OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [testsuite/] [lib/] [target-supports.exp] - Rev 701

Compare with Previous | Blame | View Log

#   Copyright (C) 1999, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
#   2011, 2012 Free Software Foundation, Inc.

# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GCC; see the file COPYING3.  If not see
# <http://www.gnu.org/licenses/>.

# Please email any bugs, comments, and/or additions to this file to:
# gcc-patches@gcc.gnu.org

# This file defines procs for determining features supported by the target.

# Try to compile the code given by CONTENTS into an output file of
# type TYPE, where TYPE is as for target_compile.  Return a list
# whose first element contains the compiler messages and whose
# second element is the name of the output file.
#
# BASENAME is a prefix to use for source and output files.
# If ARGS is not empty, its first element is a string that
# should be added to the command line.
#
# Assume by default that CONTENTS is C code.  
# Otherwise, code should contain:
# "// C++" for c++,
# "! Fortran" for Fortran code,
# "/* ObjC", for ObjC
# "// ObjC++" for ObjC++
# and "// Go" for Go
# If the tool is ObjC/ObjC++ then we overide the extension to .m/.mm to 
# allow for ObjC/ObjC++ specific flags.
proc check_compile {basename type contents args} {
    global tool
    verbose "check_compile tool: $tool for $basename" 

    if { [llength $args] > 0 } {
        set options [list "additional_flags=[lindex $args 0]"]
    } else {
        set options ""
    }
    switch -glob -- $contents {
        "*! Fortran*" { set src ${basename}[pid].f90 }
        "*// C++*" { set src ${basename}[pid].cc }
        "*// ObjC++*" { set src ${basename}[pid].mm }
        "*/* ObjC*" { set src ${basename}[pid].m }
        "*// Go*" { set src ${basename}[pid].go }
        default {
            switch -- $tool {
                "objc" { set src ${basename}[pid].m }
                "obj-c++" { set src ${basename}[pid].mm }
                default { set src ${basename}[pid].c }
            }
        }
    }

    set compile_type $type
    switch -glob $type {
        assembly { set output ${basename}[pid].s }
        object { set output ${basename}[pid].o }
        executable { set output ${basename}[pid].exe }
        "rtl-*" {
            set output ${basename}[pid].s
            lappend options "additional_flags=-fdump-$type"
            set compile_type assembly
        }
    }
    set f [open $src "w"]
    puts $f $contents
    close $f
    set lines [${tool}_target_compile $src $output $compile_type "$options"]
    file delete $src

    set scan_output $output
    # Don't try folding this into the switch above; calling "glob" before the
    # file is created won't work.
    if [regexp "rtl-(.*)" $type dummy rtl_type] {
        set scan_output "[glob $src.\[0-9\]\[0-9\]\[0-9\]r.$rtl_type]"
        file delete $output
    }

    return [list $lines $scan_output]
}

proc current_target_name { } {
    global target_info
    if [info exists target_info(target,name)] {
        set answer $target_info(target,name)
    } else {
        set answer ""
    }
    return $answer
}

# Implement an effective-target check for property PROP by invoking
# the Tcl command ARGS and seeing if it returns true.

proc check_cached_effective_target { prop args } {
    global et_cache

    set target [current_target_name]
    if {![info exists et_cache($prop,target)]
        || $et_cache($prop,target) != $target} {
        verbose "check_cached_effective_target $prop: checking $target" 2
        set et_cache($prop,target) $target
        set et_cache($prop,value) [uplevel eval $args]
    }
    set value $et_cache($prop,value)
    verbose "check_cached_effective_target $prop: returning $value for $target" 2
    return $value
}

# Like check_compile, but delete the output file and return true if the
# compiler printed no messages.
proc check_no_compiler_messages_nocache {args} {
    set result [eval check_compile $args]
    set lines [lindex $result 0]
    set output [lindex $result 1]
    remote_file build delete $output
    return [string match "" $lines]
}

# Like check_no_compiler_messages_nocache, but cache the result.
# PROP is the property we're checking, and doubles as a prefix for
# temporary filenames.
proc check_no_compiler_messages {prop args} {
    return [check_cached_effective_target $prop {
        eval [list check_no_compiler_messages_nocache $prop] $args
    }]
}

# Like check_compile, but return true if the compiler printed no
# messages and if the contents of the output file satisfy PATTERN.
# If PATTERN has the form "!REGEXP", the contents satisfy it if they
# don't match regular expression REGEXP, otherwise they satisfy it
# if they do match regular expression PATTERN.  (PATTERN can start
# with something like "[!]" if the regular expression needs to match
# "!" as the first character.)
#
# Delete the output file before returning.  The other arguments are
# as for check_compile.
proc check_no_messages_and_pattern_nocache {basename pattern args} {
    global tool

    set result [eval [list check_compile $basename] $args]
    set lines [lindex $result 0]
    set output [lindex $result 1]

    set ok 0
    if { [string match "" $lines] } {
        set chan [open "$output"]
        set invert [regexp {^!(.*)} $pattern dummy pattern]
        set ok [expr { [regexp $pattern [read $chan]] != $invert }]
        close $chan
    }

    remote_file build delete $output
    return $ok
}

# Like check_no_messages_and_pattern_nocache, but cache the result.
# PROP is the property we're checking, and doubles as a prefix for
# temporary filenames.
proc check_no_messages_and_pattern {prop pattern args} {
    return [check_cached_effective_target $prop {
        eval [list check_no_messages_and_pattern_nocache $prop $pattern] $args
    }]
}

# Try to compile and run an executable from code CONTENTS.  Return true
# if the compiler reports no messages and if execution "passes" in the
# usual DejaGNU sense.  The arguments are as for check_compile, with
# TYPE implicitly being "executable".
proc check_runtime_nocache {basename contents args} {
    global tool

    set result [eval [list check_compile $basename executable $contents] $args]
    set lines [lindex $result 0]
    set output [lindex $result 1]

    set ok 0
    if { [string match "" $lines] } {
        # No error messages, everything is OK.
        set result [remote_load target "./$output" "" ""]
        set status [lindex $result 0]
        verbose "check_runtime_nocache $basename: status is <$status>" 2
        if { $status == "pass" } {
            set ok 1
        }
    }
    remote_file build delete $output
    return $ok
}

# Like check_runtime_nocache, but cache the result.  PROP is the
# property we're checking, and doubles as a prefix for temporary
# filenames.
proc check_runtime {prop args} {
    global tool

    return [check_cached_effective_target $prop {
        eval [list check_runtime_nocache $prop] $args
    }]
}

###############################
# proc check_weak_available { }
###############################

# weak symbols are only supported in some configs/object formats
# this proc returns 1 if they're supported, 0 if they're not, or -1 if unsure

proc check_weak_available { } {
    global target_cpu

    # All mips targets should support it

    if { [ string first "mips" $target_cpu ] >= 0 } {
        return 1
    }

    # All solaris2 targets should support it

    if { [istarget *-*-solaris2*] } {
        return 1
    }

    # DEC OSF/1/Digital UNIX/Tru64 UNIX supports it

    if { [istarget alpha*-dec-osf*] } {
        return 1
    }

    # Windows targets Cygwin and MingW32 support it

    if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
        return 1
    }

    # HP-UX 10.X doesn't support it

    if { [istarget hppa*-*-hpux10*] } {
        return 0
    }

    # ELF and ECOFF support it. a.out does with gas/gld but may also with
    # other linkers, so we should try it

    set objformat [gcc_target_object_format]

    switch $objformat {
        elf      { return 1 }
        ecoff    { return 1 }
        a.out    { return 1 }
        mach-o   { return 1 }
        som      { return 1 }
        unknown  { return -1 }
        default  { return 0 }
    }
}

###############################
# proc check_weak_override_available { }
###############################

# Like check_weak_available, but return 0 if weak symbol definitions
# cannot be overridden.

proc check_weak_override_available { } {
    if { [istarget *-*-mingw*] } {
        return 0
    }
    return [check_weak_available]
}

###############################
# proc check_visibility_available { what_kind }
###############################

# The visibility attribute is only support in some object formats
# This proc returns 1 if it is supported, 0 if not.
# The argument is the kind of visibility, default/protected/hidden/internal.

proc check_visibility_available { what_kind } {
    if [string match "" $what_kind] { set what_kind "hidden" }

    return [check_no_compiler_messages visibility_available_$what_kind object "
        void f() __attribute__((visibility(\"$what_kind\")));
        void f() {}
    "]
}

###############################
# proc check_alias_available { }
###############################

# Determine if the target toolchain supports the alias attribute.

# Returns 2 if the target supports aliases.  Returns 1 if the target
# only supports weak aliased.  Returns 0 if the target does not
# support aliases at all.  Returns -1 if support for aliases could not
# be determined.

proc check_alias_available { } {
    global alias_available_saved
    global tool

    if [info exists alias_available_saved] {
        verbose "check_alias_available  returning saved $alias_available_saved" 2
    } else {
        set src alias[pid].c
        set obj alias[pid].o
        verbose "check_alias_available  compiling testfile $src" 2
        set f [open $src "w"]
        # Compile a small test program.  The definition of "g" is
        # necessary to keep the Solaris assembler from complaining
        # about the program.
        puts $f "#ifdef __cplusplus\nextern \"C\"\n#endif\n"
        puts $f "void g() {} void f() __attribute__((alias(\"g\")));"
        close $f
        set lines [${tool}_target_compile $src $obj object ""]
        file delete $src
        remote_file build delete $obj

        if [string match "" $lines] then {
            # No error messages, everything is OK.
            set alias_available_saved 2
        } else {
            if [regexp "alias definitions not supported" $lines] {
                verbose "check_alias_available  target does not support aliases" 2

                set objformat [gcc_target_object_format]

                if { $objformat == "elf" } {
                    verbose "check_alias_available  but target uses ELF format, so it ought to" 2
                    set alias_available_saved -1
                } else {
                    set alias_available_saved 0
                }
            } else {
                if [regexp "only weak aliases are supported" $lines] {
                verbose "check_alias_available  target supports only weak aliases" 2
                set alias_available_saved 1
                } else {
                    set alias_available_saved -1
                }
            }
        }

        verbose "check_alias_available  returning $alias_available_saved" 2
    }

    return $alias_available_saved
}

# Returns 1 if the target toolchain supports ifunc, 0 otherwise.

proc check_ifunc_available { } {
    return [check_no_compiler_messages ifunc_available object {
        #ifdef __cplusplus
        extern "C"
        #endif
        void g() {}
        void f() __attribute__((ifunc("g")));
    }]
}

# Returns true if --gc-sections is supported on the target.

proc check_gc_sections_available { } {
    global gc_sections_available_saved
    global tool

    if {![info exists gc_sections_available_saved]} {
        # Some targets don't support gc-sections despite whatever's
        # advertised by ld's options.
        if { [istarget alpha*-*-*]
             || [istarget ia64-*-*] } {
            set gc_sections_available_saved 0
            return 0
        }

        # elf2flt uses -q (--emit-relocs), which is incompatible with
        # --gc-sections.
        if { [board_info target exists ldflags]
             && [regexp " -elf2flt\[ =\]" " [board_info target ldflags] "] } {
            set gc_sections_available_saved 0
            return 0
        }

        # VxWorks kernel modules are relocatable objects linked with -r,
        # while RTP executables are linked with -q (--emit-relocs).
        # Both of these options are incompatible with --gc-sections.
        if { [istarget *-*-vxworks*] } {
            set gc_sections_available_saved 0
            return 0
        }

        # Check if the ld used by gcc supports --gc-sections.
        set gcc_spec [${tool}_target_compile "-dumpspecs" "" "none" ""]
        regsub ".*\n\\*linker:\[ \t\]*\n(\[^ \t\n\]*).*" "$gcc_spec" {\1} linker
        set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=$linker" "" "none" ""] 0]
        set ld_output [remote_exec host "$gcc_ld" "--help"]
        if { [ string first "--gc-sections" $ld_output ] >= 0 } {
            set gc_sections_available_saved 1
        } else {
            set gc_sections_available_saved 0
        }
    }
    return $gc_sections_available_saved
}

# Return 1 if according to target_info struct and explicit target list
# target is supposed to support trampolines.
 
proc check_effective_target_trampolines { } {
    if [target_info exists no_trampolines] {
      return 0
    }
    if { [istarget avr-*-*]
         || [istarget hppa2.0w-hp-hpux11.23]
        || [istarget hppa64-hp-hpux11.23] } {
        return 0;   
    }
    return 1
}

# Return 1 if according to target_info struct and explicit target list
# target is supposed to keep null pointer checks. This could be due to 
# use of option fno-delete-null-pointer-checks or hardwired in target.
 
proc check_effective_target_keeps_null_pointer_checks { } {
    if [target_info exists keeps_null_pointer_checks] {
      return 1
    }
    if { [istarget avr-*-*] } {
        return 1;   
    }
    return 0
}

# Return true if profiling is supported on the target.

proc check_profiling_available { test_what } {
    global profiling_available_saved

    verbose "Profiling argument is <$test_what>" 1

    # These conditions depend on the argument so examine them before
    # looking at the cache variable.

    # Tree profiling requires TLS runtime support.
    if { $test_what == "-fprofile-generate" } {
        if { ![check_effective_target_tls_runtime] } {
            return 0
        }
    }

    # Support for -p on solaris2 relies on mcrt1.o which comes with the
    # vendor compiler.  We cannot reliably predict the directory where the
    # vendor compiler (and thus mcrt1.o) is installed so we can't
    # necessarily find mcrt1.o even if we have it.
    if { [istarget *-*-solaris2*] && $test_what == "-p" } {
        return 0
    }

    # Support for -p on irix relies on libprof1.a which doesn't appear to
    # exist on any irix6 system currently posting testsuite results.
    # Support for -pg on irix relies on gcrt1.o which doesn't exist yet.
    # See: http://gcc.gnu.org/ml/gcc/2002-10/msg00169.html
    if { [istarget mips*-*-irix*]
         && ($test_what == "-p" || $test_what == "-pg") } {
        return 0
    }

    # We don't yet support profiling for MIPS16.
    if { [istarget mips*-*-*]
         && ![check_effective_target_nomips16]
         && ($test_what == "-p" || $test_what == "-pg") } {
        return 0
    }

    # MinGW does not support -p.
    if { [istarget *-*-mingw*] && $test_what == "-p" } {
        return 0
    }

    # cygwin does not support -p.
    if { [istarget *-*-cygwin*] && $test_what == "-p" } {
        return 0
    }

    # uClibc does not have gcrt1.o.
    if { [check_effective_target_uclibc]
         && ($test_what == "-p" || $test_what == "-pg") } {
        return 0
    }

    # Now examine the cache variable.
    if {![info exists profiling_available_saved]} {
        # Some targets don't have any implementation of __bb_init_func or are
        # missing other needed machinery.
        if {    [istarget am3*-*-linux*]
             || [istarget arm*-*-eabi*]
             || [istarget arm*-*-elf]
             || [istarget arm*-*-symbianelf*]
             || [istarget avr-*-*]
             || [istarget bfin-*-*]
             || [istarget cris-*-*]
             || [istarget crisv32-*-*]
             || [istarget fido-*-elf]
             || [istarget h8300-*-*]
             || [istarget lm32-*-*]
             || [istarget m32c-*-elf]
             || [istarget m68k-*-elf]
             || [istarget m68k-*-uclinux*]
             || [istarget mep-*-elf]
             || [istarget mips*-*-elf*]
             || [istarget mmix-*-*]
             || [istarget mn10300-*-elf*]
             || [istarget moxie-*-elf*]
             || [istarget picochip-*-*]
             || [istarget powerpc-*-eabi*]
             || [istarget powerpc-*-elf]
             || [istarget rx-*-*]       
             || [istarget tic6x-*-elf]
             || [istarget xstormy16-*]
             || [istarget xtensa*-*-elf]
             || [istarget *-*-rtems*]
             || [istarget *-*-vxworks*] } {
            set profiling_available_saved 0
        } else {
            set profiling_available_saved 1
        }
    }

    return $profiling_available_saved
}

# Check to see if a target is "freestanding". This is as per the definition
# in Section 4 of C99 standard. Effectively, it is a target which supports no
# extra headers or libraries other than what is considered essential.
proc check_effective_target_freestanding { } {
    if { [istarget picochip-*-*] } then {
        return 1
    } else {
        return 0
    }
}

# Return 1 if target has packed layout of structure members by
# default, 0 otherwise.  Note that this is slightly different than
# whether the target has "natural alignment": both attributes may be
# false.

proc check_effective_target_default_packed { } {
    return [check_no_compiler_messages default_packed assembly {
        struct x { char a; long b; } c;
        int s[sizeof (c) == sizeof (char) + sizeof (long) ? 1 : -1];
    }]
}

# Return 1 if target has PCC_BITFIELD_TYPE_MATTERS defined.  See
# documentation, where the test also comes from.

proc check_effective_target_pcc_bitfield_type_matters { } {
    # PCC_BITFIELD_TYPE_MATTERS isn't just about unnamed or empty
    # bitfields, but let's stick to the example code from the docs.
    return [check_no_compiler_messages pcc_bitfield_type_matters assembly {
        struct foo1 { char x; char :0; char y; };
        struct foo2 { char x; int :0; char y; };
        int s[sizeof (struct foo1) != sizeof (struct foo2) ? 1 : -1];
    }]
}

