URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [tree-complex.c] - Rev 754
Go to most recent revision | Compare with Previous | Blame | View Log
/* Lower complex number operations to scalar operations. Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "flags.h" #include "tree-flow.h" #include "gimple.h" #include "tree-iterator.h" #include "tree-pass.h" #include "tree-ssa-propagate.h" /* For each complex ssa name, a lattice value. We're interested in finding out whether a complex number is degenerate in some way, having only real or only complex parts. */ enum { UNINITIALIZED = 0, ONLY_REAL = 1, ONLY_IMAG = 2, VARYING = 3 }; /* The type complex_lattice_t holds combinations of the above constants. */ typedef int complex_lattice_t; #define PAIR(a, b) ((a) << 2 | (b)) DEF_VEC_I(complex_lattice_t); DEF_VEC_ALLOC_I(complex_lattice_t, heap); static VEC(complex_lattice_t, heap) *complex_lattice_values; /* For each complex variable, a pair of variables for the components exists in the hashtable. */ static htab_t complex_variable_components; /* For each complex SSA_NAME, a pair of ssa names for the components. */ static VEC(tree, heap) *complex_ssa_name_components; /* Lookup UID in the complex_variable_components hashtable and return the associated tree. */ static tree cvc_lookup (unsigned int uid) { struct int_tree_map *h, in; in.uid = uid; h = (struct int_tree_map *) htab_find_with_hash (complex_variable_components, &in, uid); return h ? h->to : NULL; } /* Insert the pair UID, TO into the complex_variable_components hashtable. */ static void cvc_insert (unsigned int uid, tree to) { struct int_tree_map *h; void **loc; h = XNEW (struct int_tree_map); h->uid = uid; h->to = to; loc = htab_find_slot_with_hash (complex_variable_components, h, uid, INSERT); *(struct int_tree_map **) loc = h; } /* Return true if T is not a zero constant. In the case of real values, we're only interested in +0.0. */ static int some_nonzerop (tree t) { int zerop = false; /* Operations with real or imaginary part of a complex number zero cannot be treated the same as operations with a real or imaginary operand if we care about the signs of zeros in the result. */ if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros) zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0); else if (TREE_CODE (t) == FIXED_CST) zerop = fixed_zerop (t); else if (TREE_CODE (t) == INTEGER_CST) zerop = integer_zerop (t); return !zerop; } /* Compute a lattice value from the components of a complex type REAL and IMAG. */ static complex_lattice_t find_lattice_value_parts (tree real, tree imag) { int r, i; complex_lattice_t ret; r = some_nonzerop (real); i = some_nonzerop (imag); ret = r * ONLY_REAL + i * ONLY_IMAG; /* ??? On occasion we could do better than mapping 0+0i to real, but we certainly don't want to leave it UNINITIALIZED, which eventually gets mapped to VARYING. */ if (ret == UNINITIALIZED) ret = ONLY_REAL; return ret; } /* Compute a lattice value from gimple_val T. */ static complex_lattice_t find_lattice_value (tree t) { tree real, imag; switch (TREE_CODE (t)) { case SSA_NAME: return VEC_index (complex_lattice_t, complex_lattice_values, SSA_NAME_VERSION (t)); case COMPLEX_CST: real = TREE_REALPART (t); imag = TREE_IMAGPART (t); break; default: gcc_unreachable (); } return find_lattice_value_parts (real, imag); } /* Determine if LHS is something for which we're interested in seeing simulation results. */ static bool is_complex_reg (tree lhs) { return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs); } /* Mark the incoming parameters to the function as VARYING. */ static void init_parameter_lattice_values (void) { tree parm, ssa_name; for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm)) if (is_complex_reg (parm) && var_ann (parm) != NULL && (ssa_name = gimple_default_def (cfun, parm)) != NULL_TREE) VEC_replace (complex_lattice_t, complex_lattice_values, SSA_NAME_VERSION (ssa_name), VARYING); } /* Initialize simulation state for each statement. Return false if we found no statements we want to simulate, and thus there's nothing for the entire pass to do. */ static bool init_dont_simulate_again (void) { basic_block bb; gimple_stmt_iterator gsi; gimple phi; bool saw_a_complex_op = false; FOR_EACH_BB (bb) { for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { phi = gsi_stmt (gsi); prop_set_simulate_again (phi, is_complex_reg (gimple_phi_result (phi))); } for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple stmt; tree op0, op1; bool sim_again_p; stmt = gsi_stmt (gsi); op0 = op1 = NULL_TREE; /* Most control-altering statements must be initially simulated, else we won't