c_d(ABS(-7.d0),7.d0,'ABS(double)') call c_r(ABS((3.,-4.)),5.0,'ABS(complex)') call c_d(ABS((3.d0,-4.d0)),5.0d0,'ABS(complex(kind=8))') c AIMAG - Section 13.13.6 call c_r(AIMAG((2.,-7.)),-7.,'AIMAG(complex)') c g77: AIMAG(complex(kind=8)) does not comply with F90 c call c_d(AIMAG((2.d0,-7.d0)),-7.d0,'AIMAG(complex(kind=8))') c AINT - Section 13.13.7 call c_r(AINT(2.783),2.0,'AINT(real) 1') call c_r(AINT(-2.783),-2.0,'AINT(real) 2') call c_d(AINT(2.783d0),2.0d0,'AINT(double precision) 1') call c_d(AINT(-2.783d0),-2.0d0,'AINT(double precision) 2') c Note: g77 does not support optional argument KIND c ANINT - Section 13.13.10 call c_r(ANINT(2.783),3.0,'ANINT(real) 1') call c_r(ANINT(-2.783),-3.0,'ANINT(real) 2') call c_d(ANINT(2.783d0),3.0d0,'ANINT(double precision) 1') call c_d(ANINT(-2.783d0),-3.0d0,'ANINT(double precision) 2') c Note: g77 does not support optional argument KIND c CEILING - Section 13.13.18 c Not implemented c CMPLX - Section 13.13.20 j = 1 ja = 2 k = 1 ka = 2 call c_c(CMPLX(1),(1.,0.),'CMPLX(integer)') call c_c(CMPLX(1,2),(1.,2.),'CMPLX(integer, integer)') call c_c(CMPLX(j),(1.,0.),'CMPLX(integer(2))') call c_c(CMPLX(j,ja),(1.,2.),'CMPLX(integer(2), integer(2))') call c_c(CMPLX(k),(1.,0.),'CMPLX(integer(1)') call c_c(CMPLX(k,ka),(1.,2.),'CMPLX(integer(1), integer(1))') call c_c(CMPLX(1.),(1.,0.),'CMPLX(real)') call c_c(CMPLX(1.d0),(1.,0.),'CMPLX(double)') call c_c(CMPLX(1.d0,2.d0),(1.,2.),'CMPLX(double,double)') call c_c(CMPLX(1.,2.),(1.,2.),'CMPLX(complex)') call c_c(CMPLX(1.d0,2.d0),(1.,2.),'CMPLX(complex(kind=8))') c NOTE: g77 does not support optional argument KIND c CONJG - Section 13.13.21 call c_c(CONJG((2.,-7.)),(2.,7.),'CONJG(complex)') call c_z(CONJG((2.d0,-7.d0)),(2.d0,7.d0),'CONJG(complex(kind=8))') c DBLE - Section 13.13.27 j = 5 k = 5 call c_d(DBLE(5),5.0d0,'DBLE(integer)') call c_d(DBLE(j),5.0d0,'DBLE(integer(2))') call c_d(DBLE(k),5.0d0,'DBLE(integer(1))') call c_d(DBLE(5.),5.0d0,'DBLE(real)') call c_d(DBLE(5.0d0),5.0d0,'DBLE(double)') call c_d(DBLE((5.0,0.5)),5.0d0,'DBLE(complex)') call c_d(DBLE((5.0d0,0.5d0)),5.0d0,'DBLE(complex(kind=8))') c DIM - Section 13.13.29 j = -8 j2 = -3 ja = 0 k = -8 k2 = -3 ka = 0 call c_i(DIM(-8,-3),0,'DIM(integer)') call c_i2(DIM(j,j2),ja,'DIM(integer(2))') call c_i1(DIM(k,k2),ka,'DIM(integer(1)') call c_r(DIM(-8.,-3.),0.,'DIM(real,real)') call c_d(DIM(-8.d0,-3.d0),0.d0,'DIM(double,double)') c DPROD - Section 13.13.31 call c_d(DPROD(-8.,-3.),24.d0,'DPROD(real,real)') c FLOOR - Section 13.13.36 c Not implemented c INT - Section 13.13.47 j = 5 k = 5 call c_i(INT(5),5,'INT(integer)') call c_i(INT(j),5,'INT(integer(2))') call c_i(INT(k),5,'INT(integer(1))') call c_i(INT(5.01),5,'INT(real)') call c_i(INT(5.01d0),5,'INT(double)') c Note: Does not accept optional second argument KIND c MAX - Section 13.13.63 j = 1 j2 = 2 ja = 2 k = 1 k2 = 2 ka = 2 call c_i(MAX(1,2,3),3,'MAX(integer,integer,integer)') call c_i2(MAX(j,j2),ja,'MAX(integer(2),integer(2))') call c_i1(MAX(k,k2),ka,'MAX(integer(1),integer(1))') call c_r(MAX(1.,2.,3.),3.,'MAX(real,real,real)') call c_d(MAX(1.d0,2.d0,3.d0),3.d0,'MAX(double,double,double)') c MIN - Section 13.13.68 j = 1 j2 = 2 ja = 1 k = 1 k2 = 2 ka = 1 call c_i(MIN(1,2,3),1,'MIN(integer,integer,integer)') call c_i2(MIN(j,j2),ja,'MIN(integer(2),integer(2))') call c_i1(MIN(k,k2),ka,'MIN(integer(1),integer(1))') call c_r(MIN(1.,2.,3.),1.,'MIN(real,real,real)') call c_d(MIN(1.d0,2.d0,3.d0),1.d0,'MIN(double,double,double)') c MOD - Section 13.13.72 call c_i(MOD(8,5),3,'MOD(integer,integer) 1') call c_i(MOD(-8,5),-3,'MOD(integer,integer) 