# Add to FLAGS all the target-specific flags needed to use thread-local storage.

proc add_options_for_tls { flags } {
    # Tru64 UNIX uses emutls, which relies on a couple of pthread functions
    # which only live in libpthread, so always pass -pthread for TLS.
    if { [istarget alpha*-dec-osf*] } {
        return "$flags -pthread"
    }
    # On Solaris 8 and 9, __tls_get_addr/___tls_get_addr only lives in
    # libthread, so always pass -pthread for native TLS.
    # Need to duplicate native TLS check from
    # check_effective_target_tls_native to avoid recursion.
    if { [istarget *-*-solaris2.\[89\]*] &&
         [check_no_messages_and_pattern tls_native "!emutls" assembly {
             __thread int i;
             int f (void) { return i; }
             void g (int j) { i = j; }
         }] } {
        return "$flags -pthread"
    }
    return $flags
}

# Return 1 if thread local storage (TLS) is supported, 0 otherwise.

proc check_effective_target_tls {} {
    return [check_no_compiler_messages tls assembly {
        __thread int i;
        int f (void) { return i; }
        void g (int j) { i = j; }
    }]
}

# Return 1 if *native* thread local storage (TLS) is supported, 0 otherwise.

proc check_effective_target_tls_native {} {
    # VxWorks uses emulated TLS machinery, but with non-standard helper
    # functions, so we fail to automatically detect it.
    if { [istarget *-*-vxworks*] } {
        return 0
    }
    
    return [check_no_messages_and_pattern tls_native "!emutls" assembly {
        __thread int i;
        int f (void) { return i; }
        void g (int j) { i = j; }
    }]
}

# Return 1 if *emulated* thread local storage (TLS) is supported, 0 otherwise.

proc check_effective_target_tls_emulated {} {
    # VxWorks uses emulated TLS machinery, but with non-standard helper
    # functions, so we fail to automatically detect it.
    if { [istarget *-*-vxworks*] } {
        return 1
    }
    
    return [check_no_messages_and_pattern tls_emulated "emutls" assembly {
        __thread int i;
        int f (void) { return i; }
        void g (int j) { i = j; }
    }]
}

# Return 1 if TLS executables can run correctly, 0 otherwise.

proc check_effective_target_tls_runtime {} {
    return [check_runtime tls_runtime {
        __thread int thr = 0;
        int main (void) { return thr; }
    } [add_options_for_tls ""]]
}

# Return 1 if atomic compare-and-swap is supported on 'int'

proc check_effective_target_cas_char {} {
    return [check_no_compiler_messages cas_char assembly {
        #ifndef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_1
        #error unsupported
        #endif
    } ""]
}

proc check_effective_target_cas_int {} {
    return [check_no_compiler_messages cas_int assembly {
        #if __INT_MAX__ == 0x7fff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2
        /* ok */
        #elif __INT_MAX__ == 0x7fffffff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
        /* ok */
        #else
        #error unsupported
        #endif
    } ""]
}

# Return 1 if -ffunction-sections is supported, 0 otherwise.

proc check_effective_target_function_sections {} {
    # Darwin has its own scheme and silently accepts -ffunction-sections.
    if { [istarget *-*-darwin*] } {
        return 0
    }
    
    return [check_no_compiler_messages functionsections assembly {
        void foo (void) { }
    } "-ffunction-sections"]
}

# Return 1 if instruction scheduling is available, 0 otherwise.

proc check_effective_target_scheduling {} {
    return [check_no_compiler_messages scheduling object {
        void foo (void) { }
    } "-fschedule-insns"]
}

# Return 1 if compilation with -fgraphite is error-free for trivial 
# code, 0 otherwise.

proc check_effective_target_fgraphite {} {
    return [check_no_compiler_messages fgraphite object {
        void foo (void) { }
    } "-O1 -fgraphite"]
}

# Return 1 if compilation with -fopenmp is error-free for trivial
# code, 0 otherwise.

proc check_effective_target_fopenmp {} {
    return [check_no_compiler_messages fopenmp object {
        void foo (void) { }
    } "-fopenmp"]
}

# Return 1 if compilation with -fgnu-tm is error-free for trivial
# code, 0 otherwise.

proc check_effective_target_fgnu_tm {} {
    return [check_no_compiler_messages fgnu_tm object {
        void foo (void) { }
    } "-fgnu-tm"]
}

# Return 1 if the target supports mmap, 0 otherwise.

proc check_effective_target_mmap {} {
    return [check_function_available "mmap"]
}

# Return 1 if compilation with -pthread is error-free for trivial
# code, 0 otherwise.

proc check_effective_target_pthread {} {
    return [check_no_compiler_messages pthread object {
        void foo (void) { }
    } "-pthread"]
}

# Return 1 if compilation with -mpe-aligned-commons is error-free
# for trivial code, 0 otherwise.

proc check_effective_target_pe_aligned_commons {} {
    if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
        return [check_no_compiler_messages pe_aligned_commons object {
            int foo;
        } "-mpe-aligned-commons"]
    }
    return 0
}

# Return 1 if the target supports -static
proc check_effective_target_static {} {
    return [check_no_compiler_messages static executable {
        int main (void) { return 0; }
    } "-static"]
}

# Return 1 if the target supports -fstack-protector
proc check_effective_target_fstack_protector {} {
    return [check_runtime fstack_protector {
        int main (void) { return 0; }
    } "-fstack-protector"]
}

# Return 1 if compilation with -freorder-blocks-and-partition is error-free
# for trivial code, 0 otherwise.

proc check_effective_target_freorder {} {
    return [check_no_compiler_messages freorder object {
        void foo (void) { }
    } "-freorder-blocks-and-partition"]
}

# Return 1 if -fpic and -fPIC are supported, as in no warnings or errors
# emitted, 0 otherwise.  Whether a shared library can actually be built is
# out of scope for this test.

proc check_effective_target_fpic { } {
    # Note that M68K has a multilib that supports -fpic but not
    # -fPIC, so we need to check both.  We test with a program that
    # requires GOT references.
    foreach arg {fpic fPIC} {
        if [check_no_compiler_messages $arg object {
            extern int foo (void); extern int bar;
            int baz (void) { return foo () + bar; }
        } "-$arg"] {
            return 1
        }
    }
    return 0
}

# Return 1 if -pie, -fpie and -fPIE are supported, 0 otherwise.

proc check_effective_target_pie { } {
    if { [istarget *-*-darwin\[912\]*]
         || [istarget *-*-linux*] } {
        return 1;
    }
    return 0
}

# Return true if the target supports -mpaired-single (as used on MIPS).

proc check_effective_target_mpaired_single { } {
    return [check_no_compiler_messages mpaired_single object {
        void foo (void) { }
    } "-mpaired-single"]
}

# Return true if the target has access to FPU instructions.

proc check_effective_target_hard_float { } {
    if { [istarget mips*-*-*] } {
        return [check_no_compiler_messages hard_float assembly {
                #if (defined __mips_soft_float || defined __mips16)
                #error FOO
                #endif
        }]
    }

    # This proc is actually checking the availabilty of FPU
    # support for doubles, so on the RX we must fail if the
    # 64-bit double multilib has been selected.
    if { [istarget rx-*-*] } {
        return 0
        # return [check_no_compiler_messages hard_float assembly {
                #if defined __RX_64_BIT_DOUBLES__
                #error FOO
                #endif
        # }]
    }

    # The generic test equates hard_float with "no call for adding doubles".
    return [check_no_messages_and_pattern hard_float "!\\(call" rtl-expand {
        double a (double b, double c) { return b + c; }
    }]
}

# Return true if the target is a 64-bit MIPS target.

proc check_effective_target_mips64 { } {
    return [check_no_compiler_messages mips64 assembly {
        #ifndef __mips64
        #error FOO
        #endif
    }]
}

# Return true if the target is a MIPS target that does not produce
# MIPS16 code.

proc check_effective_target_nomips16 { } {
    return [check_no_compiler_messages nomips16 object {
        #ifndef __mips
        #error FOO
        #else
        /* A cheap way of testing for -mflip-mips16.  */
        void foo (void) { asm ("addiu $20,$20,1"); }
        void bar (void) { asm ("addiu $20,$20,1"); }
        #endif
    }]
}

# Add the options needed for MIPS16 function attributes.  At the moment,
# we don't support MIPS16 PIC.

proc add_options_for_mips16_attribute { flags } {
    return "$flags -mno-abicalls -fno-pic -DMIPS16=__attribute__((mips16))"
}

# Return true if we can force a mode that allows MIPS16 code generation.
# We don't support MIPS16 PIC, and only support MIPS16 -mhard-float
# for o32 and o64.

proc check_effective_target_mips16_attribute { } {
    return [check_no_compiler_messages mips16_attribute assembly {
        #ifdef PIC
        #error FOO
        #endif
        #if defined __mips_hard_float \
            && (!defined _ABIO32 || _MIPS_SIM != _ABIO32) \
            && (!defined _ABIO64 || _MIPS_SIM != _ABIO64)
        #error FOO
        #endif
    } [add_options_for_mips16_attribute ""]]
}

# Return 1 if the target supports long double larger than double when
# using the new ABI, 0 otherwise.

proc check_effective_target_mips_newabi_large_long_double { } {
    return [check_no_compiler_messages mips_newabi_large_long_double object {
        int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
    } "-mabi=64"]
}

# Return true if the target is a MIPS target that has access
# to the LL and SC instructions.

proc check_effective_target_mips_llsc { } {
    if { ![istarget mips*-*-*] } {
        return 0
    }
    # Assume that these instructions are always implemented for
    # non-elf* targets, via emulation if necessary.
    if { ![istarget *-*-elf*] } {
        return 1
    }
    # Otherwise assume LL/SC support for everything but MIPS I.
    return [check_no_compiler_messages mips_llsc assembly {
        #if __mips == 1
        #error FOO
        #endif
    }]
}

# Return true if the target is a MIPS target that uses in-place relocations.

proc check_effective_target_mips_rel { } {
    if { ![istarget mips*-*-*] } {
        return 0
    }
    return [check_no_compiler_messages mips_rel object {
        #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
            || (defined _ABI64 && _MIPS_SIM == _ABI64)
        #error FOO
        #endif
    }]
}

# Return true if the target is a MIPS target that uses the EABI.

proc check_effective_target_mips_eabi { } {
    if { ![istarget mips*-*-*] } {
        return 0
    }
    return [check_no_compiler_messages mips_eabi object {
        #ifndef __mips_eabi
        #error FOO
        #endif
    }]
}

# Return 1 if the current multilib does not generate PIC by default.

proc check_effective_target_nonpic { } {
    return [check_no_compiler_messages nonpic assembly {
        #if __PIC__
        #error FOO
        #endif
    }]
}

# Return 1 if the target does not use a status wrapper.

proc check_effective_target_unwrapped { } {
    if { [target_info needs_status_wrapper] != "" \
             && [target_info needs_status_wrapper] != "0" } {
        return 0
    }
    return 1
}

# Return true if iconv is supported on the target. In particular IBM1047.

proc check_iconv_available { test_what } {
    global libiconv

    # If the tool configuration file has not set libiconv, try "-liconv"
    if { ![info exists libiconv] } {
        set libiconv "-liconv"
    }
    set test_what [lindex $test_what 1]
    return [check_runtime_nocache $test_what [subst {
        #include <iconv.h>
        int main (void)
        {
          iconv_t cd;

          cd = iconv_open ("$test_what", "UTF-8");
          if (cd == (iconv_t) -1)
            return 1;
          return 0;
        }
    }] $libiconv]
}

# Return 1 if an ASCII locale is supported on this host, 0 otherwise.

proc check_ascii_locale_available { } {
    if { ([ishost alpha*-dec-osf*] || [ishost mips-sgi-irix*]) } {
        # Neither Tru64 UNIX nor IRIX support an ASCII locale.
        return 0
    } else {
        return 1
    }
}

# Return true if named sections are supported on this target.

proc check_named_sections_available { } {
    return [check_no_compiler_messages named_sections assembly {
        int __attribute__ ((section("whatever"))) foo;
    }]
}

# Return 1 if the target supports Fortran real kinds larger than real(8),
# 0 otherwise.
#
# When the target name changes, replace the cached result.

proc check_effective_target_fortran_large_real { } {
    return [check_no_compiler_messages fortran_large_real executable {
        ! Fortran
        integer,parameter :: k = selected_real_kind (precision (0.0_8) + 1)
        real(kind=k) :: x
        x = cos (x)
        end
    }]
}

# Return 1 if the target supports Fortran real kind real(16),
# 0 otherwise. Contrary to check_effective_target_fortran_large_real
# this checks for Real(16) only; the other returned real(10) if
# both real(10) and real(16) are available.
#
# When the target name changes, replace the cached result.

proc check_effective_target_fortran_real_16 { } {
    return [check_no_compiler_messages fortran_real_16 executable {
        ! Fortran
        real(kind=16) :: x
        x = cos (x)
        end
    }]
}


# Return 1 if the target supports SQRT for the largest floating-point
# type. (Some targets lack the libm support for this FP type.)
# On most targets, this check effectively checks either whether sqrtl is
# available or on __float128 systems whether libquadmath is installed,
# which provides sqrtq.
#
# When the target name changes, replace the cached result.

proc check_effective_target_fortran_largest_fp_has_sqrt { } {
    return [check_no_compiler_messages fortran_largest_fp_has_sqrt executable {
        ! Fortran
        use iso_fortran_env, only: real_kinds
        integer,parameter:: maxFP = real_kinds(ubound(real_kinds,dim=1))
        real(kind=maxFP), volatile :: x
        x = 2.0_maxFP
        x = sqrt (x)
        end
    }]
}


# Return 1 if the target supports Fortran integer kinds larger than
# integer(8), 0 otherwise.
#
# When the target name changes, replace the cached result.

proc check_effective_target_fortran_large_int { } {
    return [check_no_compiler_messages fortran_large_int executable {
        ! Fortran
        integer,parameter :: k = selected_int_kind (range (0_8) + 1)
        integer(kind=k) :: i
        end
    }]
}

# Return 1 if the target supports Fortran integer(16), 0 otherwise.
#
# When the target name changes, replace the cached result.

proc check_effective_target_fortran_integer_16 { } {
    return [check_no_compiler_messages fortran_integer_16 executable {
        ! Fortran
        integer(16) :: i
        end
    }]
}

# Return 1 if we can statically link libgfortran, 0 otherwise.
#
# When the target name changes, replace the cached result.

proc check_effective_target_static_libgfortran { } {
    return [check_no_compiler_messages static_libgfortran executable {
        ! Fortran
        print *, 'test'
        end
    } "-static"]
}

proc check_linker_plugin_available { } {
  return [check_no_compiler_messages_nocache linker_plugin executable {
     int main() { return 0; }
  } "-flto -fuse-linker-plugin"]
}

# Return 1 if the target supports executing 750CL paired-single instructions, 0
# otherwise.  Cache the result.

proc check_750cl_hw_available { } {
    return [check_cached_effective_target 750cl_hw_available {
        # If this is not the right target then we can skip the test.
        if { ![istarget powerpc-*paired*] } {
            expr 0
        } else {
            check_runtime_nocache 750cl_hw_available {
                 int main()
                 {
                 #ifdef __MACH__
                   asm volatile ("ps_mul v0,v0,v0");
                 #else
                   asm volatile ("ps_mul 0,0,0");
                 #endif
                   return 0;
                 }
            } "-mpaired"
        }
    }]
}

# Return 1 if the target OS supports running SSE executables, 0
# otherwise.  Cache the result.

proc check_sse_os_support_available { } {
    return [check_cached_effective_target sse_os_support_available {
        # If this is not the right target then we can skip the test.
        if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
            expr 0
        } elseif { [istarget i?86-*-solaris2*] } {
            # The Solaris 2 kernel doesn't save and restore SSE registers
            # before Solaris 9 4/04.  Before that, executables die with SIGILL.
            check_runtime_nocache sse_os_support_available {
                int main ()
                {
                  asm volatile ("movaps %xmm0,%xmm0");
                  return 0;
                }
            } "-msse"
        } else {
            expr 1
        }
    }]
}

# Return 1 if the target OS supports running AVX executables, 0
# otherwise.  Cache the result.

proc check_avx_os_support_available { } {
    return [check_cached_effective_target avx_os_support_available {
        # If this is not the right target then we can skip the test.
        if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
            expr 0
        } else {
            # Check that OS has AVX and SSE saving enabled.
            check_runtime_nocache avx_os_support_available {
                int main ()
                {
                  unsigned int eax, edx;

                  asm ("xgetbv" : "=a" (eax), "=d" (edx) : "c" (0));
                  return (eax & 6) != 6;
                }
            } ""
        }
    }]
}

# Return 1 if the target supports executing SSE instructions, 0
# otherwise.  Cache the result.

proc check_sse_hw_available { } {
    return [check_cached_effective_target sse_hw_available {
        # If this is not the right target then we can skip the test.
        if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
            expr 0
        } else {
            check_runtime_nocache sse_hw_available {
                #include "cpuid.h"
                int main ()
                {
                  unsigned int eax, ebx, ecx, edx;
                  if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
                    return !(edx & bit_SSE);
                  return 1;
                }
            } ""
        }
    }]
}