cover the entire cfg. */ sim_again_p = stmt_ends_bb_p (stmt); switch (gimple_code (stmt)) { case GIMPLE_CALL: if (gimple_call_lhs (stmt)) sim_again_p = is_complex_reg (gimple_call_lhs (stmt)); break; case GIMPLE_ASSIGN: sim_again_p = is_complex_reg (gimple_assign_lhs (stmt)); if (gimple_assign_rhs_code (stmt) == REALPART_EXPR || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR) op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0); else op0 = gimple_assign_rhs1 (stmt); if (gimple_num_ops (stmt) > 2) op1 = gimple_assign_rhs2 (stmt); break; case GIMPLE_COND: op0 = gimple_cond_lhs (stmt); op1 = gimple_cond_rhs (stmt); break; default: break; } if (op0 || op1) switch (gimple_expr_code (stmt)) { case EQ_EXPR: case NE_EXPR: case PLUS_EXPR: case MINUS_EXPR: case MULT_EXPR: case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR: case ROUND_DIV_EXPR: case RDIV_EXPR: if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE) saw_a_complex_op = true; break; case NEGATE_EXPR: case CONJ_EXPR: if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE) saw_a_complex_op = true; break; case REALPART_EXPR: case IMAGPART_EXPR: /* The total store transformation performed during gimplification creates such uninitialized loads and we need to lower the statement to be able to fix things up. */ if (TREE_CODE (op0) == SSA_NAME && ssa_undefined_value_p (op0)) saw_a_complex_op = true; break; default: break; } prop_set_simulate_again (stmt, sim_again_p); } } return saw_a_complex_op; } /* Evaluate statement STMT against the complex lattice defined above. */ static enum ssa_prop_result complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED, tree *result_p) { complex_lattice_t new_l, old_l, op1_l, op2_l; unsigned int ver; tree lhs; lhs = gimple_get_lhs (stmt); /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */ if (!lhs) return SSA_PROP_VARYING; /* These conditions should be satisfied due to the initial filter set up in init_dont_simulate_again. */ gcc_assert (TREE_CODE (lhs) == SSA_NAME); gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE); *result_p = lhs; ver = SSA_NAME_VERSION (lhs); old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver); switch (gimple_expr_code (stmt)) { case SSA_NAME: case COMPLEX_CST: new_l = find_lattice_value (gimple_assign_rhs1 (stmt)); break; case COMPLEX_EXPR: new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt)); break; case PLUS_EXPR: case MINUS_EXPR: op1_l = find_lattice_value (gimple_assign_rhs1 (stmt)); op2_l = find_lattice_value (gimple_assign_rhs2 (stmt)); /* We've set up the lattice values such that IOR neatly models addition. */ new_l = op1_l | op2_l; break; case MULT_EXPR: case RDIV_EXPR: case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR: case ROUND_DIV_EXPR: op1_l = find_lattice_value (gimple_assign_rhs1 (stmt)); op2_l = find_lattice_value (gimple_assign_rhs2 (stmt)); /* Obviously, if either varies, so does the result. */ if (op1_l == VARYING || op2_l == VARYING) new_l = VARYING; /* Don't prematurely promote variables if we've not yet seen their inputs. */ else if (op1_l == UNINITIALIZED) new_l = op2_l; else if (op2_l == UNINITIALIZED) new_l = op1_l; else { /* At this point both numbers have only one component. If the numbers are of opposite kind, the result is imaginary, otherwise the result is real. The add/subtract translates the real/imag from/to 0/1; the ^ performs the comparison. */ new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL; /* Don't allow the lattice value to flip-flop indefinitely. */ new_l |= old_l; } break; case NEGATE_EXPR: case CONJ_EXPR: new_l = find_lattice_value (gimple_assign_rhs1 (stmt)); break; default: new_l = VARYING; break; } /* If nothing changed this round, let the propagator know. */ if (new_l == old_l) return SSA_PROP_NOT_INTERESTING; VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l); return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING; } /* Evaluate a PHI node against the complex lattice defined above. */ static enum ssa_prop_result complex_visit_phi (gimple phi) { complex_lattice_t new_l, old_l; unsigned int ver; tree lhs; int i; lhs = gimple_phi_result (phi); /* This condition should be satisfied due to the initial filter set up in init_dont_simulate_again. */ gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE); /* We've set up the lattice values such that IOR neatly models PHI meet. */ new_l = UNINITIALIZED; for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i) new_l |= find_lattice_value (gimple_phi_arg_def (phi, i)); ver = SSA_NAME_VERSION (lhs); old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver); if (new_l == old_l) return