2') call c_i(MOD(8,-5),3,'MOD(integer,integer) 3') call c_i(MOD(-8,-5),-3,'MOD(integer,integer) 4') j = 8 j2 = 5 ja = 3 call c_i2(MOD(j,j2),ja,'MOD(integer(2),integer(2)) 1') call c_i2(MOD(-j,j2),-ja,'MOD(integer(2),integer(2)) 2') call c_i2(MOD(j,-j2),ja,'MOD(integer(2),integer(2)) 3') call c_i2(MOD(-j,-j2),-ja,'MOD(integer(2),integer(2)) 4') k = 8 k2 = 5 ka = 3 call c_i1(MOD(k,k2),ka,'MOD(integer(1),integer(1)) 1') call c_i1(MOD(-k,k2),-ka,'MOD(integer(1),integer(1)) 2') call c_i1(MOD(k,-k2),ka,'MOD(integer(1),integer(1)) 3') call c_i1(MOD(-k,-k2),-ka,'MOD(integer(1),integer(1)) 4') call c_r(MOD(8.,5.),3.,'MOD(real,real) 1') call c_r(MOD(-8.,5.),-3.,'MOD(real,real) 2') call c_r(MOD(8.,-5.),3.,'MOD(real,real) 3') call c_r(MOD(-8.,-5.),-3.,'MOD(real,real) 4') call c_d(MOD(8.d0,5.d0),3.d0,'MOD(double,double) 1') call c_d(MOD(-8.d0,5.d0),-3.d0,'MOD(double,double) 2') call c_d(MOD(8.d0,-5.d0),3.d0,'MOD(double,double) 3') call c_d(MOD(-8.d0,-5.d0),-3.d0,'MOD(double,double) 4') c MODULO - Section 13.13.73 c Not implemented c NINT - Section 13.13.76 call c_i(NINT(2.783),3,'NINT(real)') call c_i(NINT(2.783d0),3,'NINT(double)') c Optional second argument KIND not implemented c REAL - Section 13.13.86 j = -2 k = -2 call c_r(REAL(-2),-2.0,'REAL(integer)') call c_r(REAL(j),-2.0,'REAL(integer(2))') call c_r(REAL(k),-2.0,'REAL(integer(1))') call c_r(REAL(-2.0),-2.0,'REAL(real)') call c_r(REAL(-2.0d0),-2.0,'REAL(double)') call c_r(REAL((-2.,9.)),-2.0,'REAL(complex)') c REAL(complex(kind=8)) not implemented c call c_r(REAL((-2.d0,9.d0)),-2.0,'REAL(complex(kind=8))') c SIGN - Section 13.13.96 j = -3 j2 = 2 ja = 3 k = -3 k2 = 2 ka = 3 call c_i(SIGN(-3,2),3,'SIGN(integer)') call c_i2(SIGN(j,j2),ja,'SIGN(integer(2))') call c_i1(SIGN(k,k2),ka,'SIGN(integer(1))') call c_r(SIGN(-3.0,2.),3.,'SIGN(real,real)') call c_d(SIGN(-3.d0,2.d0),3.d0,'SIGN(double,double)') if ( fail ) call abort() end subroutine failure(label) c Report failure and set flag character*(*) label logical fail common /flags/ fail write(6,'(a,a,a)') 'Test ',label,' FAILED' fail = .true. end subroutine c_i(i,j,label) c Check if INTEGER i equals j, and fail otherwise integer i,j character*(*) label if ( i .ne. j ) then call failure(label) write(6,*) 'Got ',i,' expected ', j end if end subroutine c_i2(i,j,label) c Check if INTEGER(kind=2) i equals j, and fail otherwise integer(kind=2) i,j character*(*) label if ( i .ne. j ) then call failure(label) write(6,*) 'Got ',i,' expected ', j end if end subroutine c_i1(i,j,label) c Check if INTEGER(kind=1) i equals j, and fail otherwise integer(kind=1) i,j character*(*) label if ( i .ne. j ) then call failure(label) write(6,*) 'Got ',i,' expected ', j end if end subroutine c_r(a,b,label) c Check if REAL a equals b, and fail otherwise real a, b character*(*) label if ( abs(a-b) .gt. 1.0e-5 ) then call failure(label) write(6,*) 'Got ',a,' expected ', b end if end subroutine c_d(a,b,label) c Check if DOUBLE PRECISION a equals b, and fail otherwise double precision a, b character*(*) label if ( abs(a-b) .gt. 1.0d-5 ) then call failure(label) write(6,*) 'Got ',a,' expected ', b end if end subroutine c_c(a,b,label) c Check if COMPLEX a equals b, and fail otherwise complex a, b character*(*) label if ( abs(a-b) .gt. 1.0e-5 ) then call failure(label) write(6,*) 'Got ',a,' expected ', b end if end subroutine c_z(a,b,label) c Check if COMPLEX a equals b, and fail otherwise complex(kind=8) a, b character*(*) label if ( abs(a-b) .gt. 1.0d-5 ) then call failure(label) write(6,*) 'Got ',a,' expected ', b end if end