# Return 1 if the target supports executing SSE2 instructions, 0
# otherwise.  Cache the result.

proc check_sse2_hw_available { } {
    return [check_cached_effective_target sse2_hw_available {
        # If this is not the right target then we can skip the test.
        if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
            expr 0
        } else {
            check_runtime_nocache sse2_hw_available {
                #include "cpuid.h"
                int main ()
                {
                  unsigned int eax, ebx, ecx, edx;
                  if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
                    return !(edx & bit_SSE2);
                  return 1;
                }
            } ""
        }
    }]
}

# Return 1 if the target supports executing AVX instructions, 0
# otherwise.  Cache the result.

proc check_avx_hw_available { } {
    return [check_cached_effective_target avx_hw_available {
        # If this is not the right target then we can skip the test.
        if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
            expr 0
        } else {
            check_runtime_nocache avx_hw_available {
                #include "cpuid.h"
                int main ()
                {
                  unsigned int eax, ebx, ecx, edx;
                  if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
                    return ((ecx & (bit_AVX | bit_OSXSAVE))
                            != (bit_AVX | bit_OSXSAVE));
                  return 1;
                }
            } ""
        }
    }]
}

# Return 1 if the target supports running SSE executables, 0 otherwise.

proc check_effective_target_sse_runtime { } {
    if { [check_effective_target_sse]
         && [check_sse_hw_available]
         && [check_sse_os_support_available] } {
        return 1
    }
    return 0
}

# Return 1 if the target supports running SSE2 executables, 0 otherwise.

proc check_effective_target_sse2_runtime { } {
    if { [check_effective_target_sse2]
         && [check_sse2_hw_available]
         && [check_sse_os_support_available] } {
        return 1
    }
    return 0
}

# Return 1 if the target supports running AVX executables, 0 otherwise.

proc check_effective_target_avx_runtime { } {
    if { [check_effective_target_avx]
         && [check_avx_hw_available]
         && [check_avx_os_support_available] } {
        return 1
    }
    return 0
}

# Return 1 if the target supports executing VSX instructions, 0
# otherwise.  Cache the result.

proc check_vsx_hw_available { } {
    return [check_cached_effective_target vsx_hw_available {
        # Some simulators are known to not support VSX instructions.
        # For now, disable on Darwin
        if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
            expr 0
        } else {
            set options "-mvsx"
            check_runtime_nocache vsx_hw_available {
                int main()
                {
                #ifdef __MACH__
                  asm volatile ("xxlor vs0,vs0,vs0");
                #else
                  asm volatile ("xxlor 0,0,0");
                #endif
                  return 0;
                }
            } $options
        }
    }]
}

# Return 1 if the target supports executing AltiVec instructions, 0
# otherwise.  Cache the result.

proc check_vmx_hw_available { } {
    return [check_cached_effective_target vmx_hw_available {
        # Some simulators are known to not support VMX instructions.
        if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] } {
            expr 0
        } else {
            # Most targets don't require special flags for this test case, but
            # Darwin does.  Just to be sure, make sure VSX is not enabled for
            # the altivec tests.
            if { [istarget *-*-darwin*]
                 || [istarget *-*-aix*] } {
                set options "-maltivec -mno-vsx"
            } else {
                set options "-mno-vsx"
            }
            check_runtime_nocache vmx_hw_available {
                int main()
                {
                #ifdef __MACH__
                  asm volatile ("vor v0,v0,v0");
                #else
                  asm volatile ("vor 0,0,0");
                #endif
                  return 0;
                }
            } $options
        }
    }]
}

proc check_ppc_recip_hw_available { } {
    return [check_cached_effective_target ppc_recip_hw_available {
        # Some simulators may not support FRE/FRES/FRSQRTE/FRSQRTES
        # For now, disable on Darwin
        if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
            expr 0
        } else {
            set options "-mpowerpc-gfxopt -mpowerpc-gpopt -mpopcntb"
            check_runtime_nocache ppc_recip_hw_available {
                volatile double d_recip, d_rsqrt, d_four = 4.0;
                volatile float f_recip, f_rsqrt, f_four = 4.0f;
                int main()
                {
                  asm volatile ("fres %0,%1" : "=f" (f_recip) : "f" (f_four));
                  asm volatile ("fre %0,%1" : "=d" (d_recip) : "d" (d_four));
                  asm volatile ("frsqrtes %0,%1" : "=f" (f_rsqrt) : "f" (f_four));
                  asm volatile ("frsqrte %0,%1" : "=f" (d_rsqrt) : "d" (d_four));
                  return 0;
                }
            } $options
        }
    }]
}

# Return 1 if the target supports executing AltiVec and Cell PPU
# instructions, 0 otherwise.  Cache the result.

proc check_effective_target_cell_hw { } {
    return [check_cached_effective_target cell_hw_available {
        # Some simulators are known to not support VMX and PPU instructions.
        if { [istarget powerpc-*-eabi*] } {
            expr 0
        } else {
            # Most targets don't require special flags for this test
            # case, but Darwin and AIX do.
            if { [istarget *-*-darwin*]
                 || [istarget *-*-aix*] } {
                set options "-maltivec -mcpu=cell"
            } else {
                set options "-mcpu=cell"
            }
            check_runtime_nocache cell_hw_available {
                int main()
                {
                #ifdef __MACH__
                  asm volatile ("vor v0,v0,v0");
                  asm volatile ("lvlx v0,r0,r0");
                #else
                  asm volatile ("vor 0,0,0");
                  asm volatile ("lvlx 0,0,0");
                #endif
                  return 0;
                }
            } $options
        }
    }]
}

# Return 1 if the target supports executing 64-bit instructions, 0
# otherwise.  Cache the result.

proc check_effective_target_powerpc64 { } {
    global powerpc64_available_saved
    global tool

    if [info exists powerpc64_available_saved] {
        verbose "check_effective_target_powerpc64 returning saved $powerpc64_available_saved" 2
    } else {
        set powerpc64_available_saved 0

        # Some simulators are known to not support powerpc64 instructions.
        if { [istarget powerpc-*-eabi*] || [istarget powerpc-ibm-aix*] } {
            verbose "check_effective_target_powerpc64 returning 0" 2
            return $powerpc64_available_saved
        }

        # Set up, compile, and execute a test program containing a 64-bit
        # instruction.  Include the current process ID in the file
        # names to prevent conflicts with invocations for multiple
        # testsuites.
        set src ppc[pid].c
        set exe ppc[pid].x

        set f [open $src "w"]
        puts $f "int main() {"
        puts $f "#ifdef __MACH__"
        puts $f "  asm volatile (\"extsw r0,r0\");"
        puts $f "#else"
        puts $f "  asm volatile (\"extsw 0,0\");"
        puts $f "#endif"
        puts $f "  return 0; }"
        close $f

        set opts "additional_flags=-mcpu=G5"

        verbose "check_effective_target_powerpc64 compiling testfile $src" 2
        set lines [${tool}_target_compile $src $exe executable "$opts"]
        file delete $src

        if [string match "" $lines] then {
            # No error message, compilation succeeded.
            set result [${tool}_load "./$exe" "" ""]
            set status [lindex $result 0]
            remote_file build delete $exe
            verbose "check_effective_target_powerpc64 testfile status is <$status>" 2

            if { $status == "pass" } then {
                set powerpc64_available_saved 1
            }
        } else {
            verbose "check_effective_target_powerpc64 testfile compilation failed" 2
        }
    }

    return $powerpc64_available_saved
}

# GCC 3.4.0 for powerpc64-*-linux* included an ABI fix for passing
# complex float arguments.  This affects gfortran tests that call cabsf
# in libm built by an earlier compiler.  Return 1 if libm uses the same
# argument passing as the compiler under test, 0 otherwise.
#
# When the target name changes, replace the cached result.

proc check_effective_target_broken_cplxf_arg { } {
    return [check_cached_effective_target broken_cplxf_arg {
        # Skip the work for targets known not to be affected.
        if { ![istarget powerpc64-*-linux*] } {
            expr 0
        } elseif { ![is-effective-target lp64] } {
            expr 0
        } else {
            check_runtime_nocache broken_cplxf_arg {
                #include <complex.h>
                extern void abort (void);
                float fabsf (float);
                float cabsf (_Complex float);
                int main ()
                {
                  _Complex float cf;
                  float f;
                  cf = 3 + 4.0fi;
                  f = cabsf (cf);
                  if (fabsf (f - 5.0) > 0.0001)
                    abort ();
                  return 0;
                }
            } "-lm"
        }
    }]
}

# Return 1 is this is a TI C6X target supporting C67X instructions
proc check_effective_target_ti_c67x { } {
    return [check_no_compiler_messages ti_c67x assembly {
        #if !defined(_TMS320C6700)
        #error FOO
        #endif
    }]
}

# Return 1 is this is a TI C6X target supporting C64X+ instructions
proc check_effective_target_ti_c64xp { } {
    return [check_no_compiler_messages ti_c64xp assembly {
        #if !defined(_TMS320C6400_PLUS)
        #error FOO
        #endif
    }]
}


proc check_alpha_max_hw_available { } {
    return [check_runtime alpha_max_hw_available {
        int main() { return __builtin_alpha_amask(1<<8) != 0; }
    }]
}

# Returns true iff the FUNCTION is available on the target system.
# (This is essentially a Tcl implementation of Autoconf's
# AC_CHECK_FUNC.)

proc check_function_available { function } {
    return [check_no_compiler_messages ${function}_available \
                executable [subst {
        #ifdef __cplusplus
        extern "C"
        #endif
        char $function ();
        int main () { $function (); }
    }] "-fno-builtin" ]
}

# Returns true iff "fork" is available on the target system.

proc check_fork_available {} {
    return [check_function_available "fork"]
}

# Returns true iff "mkfifo" is available on the target system.

proc check_mkfifo_available {} {
    if { [istarget *-*-cygwin*] } {
       # Cygwin has mkfifo, but support is incomplete.
       return 0
     }

    return [check_function_available "mkfifo"]
}

# Returns true iff "__cxa_atexit" is used on the target system.

proc check_cxa_atexit_available { } {
    return [check_cached_effective_target cxa_atexit_available {
        if { [istarget hppa*-*-hpux10*] } {
            # HP-UX 10 doesn't have __cxa_atexit but subsequent test passes.
            expr 0
        } elseif { [istarget *-*-vxworks] } {
            # vxworks doesn't have __cxa_atexit but subsequent test passes.
            expr 0
        } else {
            check_runtime_nocache cxa_atexit_available {
                // C++
                #include <stdlib.h>
                static unsigned int count;
                struct X
                {
                  X() { count = 1; }
                  ~X()
                  {
                    if (count != 3)
                      exit(1);
                    count = 4;
                  }
                };
                void f()
                {
                  static X x;
                }
                struct Y
                {
                  Y() { f(); count = 2; }
                  ~Y()
                  {
                    if (count != 2)
                      exit(1);
                    count = 3;
                  }
                };
                Y y;
                int main() { return 0; }
            }
        }
    }]
}

proc check_effective_target_objc2 { } {
    return [check_no_compiler_messages objc2 object {
        #ifdef __OBJC2__
        int dummy[1];
        #else
        #error
        #endif 
    }]
}

proc check_effective_target_next_runtime { } {
    return [check_no_compiler_messages objc2 object {
        #ifdef __NEXT_RUNTIME__
        int dummy[1];
        #else
        #error
        #endif 
    }]
}

# Return 1 if we're generating 32-bit code using default options, 0
# otherwise.

proc check_effective_target_ilp32 { } {
    return [check_no_compiler_messages ilp32 object {
        int dummy[sizeof (int) == 4
                  && sizeof (void *) == 4
                  && sizeof (long) == 4 ? 1 : -1];
    }]
}

# Return 1 if we're generating ia32 code using default options, 0
# otherwise.

proc check_effective_target_ia32 { } {
    return [check_no_compiler_messages ia32 object {
        int dummy[sizeof (int) == 4
                  && sizeof (void *) == 4
                  && sizeof (long) == 4 ? 1 : -1] = { __i386__ };
    }]
}

# Return 1 if we're generating x32 code using default options, 0
# otherwise.

proc check_effective_target_x32 { } {
    return [check_no_compiler_messages x32 object {
        int dummy[sizeof (int) == 4
                  && sizeof (void *) == 4
                  && sizeof (long) == 4 ? 1 : -1] = { __x86_64__ };
    }]
}

# Return 1 if we're generating 32-bit or larger integers using default
# options, 0 otherwise.

proc check_effective_target_int32plus { } {
    return [check_no_compiler_messages int32plus object {
        int dummy[sizeof (int) >= 4 ? 1 : -1];
    }]
}

# Return 1 if we're generating 32-bit or larger pointers using default
# options, 0 otherwise.

proc check_effective_target_ptr32plus { } {
    return [check_no_compiler_messages ptr32plus object {
        int dummy[sizeof (void *) >= 4 ? 1 : -1];
    }]
}

# Return 1 if we support 32-bit or larger array and structure sizes
# using default options, 0 otherwise.

proc check_effective_target_size32plus { } {
    return [check_no_compiler_messages size32plus object {
        char dummy[65537];
    }]
}

# Returns 1 if we're generating 16-bit or smaller integers with the
# default options, 0 otherwise.

proc check_effective_target_int16 { } {
    return [check_no_compiler_messages int16 object {
        int dummy[sizeof (int) < 4 ? 1 : -1];
    }]
}

# Return 1 if we're generating 64-bit code using default options, 0
# otherwise.

proc check_effective_target_lp64 { } {
    return [check_no_compiler_messages lp64 object {
        int dummy[sizeof (int) == 4
                  && sizeof (void *) == 8
                  && sizeof (long) == 8 ? 1 : -1];
    }]
}

# Return 1 if we're generating 64-bit code using default llp64 options,
# 0 otherwise.

proc check_effective_target_llp64 { } {
    return [check_no_compiler_messages llp64 object {
        int dummy[sizeof (int) == 4
                  && sizeof (void *) == 8
                  && sizeof (long long) == 8
                  && sizeof (long) == 4 ? 1 : -1];
    }]
}

# Return 1 if the target supports long double larger than double,
# 0 otherwise.

proc check_effective_target_large_long_double { } {
    return [check_no_compiler_messages large_long_double object {
        int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
    }]
}

# Return 1 if the target supports double larger than float,
# 0 otherwise.

proc check_effective_target_large_double { } {
    return [check_no_compiler_messages large_double object {
        int dummy[sizeof(double) > sizeof(float) ? 1 : -1];
    }]
}

# Return 1 if the target supports double of 64 bits,
# 0 otherwise.

proc check_effective_target_double64 { } {
    return [check_no_compiler_messages double64 object {
        int dummy[sizeof(double) == 8 ? 1 : -1];
    }]
}

# Return 1 if the target supports double of at least 64 bits,
# 0 otherwise.

proc check_effective_target_double64plus { } {
    return [check_no_compiler_messages double64plus object {
        int dummy[sizeof(double) >= 8 ? 1 : -1];
    }]
}

# Return 1 if the target supports compiling fixed-point,
# 0 otherwise.

proc check_effective_target_fixed_point { } {
    return [check_no_compiler_messages fixed_point object {
        _Sat _Fract x; _Sat _Accum y;
    }]
}

# Return 1 if the target supports compiling decimal floating point,
# 0 otherwise.

proc check_effective_target_dfp_nocache { } {
    verbose "check_effective_target_dfp_nocache: compiling source" 2
    set ret [check_no_compiler_messages_nocache dfp object {
        float x __attribute__((mode(DD)));
    }]
    verbose "check_effective_target_dfp_nocache: returning $ret" 2
    return $ret
}

proc check_effective_target_dfprt_nocache { } {
    return [check_runtime_nocache dfprt {
        typedef float d64 __attribute__((mode(DD)));
        d64 x = 1.2df, y = 2.3dd, z;
        int main () { z = x + y; return 0; }
    }]
}

# Return 1 if the target supports compiling Decimal Floating Point,
# 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_dfp { } {
    return [check_cached_effective_target dfp {
        check_effective_target_dfp_nocache
    }]
}

# Return 1 if the target supports linking and executing Decimal Floating
# Point, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_dfprt { } {
    return [check_cached_effective_target dfprt {
        check_effective_target_dfprt_nocache
    }]
}

# Return 1 if the target supports compiling and assembling UCN, 0 otherwise.

proc check_effective_target_ucn_nocache { } {
    # -std=c99 is only valid for C
    if [check_effective_target_c] {
        set ucnopts "-std=c99"
    }
    append ucnopts " -fextended-identifiers"
    verbose "check_effective_target_ucn_nocache: compiling source" 2
    set ret [check_no_compiler_messages_nocache ucn object {
        int \u00C0;
    } $ucnopts]
    verbose "check_effective_target_ucn_nocache: returning $ret" 2
    return $ret
}

# Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
#
# This won't change for different subtargets, so cache the result.

proc check_effective_target_ucn { } {
    return [check_cached_effective_target ucn {
        check_effective_target_ucn_nocache
    }]
}

