URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [testsuite/] [gfortran.dg/] [vect/] [fast-math-mgrid-resid.f] - Rev 694
Compare with Previous | Blame | View Log
! { dg-do compile { target i?86-*-* x86_64-*-* } } ! { dg-require-effective-target vect_double } ! { dg-require-effective-target sse2 } ! { dg-options "-O3 -ffast-math -msse2 -fpredictive-commoning -ftree-vectorize -fdump-tree-optimized" } ******* RESID COMPUTES THE RESIDUAL: R = V - AU * * THIS SIMPLE IMPLEMENTATION COSTS 27A + 4M PER RESULT, WHERE * A AND M DENOTE THE COSTS OF ADDITION (OR SUBTRACTION) AND * MULTIPLICATION, RESPECTIVELY. BY USING SEVERAL TWO-DIMENSIONAL * BUFFERS ONE CAN REDUCE THIS COST TO 13A + 4M IN THE GENERAL * CASE, OR 10A + 3M WHEN THE COEFFICIENT A(1) IS ZERO. * SUBROUTINE RESID(U,V,R,N,A) INTEGER N REAL*8 U(N,N,N),V(N,N,N),R(N,N,N),A(0:3) INTEGER I3, I2, I1 C DO 600 I3=2,N-1 DO 600 I2=2,N-1 DO 600 I1=2,N-1 600 R(I1,I2,I3)=V(I1,I2,I3) > -A(0)*( U(I1, I2, I3 ) ) > -A(1)*( U(I1-1,I2, I3 ) + U(I1+1,I2, I3 ) > + U(I1, I2-1,I3 ) + U(I1, I2+1,I3 ) > + U(I1, I2, I3-1) + U(I1, I2, I3+1) ) > -A(2)*( U(I1-1,I2-1,I3 ) + U(I1+1,I2-1,I3 ) > + U(I1-1,I2+1,I3 ) + U(I1+1,I2+1,I3 ) > + U(I1, I2-1,I3-1) + U(I1, I2+1,I3-1) > + U(I1, I2-1,I3+1) + U(I1, I2+1,I3+1) > + U(I1-1,I2, I3-1) + U(I1-1,I2, I3+1) > + U(I1+1,I2, I3-1) + U(I1+1,I2, I3+1) ) > -A(3)*( U(I1-1,I2-1,I3-1) + U(I1+1,I2-1,I3-1) > + U(I1-1,I2+1,I3-1) + U(I1+1,I2+1,I3-1) > + U(I1-1,I2-1,I3+1) + U(I1+1,I2-1,I3+1) > + U(I1-1,I2+1,I3+1) + U(I1+1,I2+1,I3+1) ) C RETURN END ! we want to check that predictive commoning did something on the ! vectorized loop, which means we have to have exactly 13 vector ! additions. ! { dg-final { scan-tree-dump-times "vect_var\[^\\n\]*\\+ " 13 "optimized" } } ! { dg-final { cleanup-tree-dump "vect" } } ! { dg-final { cleanup-tree-dump "optimized" } }