# Return 1 if the target needs a command line argument to enable a SIMD
# instruction set.

proc check_effective_target_vect_cmdline_needed { } {
    global et_vect_cmdline_needed_saved
    global et_vect_cmdline_needed_target_name

    if { ![info exists et_vect_cmdline_needed_target_name] } {
        set et_vect_cmdline_needed_target_name ""
    }

    # If the target has changed since we set the cached value, clear it.
    set current_target [current_target_name]
    if { $current_target != $et_vect_cmdline_needed_target_name } {
        verbose "check_effective_target_vect_cmdline_needed: `$et_vect_cmdline_needed_target_name' `$current_target'" 2
        set et_vect_cmdline_needed_target_name $current_target
        if { [info exists et_vect_cmdline_needed_saved] } {
            verbose "check_effective_target_vect_cmdline_needed: removing cached result" 2
            unset et_vect_cmdline_needed_saved
        }
    }

    if [info exists et_vect_cmdline_needed_saved] {
        verbose "check_effective_target_vect_cmdline_needed: using cached result" 2
    } else {
        set et_vect_cmdline_needed_saved 1
        if { [istarget alpha*-*-*]
             || [istarget ia64-*-*]
             || (([istarget x86_64-*-*] || [istarget i?86-*-*])
                 && ([check_effective_target_x32]
                     || [check_effective_target_lp64]))
             || ([istarget powerpc*-*-*]
                 && ([check_effective_target_powerpc_spe]
                     || [check_effective_target_powerpc_altivec]))
             || ([istarget sparc*-*-*] && [check_effective_target_sparc_vis])
             || [istarget spu-*-*]
             || ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
           set et_vect_cmdline_needed_saved 0
        }
    }

    verbose "check_effective_target_vect_cmdline_needed: returning $et_vect_cmdline_needed_saved" 2
    return $et_vect_cmdline_needed_saved
}

# Return 1 if the target supports hardware vectors of int, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_int { } {
    global et_vect_int_saved

    if [info exists et_vect_int_saved] {
        verbose "check_effective_target_vect_int: using cached result" 2
    } else {
        set et_vect_int_saved 0
        if { [istarget i?86-*-*]
             || ([istarget powerpc*-*-*]
                  && ![istarget powerpc-*-linux*paired*])
              || [istarget spu-*-*]
              || [istarget x86_64-*-*]
              || [istarget sparc*-*-*]
              || [istarget alpha*-*-*]
              || [istarget ia64-*-*] 
              || [check_effective_target_arm32]
              || ([istarget mips*-*-*]
                  && [check_effective_target_mips_loongson]) } {
           set et_vect_int_saved 1
        }
    }

    verbose "check_effective_target_vect_int: returning $et_vect_int_saved" 2
    return $et_vect_int_saved
}

# Return 1 if the target supports signed int->float conversion 
#

proc check_effective_target_vect_intfloat_cvt { } {
    global et_vect_intfloat_cvt_saved

    if [info exists et_vect_intfloat_cvt_saved] {
        verbose "check_effective_target_vect_intfloat_cvt: using cached result" 2
    } else {
        set et_vect_intfloat_cvt_saved 0
        if { [istarget i?86-*-*]
              || ([istarget powerpc*-*-*]
                   && ![istarget powerpc-*-linux*paired*])
              || [istarget x86_64-*-*] 
              || ([istarget arm*-*-*]
                  && [check_effective_target_arm_neon_ok])} {
           set et_vect_intfloat_cvt_saved 1
        }
    }

    verbose "check_effective_target_vect_intfloat_cvt: returning $et_vect_intfloat_cvt_saved" 2
    return $et_vect_intfloat_cvt_saved
}

#Return 1 if we're supporting __int128 for target, 0 otherwise.

proc check_effective_target_int128 { } {
    return [check_no_compiler_messages int128 object {
        int dummy[
        #ifndef __SIZEOF_INT128__
        -1
        #else
        1
        #endif
        ];
    }]
}

# Return 1 if the target supports unsigned int->float conversion 
#

proc check_effective_target_vect_uintfloat_cvt { } {
    global et_vect_uintfloat_cvt_saved

    if [info exists et_vect_uintfloat_cvt_saved] {
        verbose "check_effective_target_vect_uintfloat_cvt: using cached result" 2
    } else {
        set et_vect_uintfloat_cvt_saved 0
        if { [istarget i?86-*-*]
              || ([istarget powerpc*-*-*]
                  && ![istarget powerpc-*-linux*paired*])
              || [istarget x86_64-*-*] 
              || ([istarget arm*-*-*]
                  && [check_effective_target_arm_neon_ok])} {
           set et_vect_uintfloat_cvt_saved 1
        }
    }

    verbose "check_effective_target_vect_uintfloat_cvt: returning $et_vect_uintfloat_cvt_saved" 2
    return $et_vect_uintfloat_cvt_saved
}


# Return 1 if the target supports signed float->int conversion
#

proc check_effective_target_vect_floatint_cvt { } {
    global et_vect_floatint_cvt_saved

    if [info exists et_vect_floatint_cvt_saved] {
        verbose "check_effective_target_vect_floatint_cvt: using cached result" 2
    } else {
        set et_vect_floatint_cvt_saved 0
        if { [istarget i?86-*-*]
              || ([istarget powerpc*-*-*]
                   && ![istarget powerpc-*-linux*paired*])
              || [istarget x86_64-*-*]
              || ([istarget arm*-*-*]
                  && [check_effective_target_arm_neon_ok])} {
           set et_vect_floatint_cvt_saved 1
        }
    }

    verbose "check_effective_target_vect_floatint_cvt: returning $et_vect_floatint_cvt_saved" 2
    return $et_vect_floatint_cvt_saved
}

# Return 1 if the target supports unsigned float->int conversion
#

proc check_effective_target_vect_floatuint_cvt { } {
    global et_vect_floatuint_cvt_saved

    if [info exists et_vect_floatuint_cvt_saved] {
        verbose "check_effective_target_vect_floatuint_cvt: using cached result" 2
    } else {
        set et_vect_floatuint_cvt_saved 0
        if { ([istarget powerpc*-*-*]
              && ![istarget powerpc-*-linux*paired*])
            || ([istarget arm*-*-*]
                && [check_effective_target_arm_neon_ok])} {
           set et_vect_floatuint_cvt_saved 1
        }
    }

    verbose "check_effective_target_vect_floatuint_cvt: returning $et_vect_floatuint_cvt_saved" 2
    return $et_vect_floatuint_cvt_saved
}

# Return 1 is this is an arm target using 32-bit instructions
proc check_effective_target_arm32 { } {
    return [check_no_compiler_messages arm32 assembly {
        #if !defined(__arm__) || (defined(__thumb__) && !defined(__thumb2__))
        #error FOO
        #endif
    }]
}

# Return 1 is this is an arm target not using Thumb
proc check_effective_target_arm_nothumb { } {
    return [check_no_compiler_messages arm_nothumb assembly {
        #if (defined(__thumb__) || defined(__thumb2__))
        #error FOO
        #endif
    }]
}

# Return 1 if this is a little-endian ARM target
proc check_effective_target_arm_little_endian { } {
    return [check_no_compiler_messages arm_little_endian assembly {
        #if !defined(__arm__) || !defined(__ARMEL__)
        #error FOO
        #endif
    }]
}

# Return 1 if this is an ARM target that only supports aligned vector accesses
proc check_effective_target_arm_vect_no_misalign { } {
    return [check_no_compiler_messages arm_vect_no_misalign assembly {
        #if !defined(__arm__) \
            || (defined(__ARMEL__) \
                && (!defined(__thumb__) || defined(__thumb2__)))
        #error FOO
        #endif
    }]
}


# Return 1 if this is an ARM target supporting -mfpu=vfp
# -mfloat-abi=softfp.  Some multilibs may be incompatible with these
# options.

proc check_effective_target_arm_vfp_ok { } {
    if { [check_effective_target_arm32] } {
        return [check_no_compiler_messages arm_vfp_ok object {
            int dummy;
        } "-mfpu=vfp -mfloat-abi=softfp"]
    } else {
        return 0
    }
}

# Return 1 if this is an ARM target supporting -mfpu=vfp
# -mfloat-abi=hard.  Some multilibs may be incompatible with these
# options.

proc check_effective_target_arm_hard_vfp_ok { } {
    if { [check_effective_target_arm32] } {
        return [check_no_compiler_messages arm_hard_vfp_ok executable {
            int main() { return 0;}
        } "-mfpu=vfp -mfloat-abi=hard"]
    } else {
        return 0
    }
}

# Return 1 if this is an ARM target that supports DSP multiply with
# current multilib flags.

proc check_effective_target_arm_dsp { } {
    return [check_no_compiler_messages arm_dsp assembly {
        #ifndef __ARM_FEATURE_DSP
        #error not DSP
        #endif
        int i;
    }]
}

# Return 1 if this is an ARM target that supports unaligned word/halfword
# load/store instructions.

proc check_effective_target_arm_unaligned { } {
    return [check_no_compiler_messages arm_unaligned assembly {
        #ifndef __ARM_FEATURE_UNALIGNED
        #error no unaligned support
        #endif
        int i;
    }]
}

# Add the options needed for NEON.  We need either -mfloat-abi=softfp
# or -mfloat-abi=hard, but if one is already specified by the
# multilib, use it.  Similarly, if a -mfpu option already enables
# NEON, do not add -mfpu=neon.

proc add_options_for_arm_neon { flags } {
    if { ! [check_effective_target_arm_neon_ok] } {
        return "$flags"
    }
    global et_arm_neon_flags
    return "$flags $et_arm_neon_flags"
}

# Return 1 if this is an ARM target supporting -mfpu=neon
# -mfloat-abi=softfp or equivalent options.  Some multilibs may be
# incompatible with these options.  Also set et_arm_neon_flags to the
# best options to add.

proc check_effective_target_arm_neon_ok_nocache { } {
    global et_arm_neon_flags
    set et_arm_neon_flags ""
    if { [check_effective_target_arm32] } {
        foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon" "-mfpu=neon -mfloat-abi=softfp"} {
            if { [check_no_compiler_messages_nocache arm_neon_ok object {
                #include "arm_neon.h"
                int dummy;
            } "$flags"] } {
                set et_arm_neon_flags $flags
                return 1
            }
        }
    }

    return 0
}

proc check_effective_target_arm_neon_ok { } {
    return [check_cached_effective_target arm_neon_ok \
                check_effective_target_arm_neon_ok_nocache]
}

# Add the options needed for NEON.  We need either -mfloat-abi=softfp
# or -mfloat-abi=hard, but if one is already specified by the
# multilib, use it.

proc add_options_for_arm_fp16 { flags } {
    if { ! [check_effective_target_arm_fp16_ok] } {
        return "$flags"
    }
    global et_arm_fp16_flags
    return "$flags $et_arm_fp16_flags"
}

# Return 1 if this is an ARM target that can support a VFP fp16 variant.
# Skip multilibs that are incompatible with these options and set
# et_arm_fp16_flags to the best options to add.

proc check_effective_target_arm_fp16_ok_nocache { } {
    global et_arm_fp16_flags
    set et_arm_fp16_flags ""
    if { ! [check_effective_target_arm32] } {
        return 0;
    }
    if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "-mfpu=*fp16*" "-mfpu=*fpv[4-9]*" "-mfpu=*fpv[1-9][0-9]*" } ]] {
        # Multilib flags would override -mfpu.
        return 0
    }
    if [check-flags [list "" { *-*-* } { "-mfloat-abi=soft" } { "" } ]] {
        # Must generate floating-point instructions.
        return 0
    }
    if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "" } ]] {
        # The existing -mfpu value is OK; use it, but add softfp.
        set et_arm_fp16_flags "-mfloat-abi=softfp"
        return 1;
    }
    # Add -mfpu for a VFP fp16 variant since there is no preprocessor
    # macro to check for this support.
    set flags "-mfpu=vfpv4 -mfloat-abi=softfp"
    if { [check_no_compiler_messages_nocache arm_fp16_ok assembly {
        int dummy;
    } "$flags"] } {
        set et_arm_fp16_flags "$flags"
        return 1
    }

    return 0
}

proc check_effective_target_arm_fp16_ok { } {
    return [check_cached_effective_target arm_fp16_ok \
                check_effective_target_arm_fp16_ok_nocache]
}

# Creates a series of routines that return 1 if the given architecture
# can be selected and a routine to give the flags to select that architecture
# Note: Extra flags may be added to disable options from newer compilers
# (Thumb in particular - but others may be added in the future)
# Usage: /* { dg-require-effective-target arm_arch_v5_ok } */
#        /* { dg-add-options arm_arch_v5 } */
foreach { armfunc armflag armdef } { v5 "-march=armv5 -marm" __ARM_ARCH_5__
                                     v6 "-march=armv6" __ARM_ARCH_6__
                                     v6k "-march=armv6k" __ARM_ARCH_6K__
                                     v7a "-march=armv7-a" __ARM_ARCH_7A__ } {
    eval [string map [list FUNC $armfunc FLAG $armflag DEF $armdef ] {
        proc check_effective_target_arm_arch_FUNC_ok { } {
            if { [ string match "*-marm*" "FLAG" ] &&
                ![check_effective_target_arm_arm_ok] } {
                return 0
            }
            return [check_no_compiler_messages arm_arch_FUNC_ok assembly {
                #if !defined (DEF)
                #error FOO
                #endif
            } "FLAG" ]
        }

        proc add_options_for_arm_arch_FUNC { flags } {
            return "$flags FLAG"
        }
    }]
}

# Return 1 if this is an ARM target where -marm causes ARM to be
# used (not Thumb)

proc check_effective_target_arm_arm_ok { } {
    return [check_no_compiler_messages arm_arm_ok assembly {
        #if !defined (__arm__) || defined (__thumb__) || defined (__thumb2__)
        #error FOO
        #endif
    } "-marm"]
}


# Return 1 is this is an ARM target where -mthumb causes Thumb-1 to be
# used.

proc check_effective_target_arm_thumb1_ok { } {
    return [check_no_compiler_messages arm_thumb1_ok assembly {
        #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
        #error FOO
        #endif
    } "-mthumb"]
}

# Return 1 is this is an ARM target where -mthumb causes Thumb-2 to be
# used.

proc check_effective_target_arm_thumb2_ok { } {
    return [check_no_compiler_messages arm_thumb2_ok assembly {
        #if !defined(__thumb2__)
        #error FOO
        #endif
    } "-mthumb"]
}

# Return 1 if this is an ARM target where Thumb-1 is used without options
# added by the test.

proc check_effective_target_arm_thumb1 { } {
    return [check_no_compiler_messages arm_thumb1 assembly {
        #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
        #error not thumb1
        #endif
        int i;
    } ""]
}

# Return 1 if this is an ARM target where Thumb-2 is used without options
# added by the test.

proc check_effective_target_arm_thumb2 { } {
    return [check_no_compiler_messages arm_thumb2 assembly {
        #if !defined(__thumb2__)
        #error FOO
        #endif
        int i;
    } ""]
}

# Return 1 if this is an ARM cortex-M profile cpu

proc check_effective_target_arm_cortex_m { } {
    return [check_no_compiler_messages arm_cortex_m assembly {
        #if !defined(__ARM_ARCH_7M__) \
            && !defined (__ARM_ARCH_7EM__) \
            && !defined (__ARM_ARCH_6M__)
        #error FOO
        #endif
        int i;
    } "-mthumb"]
}

# Return 1 if the target supports executing NEON instructions, 0
# otherwise.  Cache the result.

proc check_effective_target_arm_neon_hw { } {
    return [check_runtime arm_neon_hw_available {
        int
        main (void)
        {
          long long a = 0, b = 1;
          asm ("vorr %P0, %P1, %P2"
               : "=w" (a)
               : "0" (a), "w" (b));
          return (a != 1);
        }
    } [add_options_for_arm_neon ""]]
}

# Return 1 if this is a ARM target with NEON enabled.

proc check_effective_target_arm_neon { } {
    if { [check_effective_target_arm32] } {
        return [check_no_compiler_messages arm_neon object {
            #ifndef __ARM_NEON__
            #error not NEON
            #else
            int dummy;
            #endif
        }]
    } else {
        return 0
    }
}

# Return 1 if this a Loongson-2E or -2F target using an ABI that supports
# the Loongson vector modes.

proc check_effective_target_mips_loongson { } {
    return [check_no_compiler_messages loongson assembly {
        #if !defined(__mips_loongson_vector_rev)
        #error FOO
        #endif
    }]
}

# Return 1 if this is an ARM target that adheres to the ABI for the ARM
# Architecture.

proc check_effective_target_arm_eabi { } {
    return [check_no_compiler_messages arm_eabi object {
        #ifndef __ARM_EABI__
        #error not EABI
        #else
        int dummy;
        #endif
    }]
}

# Return 1 if this is an ARM target supporting -mcpu=iwmmxt.
# Some multilibs may be incompatible with this option.

proc check_effective_target_arm_iwmmxt_ok { } {
    if { [check_effective_target_arm32] } {
        return [check_no_compiler_messages arm_iwmmxt_ok object {
            int dummy;
        } "-mcpu=iwmmxt"]
    } else {
        return 0
    }
}

# Return 1 if this is a PowerPC target with floating-point registers.

proc check_effective_target_powerpc_fprs { } {
    if { [istarget powerpc*-*-*]
         || [istarget rs6000-*-*] } {
        return [check_no_compiler_messages powerpc_fprs object {
            #ifdef __NO_FPRS__
            #error no FPRs
            #else
            int dummy;
            #endif
        }]
    } else {
        return 0
    }
}

# Return 1 if this is a PowerPC target with hardware double-precision
# floating point.

proc check_effective_target_powerpc_hard_double { } {
    if { [istarget powerpc*-*-*]
         || [istarget rs6000-*-*] } {
        return [check_no_compiler_messages powerpc_hard_double object {
            #ifdef _SOFT_DOUBLE
            #error soft double
            #else
            int dummy;
            #endif
        }]
    } else {
        return 0
    }
}

# Return 1 if this is a PowerPC target supporting -maltivec.

proc check_effective_target_powerpc_altivec_ok { } {
    if { ([istarget powerpc*-*-*]
         && ![istarget powerpc-*-linux*paired*])
         || [istarget rs6000-*-*] } {
        # AltiVec is not supported on AIX before 5.3.
        if { [istarget powerpc*-*-aix4*]
             || [istarget powerpc*-*-aix5.1*] 
             || [istarget powerpc*-*-aix5.2*] } {
            return 0
        }
        return [check_no_compiler_messages powerpc_altivec_ok object {
            int dummy;
        } "-maltivec"]
    } else {
        return 0
    }
}

# Return 1 if this is a PowerPC target supporting -mvsx

proc check_effective_target_powerpc_vsx_ok { } {
    if { ([istarget powerpc*-*-*]
         && ![istarget powerpc-*-linux*paired*])
         || [istarget rs6000-*-*] } {
        # AltiVec is not supported on AIX before 5.3.
        if { [istarget powerpc*-*-aix4*]
             || [istarget powerpc*-*-aix5.1*] 
             || [istarget powerpc*-*-aix5.2*] } {
            return 0
        }
        return [check_no_compiler_messages powerpc_vsx_ok object {
            int main (void) {
#ifdef __MACH__
                asm volatile ("xxlor vs0,vs0,vs0");
#else
                asm volatile ("xxlor 0,0,0");
#endif
                return 0;
            }
        } "-mvsx"]
    } else {
        return 0
    }
}

# Return 1 if this is a PowerPC target supporting -mcpu=cell.

proc check_effective_target_powerpc_ppu_ok { } {
    if [check_effective_target_powerpc_altivec_ok] {
        return [check_no_compiler_messages cell_asm_available object {
            int main (void) {
#ifdef __MACH__
                asm volatile ("lvlx v0,v0,v0");
#else
                asm volatile ("lvlx 0,0,0");
#endif
                return 0;
            }
        }]
    } else {
        return 0
    }
}

# Return 1 if this is a PowerPC target that supports SPU.

proc check_effective_target_powerpc_spu { } {
    if { [istarget powerpc*-*-linux*] } {
        return [check_effective_target_powerpc_altivec_ok]
    } else {
        return 0
    }
}

# Return 1 if this is a PowerPC SPE target.  The check includes options
# specified by dg-options for this test, so don't cache the result.

proc check_effective_target_powerpc_spe_nocache { } {
    if { [istarget powerpc*-*-*] } {
        return [check_no_compiler_messages_nocache powerpc_spe object {
            #ifndef __SPE__
            #error not SPE
            #else
            int dummy;
            #endif
        } [current_compiler_flags]]
    } else {
        return 0
    }
}

# Return 1 if this is a PowerPC target with SPE enabled.

proc check_effective_target_powerpc_spe { } {
    if { [istarget powerpc*-*-*] } {
        return [check_no_compiler_messages powerpc_spe object {
            #ifndef __SPE__
            #error not SPE
            #else
            int dummy;
            #endif
        }]
    } else {
        return 0
    }
}

# Return 1 if this is a PowerPC target with Altivec enabled.

proc check_effective_target_powerpc_altivec { } {
    if { [istarget powerpc*-*-*] } {
        return [check_no_compiler_messages powerpc_altivec object {
            #ifndef __ALTIVEC__
            #error not Altivec
            #else
            int dummy;
            #endif
        }]
    } else {
        return 0
    }
}

# Return 1 if this is a PowerPC 405 target.  The check includes options
# specified by dg-options for this test, so don't cache the result.

proc check_effective_target_powerpc_405_nocache { } {
    if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } {
        return [check_no_compiler_messages_nocache powerpc_405 object {
            #ifdef __PPC405__
            int dummy;
            #else
            #error not a PPC405
            #endif
        } [current_compiler_flags]]
    } else {
        return 0
    }
}

# Return 1 if this is a SPU target with a toolchain that
# supports automatic overlay generation.

proc check_effective_target_spu_auto_overlay { } {
    if { [istarget spu*-*-elf*] } {
        return [check_no_compiler_messages spu_auto_overlay executable {
                int main (void) { }
                } "-Wl,--auto-overlay" ]
    } else {
        return 0
    }
}

# The VxWorks SPARC simulator accepts only EM_SPARC executables and
# chokes on EM_SPARC32PLUS or EM_SPARCV9 executables.  Return 1 if the
# test environment appears to run executables on such a simulator.

proc check_effective_target_ultrasparc_hw { } {
    return [check_runtime ultrasparc_hw {
        int main() { return 0; }
    } "-mcpu=ultrasparc"]
}

# Return 1 if the test environment supports executing UltraSPARC VIS2
# instructions.  We check this by attempting: "bmask %g0, %g0, %g0"

proc check_effective_target_ultrasparc_vis2_hw { } {
    return [check_runtime ultrasparc_vis2_hw {
        int main() { __asm__(".word 0x81b00320"); return 0; }
    } "-mcpu=ultrasparc3"]
}

# Return 1 if the test environment supports executing UltraSPARC VIS3
# instructions.  We check this by attempting: "addxc %g0, %g0, %g0"

proc check_effective_target_ultrasparc_vis3_hw { } {
    return [check_runtime ultrasparc_vis3_hw {
        int main() { __asm__(".word 0x81b00220"); return 0; }
    } "-mcpu=niagara3"]
}

# Return 1 if this is a Sparc target with VIS enabled.

proc check_effective_target_sparc_vis { } {
    if { [istarget sparc*-*-*] } {
        return [check_no_compiler_messages sparc_vis object {
            #ifndef __VIS__
            #error not VIS
            #else
            int dummy;
            #endif
        }]
    } else {
        return 0
    }
}

# Return 1 if the target supports hardware vector shift operation.

proc check_effective_target_vect_shift { } {
    global et_vect_shift_saved

    if [info exists et_vect_shift_saved] {
        verbose "check_effective_target_vect_shift: using cached result" 2
    } else {
        set et_vect_shift_saved 0
        if { ([istarget powerpc*-*-*]
             && ![istarget powerpc-*-linux*paired*])
             || [istarget ia64-*-*]
             || [istarget i?86-*-*]
             || [istarget x86_64-*-*]
             || [check_effective_target_arm32]
             || ([istarget mips*-*-*]
                 && [check_effective_target_mips_loongson]) } {
           set et_vect_shift_saved 1
        }
    }

    verbose "check_effective_target_vect_shift: returning $et_vect_shift_saved" 2
    return $et_vect_shift_saved
}

# Return 1 if the target supports hardware vector shift operation for char.

proc check_effective_target_vect_shift_char { } {
    global et_vect_shift_char_saved

    if [info exists et_vect_shift_char_saved] {
        verbose "check_effective_target_vect_shift_char: using cached result" 2
    } else {
        set et_vect_shift_char_saved 0
        if { ([istarget powerpc*-*-*]
             && ![istarget powerpc-*-linux*paired*])
             || [check_effective_target_arm32] } {
           set et_vect_shift_char_saved 1
        }
    }

    verbose "check_effective_target_vect_shift_char: returning $et_vect_shift_char_saved" 2
    return $et_vect_shift_char_saved
}

# Return 1 if the target supports hardware vectors of long, 0 otherwise.
#
# This can change for different subtargets so do not cache the result.

proc check_effective_target_vect_long { } {
    if { [istarget i?86-*-*]
         || (([istarget powerpc*-*-*] 
              && ![istarget powerpc-*-linux*paired*]) 
              && [check_effective_target_ilp32])
         || [istarget x86_64-*-*]
         || [check_effective_target_arm32]
         || ([istarget sparc*-*-*] && [check_effective_target_ilp32]) } {
        set answer 1
    } else {
        set answer 0
    }

    verbose "check_effective_target_vect_long: returning $answer" 2
    return $answer
}

# Return 1 if the target supports hardware vectors of float, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_float { } {
    global et_vect_float_saved

    if [info exists et_vect_float_saved] {
        verbose "check_effective_target_vect_float: using cached result" 2
    } else {
        set et_vect_float_saved 0
        if { [istarget i?86-*-*]
              || [istarget powerpc*-*-*]
              || [istarget spu-*-*]
              || [istarget mipsisa64*-*-*]
              || [istarget x86_64-*-*]
              || [istarget ia64-*-*]
              || [check_effective_target_arm32] } {
           set et_vect_float_saved 1
        }
    }

    verbose "check_effective_target_vect_float: returning $et_vect_float_saved" 2
    return $et_vect_float_saved
}

# Return 1 if the target supports hardware vectors of double, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_double { } {
    global et_vect_double_saved

    if [info exists et_vect_double_saved] {
        verbose "check_effective_target_vect_double: using cached result" 2
    } else {
        set et_vect_double_saved 0
        if { [istarget i?86-*-*]
              || [istarget x86_64-*-*] } {
           if { [check_no_compiler_messages vect_double assembly {
                 #ifdef __tune_atom__
                 # error No double vectorizer support.
                 #endif
                }] } {
                set et_vect_double_saved 1
            } else {
                set et_vect_double_saved 0
            }
        } elseif { [istarget spu-*-*] } {
           set et_vect_double_saved 1
        }
    }

    verbose "check_effective_target_vect_double: returning $et_vect_double_saved" 2
    return $et_vect_double_saved
}

# Return 1 if the target supports hardware vectors of long long, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_long_long { } {
    global et_vect_long_long_saved

    if [info exists et_vect_long_long_saved] {
        verbose "check_effective_target_vect_long_long: using cached result" 2
    } else {
        set et_vect_long_long_saved 0
        if { [istarget i?86-*-*]
              || [istarget x86_64-*-*] } {
           set et_vect_long_long_saved 1
        }
    }

    verbose "check_effective_target_vect_long_long: returning $et_vect_long_long_saved" 2
    return $et_vect_long_long_saved
}


# Return 1 if the target plus current options does not support a vector
# max instruction on "int", 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_no_int_max { } {
    global et_vect_no_int_max_saved

    if [info exists et_vect_no_int_max_saved] {
        verbose "check_effective_target_vect_no_int_max: using cached result" 2
    } else {
        set et_vect_no_int_max_saved 0
        if { [istarget sparc*-*-*]
             || [istarget spu-*-*]
             || [istarget alpha*-*-*]
             || ([istarget mips*-*-*]
                 && [check_effective_target_mips_loongson]) } {
            set et_vect_no_int_max_saved 1
        }
    }
    verbose "check_effective_target_vect_no_int_max: returning $et_vect_no_int_max_saved" 2
    return $et_vect_no_int_max_saved
}

# Return 1 if the target plus current options does not support a vector
# add instruction on "int", 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_no_int_add { } {
    global et_vect_no_int_add_saved

    if [info exists et_vect_no_int_add_saved] {
        verbose "check_effective_target_vect_no_int_add: using cached result" 2
    } else {
        set et_vect_no_int_add_saved 0
        # Alpha only supports vector add on V8QI and V4HI.
        if { [istarget alpha*-*-*] } {
            set et_vect_no_int_add_saved 1
        }
    }
    verbose "check_effective_target_vect_no_int_add: returning $et_vect_no_int_add_saved" 2
    return $et_vect_no_int_add_saved
}

# Return 1 if the target plus current options does not support vector
# bitwise instructions, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_no_bitwise { } {
    global et_vect_no_bitwise_saved

    if [info exists et_vect_no_bitwise_saved] {
        verbose "check_effective_target_vect_no_bitwise: using cached result" 2
    } else {
        set et_vect_no_bitwise_saved 0
    }
    verbose "check_effective_target_vect_no_bitwise: returning $et_vect_no_bitwise_saved" 2
    return $et_vect_no_bitwise_saved
}

# Return 1 if the target plus current options supports vector permutation,
# 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_perm { } {
    global et_vect_perm

    if [info exists et_vect_perm_saved] {
        verbose "check_effective_target_vect_perm: using cached result" 2
    } else {
        set et_vect_perm_saved 0
        if { [is-effective-target arm_neon_ok]
             || [istarget powerpc*-*-*]
             || [istarget spu-*-*]
             || [istarget i?86-*-*]
             || [istarget x86_64-*-*]
             || ([istarget mips*-*-*]
                 && [check_effective_target_mpaired_single]) } {
            set et_vect_perm_saved 1
        }
    }
    verbose "check_effective_target_vect_perm: returning $et_vect_perm_saved" 2
    return $et_vect_perm_saved
}

# Return 1 if the target plus current options supports vector permutation
# on byte-sized elements, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_perm_byte { } {
    global et_vect_perm_byte

    if [info exists et_vect_perm_byte_saved] {
        verbose "check_effective_target_vect_perm_byte: using cached result" 2
    } else {
        set et_vect_perm_byte_saved 0
        if { [is-effective-target arm_neon_ok]
             || [istarget powerpc*-*-*]
             || [istarget spu-*-*] } {
            set et_vect_perm_byte_saved 1
        }
    }
    verbose "check_effective_target_vect_perm_byte: returning $et_vect_perm_byte_saved" 2
    return $et_vect_perm_byte_saved
}

# Return 1 if the target plus current options supports vector permutation
# on short-sized elements, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_perm_short { } {
    global et_vect_perm_short

    if [info exists et_vect_perm_short_saved] {
        verbose "check_effective_target_vect_perm_short: using cached result" 2
    } else {
        set et_vect_perm_short_saved 0
        if { [is-effective-target arm_neon_ok]
             || [istarget powerpc*-*-*]
             || [istarget spu-*-*] } {
            set et_vect_perm_short_saved 1
        }
    }
    verbose "check_effective_target_vect_perm_short: returning $et_vect_perm_short_saved" 2
    return $et_vect_perm_short_saved
}

# Return 1 if the target plus current options supports a vector
# widening summation of *short* args into *int* result, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_widen_sum_hi_to_si_pattern { } {
    global et_vect_widen_sum_hi_to_si_pattern

    if [info exists et_vect_widen_sum_hi_to_si_pattern_saved] {
        verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: using cached result" 2
    } else {
        set et_vect_widen_sum_hi_to_si_pattern_saved 0
        if { [istarget powerpc*-*-*]
             || [istarget ia64-*-*] } {
            set et_vect_widen_sum_hi_to_si_pattern_saved 1
        }
    }
    verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: returning $et_vect_widen_sum_hi_to_si_pattern_saved" 2
    return $et_vect_widen_sum_hi_to_si_pattern_saved
}

# Return 1 if the target plus current options supports a vector
# widening summation of *short* args into *int* result, 0 otherwise.
# A target can also support this widening summation if it can support
# promotion (unpacking) from shorts to ints.
#
# This won't change for different subtargets so cache the result.
                                                                                                
proc check_effective_target_vect_widen_sum_hi_to_si { } {
    global et_vect_widen_sum_hi_to_si

    if [info exists et_vect_widen_sum_hi_to_si_saved] {
        verbose "check_effective_target_vect_widen_sum_hi_to_si: using cached result" 2
    } else {
        set et_vect_widen_sum_hi_to_si_saved [check_effective_target_vect_unpack]
        if { [istarget powerpc*-*-*] 
             || [istarget ia64-*-*] } {
            set et_vect_widen_sum_hi_to_si_saved 1
        }
    }
    verbose "check_effective_target_vect_widen_sum_hi_to_si: returning $et_vect_widen_sum_hi_to_si_saved" 2
    return $et_vect_widen_sum_hi_to_si_saved
}

# Return 1 if the target plus current options supports a vector
# widening summation of *char* args into *short* result, 0 otherwise.
# A target can also support this widening summation if it can support
# promotion (unpacking) from chars to shorts.
#
# This won't change for different subtargets so cache the result.
                                                                                                
proc check_effective_target_vect_widen_sum_qi_to_hi { } {
    global et_vect_widen_sum_qi_to_hi

    if [info exists et_vect_widen_sum_qi_to_hi_saved] {
        verbose "check_effective_target_vect_widen_sum_qi_to_hi: using cached result" 2
    } else {
        set et_vect_widen_sum_qi_to_hi_saved 0
        if { [check_effective_target_vect_unpack] 
             || [istarget ia64-*-*] } {
            set et_vect_widen_sum_qi_to_hi_saved 1
        }
    }
    verbose "check_effective_target_vect_widen_sum_qi_to_hi: returning $et_vect_widen_sum_qi_to_hi_saved" 2
    return $et_vect_widen_sum_qi_to_hi_saved
}

# Return 1 if the target plus current options supports a vector
# widening summation of *char* args into *int* result, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
                                                                                                
proc check_effective_target_vect_widen_sum_qi_to_si { } {
    global et_vect_widen_sum_qi_to_si

    if [info exists et_vect_widen_sum_qi_to_si_saved] {
        verbose "check_effective_target_vect_widen_sum_qi_to_si: using cached result" 2
    } else {
        set et_vect_widen_sum_qi_to_si_saved 0
        if { [istarget powerpc*-*-*] } {
            set et_vect_widen_sum_qi_to_si_saved 1
        }
    }
    verbose "check_effective_target_vect_widen_sum_qi_to_si: returning $et_vect_widen_sum_qi_to_si_saved" 2
    return $et_vect_widen_sum_qi_to_si_saved
}

# Return 1 if the target plus current options supports a vector
# widening multiplication of *char* args into *short* result, 0 otherwise.
# A target can also support this widening multplication if it can support
# promotion (unpacking) from chars to shorts, and vect_short_mult (non-widening
# multiplication of shorts).
#
# This won't change for different subtargets so cache the result.


proc check_effective_target_vect_widen_mult_qi_to_hi { } {
    global et_vect_widen_mult_qi_to_hi

    if [info exists et_vect_widen_mult_qi_to_hi_saved] {
        verbose "check_effective_target_vect_widen_mult_qi_to_hi: using cached result" 2
    } else {
        if { [check_effective_target_vect_unpack]
             && [check_effective_target_vect_short_mult] } {
            set et_vect_widen_mult_qi_to_hi_saved 1
        } else {
            set et_vect_widen_mult_qi_to_hi_saved 0
        }
        if { [istarget powerpc*-*-*]
              || ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
            set et_vect_widen_mult_qi_to_hi_saved 1
        }
    }
    verbose "check_effective_target_vect_widen_mult_qi_to_hi: returning $et_vect_widen_mult_qi_to_hi_saved" 2
    return $et_vect_widen_mult_qi_to_hi_saved
}

# Return 1 if the target plus current options supports a vector
# widening multiplication of *short* args into *int* result, 0 otherwise.
# A target can also support this widening multplication if it can support
# promotion (unpacking) from shorts to ints, and vect_int_mult (non-widening
# multiplication of ints).
#
# This won't change for different subtargets so cache the result.


proc check_effective_target_vect_widen_mult_hi_to_si { } {
    global et_vect_widen_mult_hi_to_si

    if [info exists et_vect_widen_mult_hi_to_si_saved] {
        verbose "check_effective_target_vect_widen_mult_hi_to_si: using cached result" 2
    } else {
        if { [check_effective_target_vect_unpack]
             && [check_effective_target_vect_int_mult] } {
          set et_vect_widen_mult_hi_to_si_saved 1
        } else {
          set et_vect_widen_mult_hi_to_si_saved 0
        }
        if { [istarget powerpc*-*-*]
              || [istarget spu-*-*]
              || [istarget ia64-*-*]
              || [istarget i?86-*-*]
              || [istarget x86_64-*-*]
              || ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
            set et_vect_widen_mult_hi_to_si_saved 1
        }
    }
    verbose "check_effective_target_vect_widen_mult_hi_to_si: returning $et_vect_widen_mult_hi_to_si_saved" 2
    return $et_vect_widen_mult_hi_to_si_saved
}

# Return 1 if the target plus current options supports a vector
# widening multiplication of *char* args into *short* result, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_widen_mult_qi_to_hi_pattern { } {
    global et_vect_widen_mult_qi_to_hi_pattern

    if [info exists et_vect_widen_mult_qi_to_hi_pattern_saved] {
        verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern: using cached result" 2
    } else {
        set et_vect_widen_mult_qi_to_hi_pattern_saved 0
        if { [istarget powerpc*-*-*]
              || ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
            set et_vect_widen_mult_qi_to_hi_pattern_saved 1
        }
    }
    verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern: returning $et_vect_widen_mult_qi_to_hi_pattern_saved" 2
    return $et_vect_widen_mult_qi_to_hi_pattern_saved
}

# Return 1 if the target plus current options supports a vector
# widening multiplication of *short* args into *int* result, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_widen_mult_hi_to_si_pattern { } {
    global et_vect_widen_mult_hi_to_si_pattern

    if [info exists et_vect_widen_mult_hi_to_si_pattern_saved] {
        verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern: using cached result" 2
    } else {
        set et_vect_widen_mult_hi_to_si_pattern_saved 0
        if { [istarget powerpc*-*-*]
              || [istarget spu-*-*]
              || [istarget ia64-*-*]
              || [istarget i?86-*-*]
              || [istarget x86_64-*-*]
              || ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
            set et_vect_widen_mult_hi_to_si_pattern_saved 1
        }
    }
    verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern: returning $et_vect_widen_mult_hi_to_si_pattern_saved" 2
    return $et_vect_widen_mult_hi_to_si_pattern_saved
}

# Return 1 if the target plus current options supports a vector
# widening shift, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_widen_shift { } {
    global et_vect_widen_shift_saved

    if [info exists et_vect_shift_saved] {
        verbose "check_effective_target_vect_widen_shift: using cached result" 2
    } else {
        set et_vect_widen_shift_saved 0
        if { ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
            set et_vect_widen_shift_saved 1
        }
    }
    verbose "check_effective_target_vect_widen_shift: returning $et_vect_widen_shift_saved" 2
    return $et_vect_widen_shift_saved
}

# Return 1 if the target plus current options supports a vector
# dot-product of signed chars, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_sdot_qi { } {
    global et_vect_sdot_qi

    if [info exists et_vect_sdot_qi_saved] {
        verbose "check_effective_target_vect_sdot_qi: using cached result" 2
    } else {
        set et_vect_sdot_qi_saved 0
        if { [istarget ia64-*-*] } {
            set et_vect_udot_qi_saved 1
        }
    }
    verbose "check_effective_target_vect_sdot_qi: returning $et_vect_sdot_qi_saved" 2
    return $et_vect_sdot_qi_saved
}

# Return 1 if the target plus current options supports a vector
# dot-product of unsigned chars, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_udot_qi { } {
    global et_vect_udot_qi

    if [info exists et_vect_udot_qi_saved] {
        verbose "check_effective_target_vect_udot_qi: using cached result" 2
    } else {
        set et_vect_udot_qi_saved 0
        if { [istarget powerpc*-*-*]
             || [istarget ia64-*-*] } {
            set et_vect_udot_qi_saved 1
        }
    }
    verbose "check_effective_target_vect_udot_qi: returning $et_vect_udot_qi_saved" 2
    return $et_vect_udot_qi_saved
}

# Return 1 if the target plus current options supports a vector
# dot-product of signed shorts, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_sdot_hi { } {
    global et_vect_sdot_hi

    if [info exists et_vect_sdot_hi_saved] {
        verbose "check_effective_target_vect_sdot_hi: using cached result" 2
    } else {
        set et_vect_sdot_hi_saved 0
        if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
             || [istarget ia64-*-*]
             || [istarget i?86-*-*]
             || [istarget x86_64-*-*] } {
            set et_vect_sdot_hi_saved 1
        }
    }
    verbose "check_effective_target_vect_sdot_hi: returning $et_vect_sdot_hi_saved" 2
    return $et_vect_sdot_hi_saved
}

# Return 1 if the target plus current options supports a vector
# dot-product of unsigned shorts, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_udot_hi { } {
    global et_vect_udot_hi

    if [info exists et_vect_udot_hi_saved] {
        verbose "check_effective_target_vect_udot_hi: using cached result" 2
    } else {
        set et_vect_udot_hi_saved 0
        if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) } {
            set et_vect_udot_hi_saved 1
        }
    }
    verbose "check_effective_target_vect_udot_hi: returning $et_vect_udot_hi_saved" 2
    return $et_vect_udot_hi_saved
}


# Return 1 if the target plus current options supports a vector
# demotion (packing) of shorts (to chars) and ints (to shorts) 
# using modulo arithmetic, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
                                                                                
proc check_effective_target_vect_pack_trunc { } {
    global et_vect_pack_trunc
                                                                                
    if [info exists et_vect_pack_trunc_saved] {
        verbose "check_effective_target_vect_pack_trunc: using cached result" 2
    } else {
        set et_vect_pack_trunc_saved 0
        if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
             || [istarget i?86-*-*]
             || [istarget x86_64-*-*]
             || [istarget spu-*-*]
             || ([istarget arm*-*-*] && [check_effective_target_arm_neon]
                 && [check_effective_target_arm_little_endian]) } {
            set et_vect_pack_trunc_saved 1
        }
    }
    verbose "check_effective_target_vect_pack_trunc: returning $et_vect_pack_trunc_saved" 2
    return $et_vect_pack_trunc_saved
}

# Return 1 if the target plus current options supports a vector
# promotion (unpacking) of chars (to shorts) and shorts (to ints), 0 otherwise.
#
# This won't change for different subtargets so cache the result.
                                   
proc check_effective_target_vect_unpack { } {
    global et_vect_unpack
                                        
    if [info exists et_vect_unpack_saved] {
        verbose "check_effective_target_vect_unpack: using cached result" 2
    } else {
        set et_vect_unpack_saved 0
        if { ([istarget powerpc*-*-*] && ![istarget powerpc-*paired*])
             || [istarget i?86-*-*]
             || [istarget x86_64-*-*] 
             || [istarget spu-*-*]
             || [istarget ia64-*-*]
             || ([istarget arm*-*-*] && [check_effective_target_arm_neon]
                 && [check_effective_target_arm_little_endian]) } {
            set et_vect_unpack_saved 1
        }
    }
    verbose "check_effective_target_vect_unpack: returning $et_vect_unpack_saved" 2  
    return $et_vect_unpack_saved
}

# Return 1 if the target plus current options does not guarantee
# that its STACK_BOUNDARY is >= the reguired vector alignment.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_unaligned_stack { } {
    global et_unaligned_stack_saved

    if [info exists et_unaligned_stack_saved] {
        verbose "check_effective_target_unaligned_stack: using cached result" 2
    } else {
        set et_unaligned_stack_saved 0
    }
    verbose "check_effective_target_unaligned_stack: returning $et_unaligned_stack_saved" 2
    return $et_unaligned_stack_saved
}

# Return 1 if the target plus current options does not support a vector
# alignment mechanism, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_no_align { } {
    global et_vect_no_align_saved

    if [info exists et_vect_no_align_saved] {
        verbose "check_effective_target_vect_no_align: using cached result" 2
    } else {
        set et_vect_no_align_saved 0
        if { [istarget mipsisa64*-*-*]
             || [istarget sparc*-*-*]
             || [istarget ia64-*-*]
             || [check_effective_target_arm_vect_no_misalign]
             || ([istarget mips*-*-*]
                 && [check_effective_target_mips_loongson]) } {
            set et_vect_no_align_saved 1
        }
    }
    verbose "check_effective_target_vect_no_align: returning $et_vect_no_align_saved" 2
    return $et_vect_no_align_saved
}

# Return 1 if the target supports a vector misalign access, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_hw_misalign { } {
    global et_vect_hw_misalign_saved

    if [info exists et_vect_hw_misalign_saved] {
        verbose "check_effective_target_vect_hw_misalign: using cached result" 2
    } else {
        set et_vect_hw_misalign_saved 0
       if { ([istarget x86_64-*-*] 
            || [istarget i?86-*-*]) } {
          set et_vect_hw_misalign_saved 1
       }
    }
    verbose "check_effective_target_vect_hw_misalign: returning $et_vect_hw_misalign_saved" 2
    return $et_vect_hw_misalign_saved
}


# Return 1 if arrays are aligned to the vector alignment
# boundary, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vect_aligned_arrays { } {
    global et_vect_aligned_arrays

    if [info exists et_vect_aligned_arrays_saved] {
        verbose "check_effective_target_vect_aligned_arrays: using cached result" 2
    } else {
        set et_vect_aligned_arrays_saved 0
        if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
            if { ([is-effective-target lp64]
                  && ( ![check_avx_available]
                     || [check_prefer_avx128])) } {
                 set et_vect_aligned_arrays_saved 1
            }
        }
        if [istarget spu-*-*] {
            set et_vect_aligned_arrays_saved 1
        }
    }
    verbose "check_effective_target_vect_aligned_arrays: returning $et_vect_aligned_arrays_saved" 2
    return $et_vect_aligned_arrays_saved
}

# Return 1 if types of size 32 bit or less are naturally aligned
# (aligned to their type-size), 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_natural_alignment_32 { } {
    global et_natural_alignment_32

    if [info exists et_natural_alignment_32_saved] {
        verbose "check_effective_target_natural_alignment_32: using cached result" 2
    } else {
        # FIXME: 32bit powerpc: guaranteed only if MASK_ALIGN_NATURAL/POWER.
        set et_natural_alignment_32_saved 1
        if { ([istarget *-*-darwin*] && [is-effective-target lp64]) } {
            set et_natural_alignment_32_saved 0
        }
    }
    verbose "check_effective_target_natural_alignment_32: returning $et_natural_alignment_32_saved" 2
    return $et_natural_alignment_32_saved
}

# Return 1 if types of size 64 bit or less are naturally aligned (aligned to their
# type-size), 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_natural_alignment_64 { } {
    global et_natural_alignment_64

    if [info exists et_natural_alignment_64_saved] {
        verbose "check_effective_target_natural_alignment_64: using cached result" 2
    } else {
        set et_natural_alignment_64_saved 0
        if { ([is-effective-target lp64] && ![istarget *-*-darwin*])
             || [istarget spu-*-*] } {
            set et_natural_alignment_64_saved 1
        }
    }
    verbose "check_effective_target_natural_alignment_64: returning $et_natural_alignment_64_saved" 2
    return $et_natural_alignment_64_saved
}

# Return 1 if vector alignment (for types of size 32 bit or less) is reachable, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vector_alignment_reachable { } {
    global et_vector_alignment_reachable

    if [info exists et_vector_alignment_reachable_saved] {
        verbose "check_effective_target_vector_alignment_reachable: using cached result" 2
    } else {
        if { [check_effective_target_vect_aligned_arrays]
             || [check_effective_target_natural_alignment_32] } {
            set et_vector_alignment_reachable_saved 1
        } else {
            set et_vector_alignment_reachable_saved 0
        }
    }
    verbose "check_effective_target_vector_alignment_reachable: returning $et_vector_alignment_reachable_saved" 2
    return $et_vector_alignment_reachable_saved
}

# Return 1 if vector alignment for 64 bit is reachable, 0 otherwise.
#
# This won't change for different subtargets so cache the result.

proc check_effective_target_vector_alignment_reachable_for_64bit { } {
    global et_vector_alignment_reachable_for_64bit

    if [info exists et_vector_alignment_reachable_for_64bit_saved] {
        verbose "check_effective_target_vector_alignment_reachable_for_64bit: using cached result" 2
    } else {
        if { [check_effective_target_vect_aligned_arrays] 
             || [check_effective_target_natural_alignment_64] } {
            set et_vector_alignment_reachable_for_64bit_saved 1
        } else {
            set et_vector_alignment_reachable_for_64bit_saved 0
        }
    }
    verbose "check_effective_target_vector_alignment_reachable_for_64bit: returning $et_vector_alignment_reachable_for_64bit_saved" 2
    return $et_vector_alignment_reachable_for_64bit_saved
}

# Return 1 if the target only requires element alignment for vector accesses

proc check_effective_target_vect_element_align { } {
    global et_vect_element_align

    if [info exists et_vect_element_align] {
        verbose "check_effective_target_vect_element_align: using cached result" 2
    } else {
        set et_vect_element_align 0
        if { ([istarget arm*-*-*]
              && ![check_effective_target_arm_vect_no_misalign])
             || [check_effective_target_vect_hw_misalign] } {
           set et_vect_element_align 1
        }
    }

    verbose "check_effective_target_vect_element_align: returning $et_vect_element_align" 2
    return $et_vect_element_align
}

# Return 1 if the target supports vector conditional operations, 0 otherwise.

proc check_effective_target_vect_condition { } {
    global et_vect_cond_saved

    if [info exists et_vect_cond_saved] {
        verbose "check_effective_target_vect_cond: using cached result" 2
    } else {
        set et_vect_cond_saved 0
        if { [istarget powerpc*-*-*]
             || [istarget ia64-*-*]
             || [istarget i?86-*-*]
             || [istarget spu-*-*]
             || [istarget x86_64-*-*]
             || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
           set et_vect_cond_saved 1
        }
    }

    verbose "check_effective_target_vect_cond: returning $et_vect_cond_saved" 2
    return $et_vect_cond_saved
}

# Return 1 if the target supports vector conditional operations where
# the comparison has different type from the lhs, 0 otherwise.

proc check_effective_target_vect_cond_mixed { } {
    global et_vect_cond_mixed_saved

    if [info exists et_vect_cond_mixed_saved] {
        verbose "check_effective_target_vect_cond_mixed: using cached result" 2
    } else {
        set et_vect_cond_mixed_saved 0
        if { [istarget i?86-*-*]
             || [istarget x86_64-*-*]
             || [istarget powerpc*-*-*] } {
           set et_vect_cond_mixed_saved 1
        }
    }

    verbose "check_effective_target_vect_cond_mixed: returning $et_vect_cond_mixed_saved" 2
    return $et_vect_cond_mixed_saved
}

# Return 1 if the target supports vector char multiplication, 0 otherwise.

proc check_effective_target_vect_char_mult { } {
    global et_vect_char_mult_saved

    if [info exists et_vect_char_mult_saved] {
        verbose "check_effective_target_vect_char_mult: using cached result" 2
    } else {
        set et_vect_char_mult_saved 0
        if { [istarget ia64-*-*]
             || [istarget i?86-*-*]
             || [istarget x86_64-*-*] } {
           set et_vect_char_mult_saved 1
        }
    }

    verbose "check_effective_target_vect_char_mult: returning $et_vect_char_mult_saved" 2
    return $et_vect_char_mult_saved
}

# Return 1 if the target supports vector short multiplication, 0 otherwise.

proc check_effective_target_vect_short_mult { } {
    global et_vect_short_mult_saved

    if [info exists et_vect_short_mult_saved] {
        verbose "check_effective_target_vect_short_mult: using cached result" 2
    } else {
        set et_vect_short_mult_saved 0
        if { [istarget ia64-*-*]
             || [istarget spu-*-*]
             || [istarget i?86-*-*]
             || [istarget x86_64-*-*]
             || [istarget powerpc*-*-*]
             || [check_effective_target_arm32]
             || ([istarget mips*-*-*]
                 && [check_effective_target_mips_loongson]) } {
           set et_vect_short_mult_saved 1
        }
    }

    verbose "check_effective_target_vect_short_mult: returning $et_vect_short_mult_saved" 2
    return $et_vect_short_mult_saved
}

# Return 1 if the target supports vector int multiplication, 0 otherwise.

proc check_effective_target_vect_int_mult { } {
    global et_vect_int_mult_saved

    if [info exists et_vect_int_mult_saved] {
        verbose "check_effective_target_vect_int_mult: using cached result" 2
    } else {
        set et_vect_int_mult_saved 0
        if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
             || [istarget spu-*-*]
             || [istarget i?86-*-*]
             || [istarget x86_64-*-*]
             || [istarget ia64-*-*]
             || [check_effective_target_arm32] } {
           set et_vect_int_mult_saved 1
        }
    }

    verbose "check_effective_target_vect_int_mult: returning $et_vect_int_mult_saved" 2
    return $et_vect_int_mult_saved
}

# Return 1 if the target supports vector even/odd elements extraction, 0 otherwise.

proc check_effective_target_vect_extract_even_odd { } {
    global et_vect_extract_even_odd_saved
    
    if [info exists et_vect_extract_even_odd_saved] {
        verbose "check_effective_target_vect_extract_even_odd: using cached result" 2
    } else {
        set et_vect_extract_even_odd_saved 0 
        if { [istarget powerpc*-*-*] 
            || [is-effective-target arm_neon_ok]
             || [istarget i?86-*-*]
             || [istarget x86_64-*-*]
             || [istarget ia64-*-*]
             || [istarget spu-*-*]
             || ([istarget mips*-*-*]
                 && [check_effective_target_mpaired_single]) } {
            set et_vect_extract_even_odd_saved 1
        }
    }

    verbose "check_effective_target_vect_extract_even_odd: returning $et_vect_extract_even_odd_saved" 2
    return $et_vect_extract_even_odd_saved
}

# Return 1 if the target supports vector interleaving, 0 otherwise.

proc check_effective_target_vect_interleave { } {
    global et_vect_interleave_saved
    
    if [info exists et_vect_interleave_saved] {
        verbose "check_effective_target_vect_interleave: using cached result" 2
    } else {
        set et_vect_interleave_saved 0
        if { [istarget powerpc*-*-*]
            || [is-effective-target arm_neon_ok]
             || [istarget i?86-*-*]
             || [istarget x86_64-*-*]
             || [istarget ia64-*-*]
             || [istarget spu-*-*]
             || ([istarget mips*-*-*]
                 && [check_effective_target_mpaired_single]) } {
           set et_vect_interleave_saved 1
        }
    }

    verbose "check_effective_target_vect_interleave: returning $et_vect_interleave_saved" 2
    return $et_vect_interleave_saved
}

foreach N {2 3 4 8} {
    eval [string map [list N $N] {
        # Return 1 if the target supports 2-vector interleaving
        proc check_effective_target_vect_stridedN { } {
            global et_vect_stridedN_saved

            if [info exists et_vect_stridedN_saved] {
                verbose "check_effective_target_vect_stridedN: using cached result" 2
            } else {
                set et_vect_stridedN_saved 0
                if { (N & -N) == N
                     && [check_effective_target_vect_interleave]
                     && [check_effective_target_vect_extract_even_odd] } {
                    set et_vect_stridedN_saved 1
                }
                if { [istarget arm*-*-*] && N >= 2 && N <= 4 } {
                    set et_vect_stridedN_saved 1
                }
            }

            verbose "check_effective_target_vect_stridedN: returning $et_vect_stridedN_saved" 2
            return $et_vect_stridedN_saved
        }
    }]
}

# Return 1 if the target supports multiple vector sizes

proc check_effective_target_vect_multiple_sizes { } {
    global et_vect_multiple_sizes_saved

    set et_vect_multiple_sizes_saved 0
    if { ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
       set et_vect_multiple_sizes_saved 1
    }
    if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
      if { ([check_avx_available] && ![check_prefer_avx128]) } {
        set et_vect_multiple_sizes_saved 1
      }
    }

    verbose "check_effective_target_vect_multiple_sizes: returning $et_vect_multiple_sizes_saved" 2
    return $et_vect_multiple_sizes_saved
}

# Return 1 if the target supports vectors of 64 bits.

proc check_effective_target_vect64 { } {
    global et_vect64_saved

    if [info exists et_vect64_saved] {
        verbose "check_effective_target_vect64: using cached result" 2
    } else {
        set et_vect64_saved 0
        if { ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
           set et_vect64_saved 1
        }
    }

    verbose "check_effective_target_vect64: returning $et_vect64_saved" 2
    return $et_vect64_saved
}

# Return 1 if the target supports vector copysignf calls.

proc check_effective_target_vect_call_copysignf { } {
    global et_vect_call_copysignf_saved

    if [info exists et_vect_call_copysignf_saved] {
        verbose "check_effective_target_vect_call_copysignf: using cached result" 2
    } else {
        set et_vect_call_copysignf_saved 0
        if { [istarget i?86-*-*]
             || [istarget x86_64-*-*]
             || [istarget powerpc*-*-*] } {
           set et_vect_call_copysignf_saved 1
        }
    }

    verbose "check_effective_target_vect_call_copysignf: returning $et_vect_call_copysignf_saved" 2
    return $et_vect_call_copysignf_saved
}

# Return 1 if the target supports vector sqrtf calls.

proc check_effective_target_vect_call_sqrtf { } {
    global et_vect_call_sqrtf_saved

    if [info exists et_vect_call_sqrtf_saved] {
        verbose "check_effective_target_vect_call_sqrtf: using cached result" 2
    } else {
        set et_vect_call_sqrtf_saved 0
        if { [istarget i?86-*-*]
             || [istarget x86_64-*-*]
             || ([istarget powerpc*-*-*] && [check_vsx_hw_available]) } {
            set et_vect_call_sqrtf_saved 1
        }
    }

    verbose "check_effective_target_vect_call_sqrtf: returning $et_vect_call_sqrtf_saved" 2
    return $et_vect_call_sqrtf_saved
}

# Return 1 if the target supports vector lrint calls.

proc check_effective_target_vect_call_lrint { } {
    set et_vect_call_lrint 0
    if { ([istarget i?86-*-*] || [istarget x86_64-*-*]) && [check_effective_target_ilp32] } {
        set et_vect_call_lrint 1
    }

    verbose "check_effective_target_vect_call_lrint: returning $et_vect_call_lrint" 2
    return $et_vect_call_lrint
}

# Return 1 if the target supports section-anchors

proc check_effective_target_section_anchors { } {
    global et_section_anchors_saved

    if [info exists et_section_anchors_saved] {
        verbose "check_effective_target_section_anchors: using cached result" 2
    } else {
        set et_section_anchors_saved 0
        if { [istarget powerpc*-*-*]
              || [istarget arm*-*-*] } {
           set et_section_anchors_saved 1
        }
    }

    verbose "check_effective_target_section_anchors: returning $et_section_anchors_saved" 2
    return $et_section_anchors_saved
}

# Return 1 if the target supports atomic operations on "int_128" values.

proc check_effective_target_sync_int_128 { } {
    if { ([istarget x86_64-*-*] || [istarget i?86-*-*])
         && ![is-effective-target ia32] } {
        return 1
    } else {
        return 0
    }
}

# Return 1 if the target supports atomic operations on "int_128" values
# and can execute them.

proc check_effective_target_sync_int_128_runtime { } {
    if { ([istarget x86_64-*-*] || [istarget i?86-*-*])
         && ![is-effective-target ia32] } {
        return [check_cached_effective_target sync_int_128_available {
            check_runtime_nocache sync_int_128_available {
                #include "cpuid.h"
                int main ()
                {
                  unsigned int eax, ebx, ecx, edx;
                  if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
                    return !(ecx & bit_CMPXCHG16B);
                  return 1;
                }
            } ""
        }]
    } else {
        return 0
    }
}

# Return 1 if the target supports atomic operations on "long long".
#
# Note: 32bit x86 targets require -march=pentium in dg-options.

proc check_effective_target_sync_long_long { } {
    if { [istarget x86_64-*-*]
         || [istarget i?86-*-*])
         || [istarget arm*-*-*]
         || [istarget alpha*-*-*] } {
        return 1
    } else {
        return 0
    }
}

# Return 1 if the target supports atomic operations on "long long"
# and can execute them.
#
# Note: 32bit x86 targets require -march=pentium in dg-options.

proc check_effective_target_sync_long_long_runtime { } {
    if { [istarget x86_64-*-*]
         || [istarget i?86-*-*] } {
        return [check_cached_effective_target sync_long_long_available {
            check_runtime_nocache sync_long_long_available {
                #include "cpuid.h"
                int main ()
                {
                  unsigned int eax, ebx, ecx, edx;
                  if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
                    return !(edx & bit_CMPXCHG8B);
                  return 1;
                }
            } ""
        }]
    } elseif { [istarget arm*-*-linux-gnueabi] } {
        return [check_runtime sync_longlong_runtime {
            #include <stdlib.h>
            int main ()
            {
              long long l1;

              if (sizeof (long long) != 8)
                exit (1);

              /* Just check for native; checking for kernel fallback is tricky.  */
              asm volatile ("ldrexd r0,r1, [%0]" : : "r" (&l1) : "r0", "r1");

              exit (0);
            }
        } "" ]
    } elseif { [istarget alpha*-*-*] } {
        return 1
    } else {
        return 0
    }
}

# Return 1 if the target supports atomic operations on "int" and "long".

proc check_effective_target_sync_int_long { } {
    global et_sync_int_long_saved

    if [info exists et_sync_int_long_saved] {
        verbose "check_effective_target_sync_int_long: using cached result" 2
    } else {
        set et_sync_int_long_saved 0
# This is intentionally powerpc but not rs6000, rs6000 doesn't have the
# load-reserved/store-conditional instructions.
        if { [istarget ia64-*-*]
             || [istarget i?86-*-*]
             || [istarget x86_64-*-*]
             || [istarget alpha*-*-*] 
             || [istarget arm*-*-linux-gnueabi] 
             || [istarget bfin*-*linux*]
             || [istarget hppa*-*linux*]
             || [istarget s390*-*-*] 
             || [istarget powerpc*-*-*]
             || [istarget sparc64-*-*]
             || [istarget sparcv9-*-*]
             || [check_effective_target_mips_llsc] } {
           set et_sync_int_long_saved 1
        }
    }

    verbose "check_effective_target_sync_int_long: returning $et_sync_int_long_saved" 2
    return $et_sync_int_long_saved
}

# Return 1 if the target supports atomic operations on "char" and "short".

proc check_effective_target_sync_char_short { } {
    global et_sync_char_short_saved

    if [info exists et_sync_char_short_saved] {
        verbose "check_effective_target_sync_char_short: using cached result" 2
    } else {
        set et_sync_char_short_saved 0
# This is intentionally powerpc but not rs6000, rs6000 doesn't have the
# load-reserved/store-conditional instructions.
        if { [istarget ia64-*-*]
             || [istarget i?86-*-*]
             || [istarget x86_64-*-*]
             || [istarget alpha*-*-*] 
             || [istarget arm*-*-linux-gnueabi] 
             || [istarget hppa*-*linux*]
             || [istarget s390*-*-*] 
             || [istarget powerpc*-*-*]
             || [istarget sparc64-*-*]
             || [istarget sparcv9-*-*]
             || [check_effective_target_mips_llsc] } {
           set et_sync_char_short_saved 1
        }
    }

    verbose "check_effective_target_sync_char_short: returning $et_sync_char_short_saved" 2
    return $et_sync_char_short_saved
}

# Return 1 if the target uses a ColdFire FPU.

proc check_effective_target_coldfire_fpu { } {
    return [check_no_compiler_messages coldfire_fpu assembly {
        #ifndef __mcffpu__
        #error FOO
        #endif
    }]
}

# Return true if this is a uClibc target.

proc check_effective_target_uclibc {} {
    return [check_no_compiler_messages uclibc object {
        #include <features.h>
        #if !defined (__UCLIBC__)
        #error FOO
        #endif
    }]
}

# Return true if this is a uclibc target and if the uclibc feature
# described by __$feature__ is not present.

proc check_missing_uclibc_feature {feature} {
    return [check_no_compiler_messages $feature object "
        #include <features.h>
        #if !defined (__UCLIBC) || defined (__${feature}__)
        #error FOO
        #endif
    "]
}

# Return true if this is a Newlib target.

proc check_effective_target_newlib {} {
    return [check_no_compiler_messages newlib object {
        #include <newlib.h>
    }]
}

# Return 1 if
#   (a) an error of a few ULP is expected in string to floating-point
#       conversion functions; and
#   (b) overflow is not always detected correctly by those functions.

proc check_effective_target_lax_strtofp {} {
    # By default, assume that all uClibc targets suffer from this.
    return [check_effective_target_uclibc]
}

# Return 1 if this is a target for which wcsftime is a dummy
# function that always returns 0.

proc check_effective_target_dummy_wcsftime {} {
    # By default, assume that all uClibc targets suffer from this.
    return [check_effective_target_uclibc]
}

# Return 1 if constructors with initialization priority arguments are
# supposed on this target.

proc check_effective_target_init_priority {} {
    return [check_no_compiler_messages init_priority assembly "
        void f() __attribute__((constructor (1000)));
        void f() \{\}
    "]
}

# Return 1 if the target matches the effective target 'arg', 0 otherwise.
# This can be used with any check_* proc that takes no argument and
# returns only 1 or 0.  It could be used with check_* procs that take
# arguments with keywords that pass particular arguments.

proc is-effective-target { arg } {
    set selected 0
    if { [info procs check_effective_target_${arg}] != [list] } {
        set selected [check_effective_target_${arg}]
    } else {
        switch $arg {
          "vmx_hw"         { set selected [check_vmx_hw_available] }
          "vsx_hw"         { set selected [check_vsx_hw_available] }
          "ppc_recip_hw"   { set selected [check_ppc_recip_hw_available] }
          "named_sections" { set selected [check_named_sections_available] }
          "gc_sections"    { set selected [check_gc_sections_available] }
          "cxa_atexit"     { set selected [check_cxa_atexit_available] }
          default          { error "unknown effective target keyword `$arg'" }
        }
    }
    verbose "is-effective-target: $arg $selected" 2
    return $selected
}

# Return 1 if the argument is an effective-target keyword, 0 otherwise.

proc is-effective-target-keyword { arg } {
    if { [info procs check_effective_target_${arg}] != [list] } {
        return 1
    } else {
        # These have different names for their check_* procs.
        switch $arg {
          "vmx_hw"         { return 1 }
          "vsx_hw"         { return 1 }
          "ppc_recip_hw"   { return 1 }
          "named_sections" { return 1 }
          "gc_sections"    { return 1 }
          "cxa_atexit"     { return 1 }
          default          { return 0 }
        }
    }
}

# Return 1 if target default to short enums

proc check_effective_target_short_enums { } {
    return [check_no_compiler_messages short_enums assembly {
        enum foo { bar };
        int s[sizeof (enum foo) == 1 ? 1 : -1];
    }]
}

# Return 1 if target supports merging string constants at link time.

proc check_effective_target_string_merging { } {
    return [check_no_messages_and_pattern string_merging \
                "rodata\\.str" assembly {
                    const char *var = "String";
                } {-O2}]
}

# Return 1 if target has the basic signed and unsigned types in
# <stdint.h>, 0 otherwise.  This will be obsolete when GCC ensures a
# working <stdint.h> for all targets.

proc check_effective_target_stdint_types { } {
    return [check_no_compiler_messages stdint_types assembly {
        #include <stdint.h>
        int8_t a; int16_t b; int32_t c; int64_t d;
        uint8_t e; uint16_t f; uint32_t g; uint64_t h;
    }]
}

# Return 1 if target has the basic signed and unsigned types in
# <inttypes.h>, 0 otherwise.  This is for tests that GCC's notions of
# these types agree with those in the header, as some systems have
# only <inttypes.h>.

proc check_effective_target_inttypes_types { } {
    return [check_no_compiler_messages inttypes_types assembly {
        #include <inttypes.h>
        int8_t a; int16_t b; int32_t c; int64_t d;
        uint8_t e; uint16_t f; uint32_t g; uint64_t h;
    }]
}

# Return 1 if programs are intended to be run on a simulator
# (i.e. slowly) rather than hardware (i.e. fast).

proc check_effective_target_simulator { } {

    # All "src/sim" simulators set this one.
    if [board_info target exists is_simulator] {
        return [board_info target is_simulator]
    }

    # The "sid" simulators don't set that one, but at least they set
    # this one.
    if [board_info target exists slow_simulator] {
        return [board_info target slow_simulator]
    }

    return 0
}

# Return 1 if the target is a VxWorks kernel.

proc check_effective_target_vxworks_kernel { } {
    return [check_no_compiler_messages vxworks_kernel assembly {
        #if !defined __vxworks || defined __RTP__
        #error NO
        #endif
    }]
}

# Return 1 if the target is a VxWorks RTP.

proc check_effective_target_vxworks_rtp { } {
    return [check_no_compiler_messages vxworks_rtp assembly {
        #if !defined __vxworks || !defined __RTP__
        #error NO
        #endif
    }]
}

# Return 1 if the target is expected to provide wide character support.

proc check_effective_target_wchar { } {
    if {[check_missing_uclibc_feature UCLIBC_HAS_WCHAR]} {
        return 0
    }
    return [check_no_compiler_messages wchar assembly {
        #include <wchar.h>
    }]
}

# Return 1 if the target has <pthread.h>.

proc check_effective_target_pthread_h { } {
    return [check_no_compiler_messages pthread_h assembly {
        #include <pthread.h>
    }]
}

# Return 1 if the target can truncate a file from a file-descriptor,
# as used by libgfortran/io/unix.c:fd_truncate; i.e. ftruncate or
# chsize.  We test for a trivially functional truncation; no stubs.
# As libgfortran uses _FILE_OFFSET_BITS 64, we do too; it'll cause a
# different function to be used.

proc check_effective_target_fd_truncate { } {
    set prog {
        #define _FILE_OFFSET_BITS 64
        #include <unistd.h>
        #include <stdio.h>
        #include <stdlib.h>
        int main ()
        {
          FILE *f = fopen ("tst.tmp", "wb");
          int fd;
          const char t[] = "test writing more than ten characters";
          char s[11];
          int status = 0;
          fd = fileno (f);
          write (fd, t, sizeof (t) - 1);
          lseek (fd, 0, 0);
          if (ftruncate (fd, 10) != 0)
            status = 1;
          close (fd);
          fclose (f);
          if (status)
            {
              unlink ("tst.tmp");
              exit (status);
            }
          f = fopen ("tst.tmp", "rb");
          if (fread (s, 1, sizeof (s), f) != 10 || strncmp (s, t, 10) != 0)
            status = 1;
          fclose (f);
          unlink ("tst.tmp");
          exit (status);
        }
    }

    if { [check_runtime ftruncate $prog] } {
      return 1;
    }

    regsub "ftruncate" $prog "chsize" prog
    return [check_runtime chsize $prog]
}

# Add to FLAGS all the target-specific flags needed to access the c99 runtime.

proc add_options_for_c99_runtime { flags } {
    if { [istarget *-*-solaris2*] } {
        return "$flags -std=c99"
    }
    if { [istarget mips-sgi-irix6.5*] } {
        return "$flags -std=c99"
    }
    if { [istarget powerpc-*-darwin*] } {
        return "$flags -mmacosx-version-min=10.3"
    }
    return $flags
}

# Add to FLAGS all the target-specific flags needed to enable
# full IEEE compliance mode.

proc add_options_for_ieee { flags } {
    if { [istarget alpha*-*-*]
         || [istarget sh*-*-*] } {
       return "$flags -mieee"
    }
    if { [istarget rx-*-*] } {
       return "$flags -mnofpu"
    }
    return $flags
}

# Add to FLAGS the flags needed to enable functions to bind locally
# when using pic/PIC passes in the testsuite.

proc add_options_for_bind_pic_locally { flags } {
    if {[check_no_compiler_messages using_pic2 assembly {
        #if __PIC__ != 2
        #error FOO
        #endif
    }]} {
        return "$flags -fPIE"
    }
    if {[check_no_compiler_messages using_pic1 assembly {
        #if __PIC__ != 1
        #error FOO
        #endif
    }]} {
        return "$flags -fpie"
    }

    return $flags
}

# Add to FLAGS the flags needed to enable 64-bit vectors.

proc add_options_for_double_vectors { flags } {
    if [is-effective-target arm_neon_ok] {
        return "$flags -mvectorize-with-neon-double"
    }

    return $flags
}

# Return 1 if the target provides a full C99 runtime.

proc check_effective_target_c99_runtime { } {
    return [check_cached_effective_target c99_runtime {
        global srcdir

        set file [open "$srcdir/gcc.dg/builtins-config.h"]
        set contents [read $file]
        close $file
        append contents {
            #ifndef HAVE_C99_RUNTIME
            #error FOO
            #endif
        }
        check_no_compiler_messages_nocache c99_runtime assembly \
            $contents [add_options_for_c99_runtime ""]
    }]
}

# Return 1 if  target wchar_t is at least 4 bytes.

proc check_effective_target_4byte_wchar_t { } {
    return [check_no_compiler_messages 4byte_wchar_t object {
        int dummy[sizeof (__WCHAR_TYPE__) >= 4 ? 1 : -1];
    }]
}

# Return 1 if the target supports automatic stack alignment.

proc check_effective_target_automatic_stack_alignment  { } {
    # Ordinarily x86 supports automatic stack alignment ...
    if { [istarget i?86*-*-*] || [istarget x86_64-*-*] } then {
        if { [istarget *-*-mingw*] || [istarget *-*-cygwin*] } {
            # ... except Win64 SEH doesn't.  Succeed for Win32 though.
            return [check_effective_target_ilp32];
        }
        return 1;
    }
    return 0;
}

# Return true if we are compiling for AVX target.

proc check_avx_available { } {
  if { [check_no_compiler_messages avx_available assembly {
    #ifndef __AVX__
    #error unsupported
    #endif
  } ""] } {
    return 1;
  }
  return 0;
}

# Return true if 32- and 16-bytes vectors are available.

proc check_effective_target_vect_sizes_32B_16B { } {
  return [check_avx_available];
}

# Return true if 128-bits vectors are preferred even if 256-bits vectors
# are available.

proc check_prefer_avx128 { } {
    if ![check_avx_available] {
      return 0;
    }
    return [check_no_messages_and_pattern avx_explicit "xmm" assembly {
      float a[1024],b[1024],c[1024];
      void foo (void) { int i; for (i = 0; i < 1024; i++) a[i]=b[i]+c[i];}
    } "-O2 -ftree-vectorize"]
}


# Return 1 if avx instructions can be compiled.

proc check_effective_target_avx { } {
    return [check_no_compiler_messages avx object {
        void _mm256_zeroall (void)
        {
           __builtin_ia32_vzeroall ();
        }
    } "-O2 -mavx" ]
}

# Return 1 if sse instructions can be compiled.
proc check_effective_target_sse { } {
    return [check_no_compiler_messages sse object {
        int main ()
        {
            __builtin_ia32_stmxcsr ();
            return 0;
        }
    } "-O2 -msse" ]
}

# Return 1 if sse2 instructions can be compiled.
proc check_effective_target_sse2 { } {
    return [check_no_compiler_messages sse2 object {
        typedef long long __m128i __attribute__ ((__vector_size__ (16)));
        
        __m128i _mm_srli_si128 (__m128i __A, int __N)
        {
            return (__m128i)__builtin_ia32_psrldqi128 (__A, 8);
        }
    } "-O2 -msse2" ]
}

# Return 1 if F16C instructions can be compiled.

proc check_effective_target_f16c { } {
    return [check_no_compiler_messages f16c object {
        #include "immintrin.h"
        float
        foo (unsigned short val)
        {
          return _cvtsh_ss (val);
        }
    } "-O2 -mf16c" ]
}

# Return 1 if C wchar_t type is compatible with char16_t.

proc check_effective_target_wchar_t_char16_t_compatible { } {
    return [check_no_compiler_messages wchar_t_char16_t object {
        __WCHAR_TYPE__ wc;
        __CHAR16_TYPE__ *p16 = &wc;
        char t[(((__CHAR16_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
    }]
}

# Return 1 if C wchar_t type is compatible with char32_t.

proc check_effective_target_wchar_t_char32_t_compatible { } {
    return [check_no_compiler_messages wchar_t_char32_t object {
        __WCHAR_TYPE__ wc;
        __CHAR32_TYPE__ *p32 = &wc;
        char t[(((__CHAR32_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
    }]
}

# Return 1 if pow10 function exists.

proc check_effective_target_pow10 { } {
    return [check_runtime pow10 {
        #include <math.h>
        int main () {
        double x;
        x = pow10 (1);
        return 0;
        }
    } "-lm" ]
}

# Return 1 if current options generate DFP instructions, 0 otherwise.

proc check_effective_target_hard_dfp {} {
    return [check_no_messages_and_pattern hard_dfp "!adddd3" assembly {
        typedef float d64 __attribute__((mode(DD)));
        d64 x, y, z;
        void foo (void) { z = x + y; }
    }]
}

# Return 1 if string.h and wchar.h headers provide C++ requires overloads
# for strchr etc. functions.

proc check_effective_target_correct_iso_cpp_string_wchar_protos { } {
    return [check_no_compiler_messages correct_iso_cpp_string_wchar_protos assembly {
        #include <string.h>
        #include <wchar.h>
        #if !defined(__cplusplus) \
            || !defined(__CORRECT_ISO_CPP_STRING_H_PROTO) \
            || !defined(__CORRECT_ISO_CPP_WCHAR_H_PROTO)
        ISO C++ correct string.h and wchar.h protos not supported.
        #else
        int i;
        #endif
    }]
}

# Return 1 if GNU as is used.

proc check_effective_target_gas { } {
    global use_gas_saved
    global tool

    if {![info exists use_gas_saved]} {
        # Check if the as used by gcc is GNU as.
        set gcc_as [lindex [${tool}_target_compile "-print-prog-name=as" "" "none" ""] 0]
        # Provide /dev/null as input, otherwise gas times out reading from
        # stdin.
        set status [remote_exec host "$gcc_as" "-v /dev/null"]
        set as_output [lindex $status 1]
        if { [ string first "GNU" $as_output ] >= 0 } {
            set use_gas_saved 1
        } else {
            set use_gas_saved 0
        }
    }
    return $use_gas_saved
}

# Return 1 if GNU ld is used.

proc check_effective_target_gld { } {
    global use_gld_saved
    global tool

    if {![info exists use_gld_saved]} {
        # Check if the ld used by gcc is GNU ld.
        set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=ld" "" "none" ""] 0]
        set status [remote_exec host "$gcc_ld" "--version"]
        set ld_output [lindex $status 1]
        if { [ string first "GNU" $ld_output ] >= 0 } {
            set use_gld_saved 1
        } else {
            set use_gld_saved 0
        }
    }
    return $use_gld_saved
}

# Return 1 if the compiler has been configure with link-time optimization
# (LTO) support.

proc check_effective_target_lto { } {
    global ENABLE_LTO
    return [info exists ENABLE_LTO]
}

# Return 1 if this target supports the -fsplit-stack option, 0
# otherwise.

proc check_effective_target_split_stack {} {
    return [check_no_compiler_messages split_stack object {
        void foo (void) { }
    } "-fsplit-stack"]
}

# Return 1 if the language for the compiler under test is C.

proc check_effective_target_c { } {
 global tool
    if [string match $tool "gcc"] {
   return 1
    }
 return 0
}

# Return 1 if the language for the compiler under test is C++.

proc check_effective_target_c++ { } {
 global tool
    if [string match $tool "g++"] {
   return 1
    }
 return 0
}

# Check which language standard is active by checking for the presence of
# one of the C++11 -std flags.  This assumes that the default for the
# compiler is C++98, and that there will never be multiple -std= arguments
# on the command line.
proc check_effective_target_c++11 { } {
    if ![check_effective_target_c++] {
        return 0
    }
    return [check-flags { { } { } { -std=c++0x -std=gnu++0x -std=c++11 -std=gnu++11 } }]
}

proc check_effective_target_c++98 { } {
    if ![check_effective_target_c++] {
        return 0
    }
    return [check-flags { { } { } { } { -std=c++0x -std=gnu++0x -std=c++11 -std=gnu++11 } }]
}

# Return 1 if expensive testcases should be run.

proc check_effective_target_run_expensive_tests { } {
    if { [getenv GCC_TEST_RUN_EXPENSIVE] != "" } {
        return 1
    }
    return 0
}

# Returns 1 if "mempcpy" is available on the target system.

proc check_effective_target_mempcpy {} {
    return [check_function_available "mempcpy"]
}

# Check whether the vectorizer tests are supported by the target and
# append additional target-dependent compile flags to DEFAULT_VECTCFLAGS.
# Set dg-do-what-default to either compile or run, depending on target
# capabilities.  Return 1 if vectorizer tests are supported by
# target, 0 otherwise.

proc check_vect_support_and_set_flags { } {
    global DEFAULT_VECTCFLAGS
    global dg-do-what-default

    if  [istarget powerpc-*paired*]  {
        lappend DEFAULT_VECTCFLAGS "-mpaired"
        if [check_750cl_hw_available] {
            set dg-do-what-default run
        } else {
            set dg-do-what-default compile
        }
    } elseif [istarget powerpc*-*-*] {
        # Skip targets not supporting -maltivec.
        if ![is-effective-target powerpc_altivec_ok] {
            return 0
        }

        lappend DEFAULT_VECTCFLAGS "-maltivec"
        if [check_vsx_hw_available] {
            lappend DEFAULT_VECTCFLAGS "-mvsx" "-mno-allow-movmisalign"
        }

        if [check_vmx_hw_available] {
            set dg-do-what-default run
        } else {
            if [is-effective-target ilp32] {
                # Specify a cpu that supports VMX for compile-only tests.
                lappend DEFAULT_VECTCFLAGS "-mcpu=970"
            }
            set dg-do-what-default compile
        }
    } elseif { [istarget spu-*-*] } {
        set dg-do-what-default run
    } elseif { [istarget i?86-*-*] || [istarget x86_64-*-*] } {
        lappend DEFAULT_VECTCFLAGS "-msse2"
        if { [check_effective_target_sse2_runtime] } {
            set dg-do-what-default run
        } else {
            set dg-do-what-default compile
        }
    } elseif { [istarget mips*-*-*]
               && ([check_effective_target_mpaired_single]
                    || [check_effective_target_mips_loongson])
               && [check_effective_target_nomips16] } {
        if { [check_effective_target_mpaired_single] } {
            lappend DEFAULT_VECTCFLAGS "-mpaired-single"
        }
        set dg-do-what-default run
    } elseif [istarget sparc*-*-*] {
        lappend DEFAULT_VECTCFLAGS "-mcpu=ultrasparc" "-mvis"
        if [check_effective_target_ultrasparc_hw] {
            set dg-do-what-default run
        } else {
            set dg-do-what-default compile
        }
    } elseif [istarget alpha*-*-*] {
        # Alpha's vectorization capabilities are extremely limited.
        # It's more effort than its worth disabling all of the tests
        # that it cannot pass.  But if you actually want to see what
        # does work, command out the return.
        return 0

        lappend DEFAULT_VECTCFLAGS "-mmax"
        if [check_alpha_max_hw_available] {
            set dg-do-what-default run
        } else {
            set dg-do-what-default compile
        }
    } elseif [istarget ia64-*-*] {
        set dg-do-what-default run
    } elseif [is-effective-target arm_neon_ok] {
        eval lappend DEFAULT_VECTCFLAGS [add_options_for_arm_neon ""]
        # NEON does not support denormals, so is not used for vectorization by
        # default to avoid loss of precision.  We must pass -ffast-math to test
        # vectorization of float operations.
        lappend DEFAULT_VECTCFLAGS "-ffast-math"
        if [is-effective-target arm_neon_hw] {
            set dg-do-what-default run
        } else {
            set dg-do-what-default compile
        }
    } else {
        return 0
    }

    return 1
}

proc check_effective_target_non_strict_align {} {
    return [check_no_compiler_messages non_strict_align assembly {
        char *y;
        typedef char __attribute__ ((__aligned__(__BIGGEST_ALIGNMENT__))) c;
        c *z;
        void foo(void) { z = (c *) y; }
    } "-Wcast-align"]
}

# Return 1 if the target has <ucontext.h>.

proc check_effective_target_ucontext_h { } {
    return [check_no_compiler_messages ucontext_h assembly {
        #include <ucontext.h>
    }]
}

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.