SSA_PROP_NOT_INTERESTING; VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l); return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING; } /* Create one backing variable for a complex component of ORIG. */ static tree create_one_component_var (tree type, tree orig, const char *prefix, const char *suffix, enum tree_code code) { tree r = create_tmp_var (type, prefix); add_referenced_var (r); DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig); DECL_ARTIFICIAL (r) = 1; if (DECL_NAME (orig) && !DECL_IGNORED_P (orig)) { const char *name = IDENTIFIER_POINTER (DECL_NAME (orig)); DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL))); SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig)); DECL_DEBUG_EXPR_IS_FROM (r) = 1; DECL_IGNORED_P (r) = 0; TREE_NO_WARNING (r) = TREE_NO_WARNING (orig); } else { DECL_IGNORED_P (r) = 1; TREE_NO_WARNING (r) = 1; } return r; } /* Retrieve a value for a complex component of VAR. */ static tree get_component_var (tree var, bool imag_p) { size_t decl_index = DECL_UID (var) * 2 + imag_p; tree ret = cvc_lookup (decl_index); if (ret == NULL) { ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var, imag_p ? "CI" : "CR", imag_p ? "$imag" : "$real", imag_p ? IMAGPART_EXPR : REALPART_EXPR); cvc_insert (decl_index, ret); } return ret; } /* Retrieve a value for a complex component of SSA_NAME. */ static tree get_component_ssa_name (tree ssa_name, bool imag_p) { complex_lattice_t lattice = find_lattice_value (ssa_name); size_t ssa_name_index; tree ret; if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG)) { tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name)); if (SCALAR_FLOAT_TYPE_P (inner_type)) return build_real (inner_type, dconst0); else return build_int_cst (inner_type, 0); } ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p; ret = VEC_index (tree, complex_ssa_name_components, ssa_name_index); if (ret == NULL) { ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p); ret = make_ssa_name (ret, NULL); /* Copy some properties from the original. In particular, whether it is used in an abnormal phi, and whether it's uninitialized. */ SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret) = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name); if (TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL && gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name))) { SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name); set_default_def (SSA_NAME_VAR (ret), ret); } VEC_replace (tree, complex_ssa_name_components, ssa_name_index, ret); } return ret; } /* Set a value for a complex component of SSA_NAME, return a gimple_seq of stuff that needs doing. */ static gimple_seq set_component_ssa_name (tree ssa_name, bool imag_p, tree value) { complex_lattice_t lattice = find_lattice_value (ssa_name); size_t ssa_name_index; tree comp; gimple last; gimple_seq list; /* We know the value must be zero, else there's a bug in our lattice analysis. But the value may well be a variable known to contain zero. We should be safe ignoring it. */ if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG)) return NULL; /* If we've already assigned an SSA_NAME to this component, then this means that our walk of the basic blocks found a use before the set. This is fine. Now we should create an initialization for the value we created earlier. */ ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p; comp = VEC_index (tree, complex_ssa_name_components, ssa_name_index); if (comp) ; /* If we've nothing assigned, and the value we're given is already stable, then install that as the value for this SSA_NAME. This preemptively copy-propagates the value, which avoids unnecessary memory allocation. */ else if (is_gimple_min_invariant (value) && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name)) { VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value); return NULL; } else if (TREE_CODE (value) == SSA_NAME && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name)) { /* Replace an anonymous base value with the variable from cvc_lookup. This should result in better debug info. */ if (DECL_IGNORED_P (SSA_NAME_VAR (value)) && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name))) { comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p); replace_ssa_name_symbol (value, comp); } VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value); return NULL; } /* Finally, we need to stabilize the result by installing the value into a new ssa name. */ else comp = get_component_ssa_name (ssa_name, imag_p); /* Do all the work to assign VALUE to COMP. */ list = NULL; value = force_gimple_operand (value, &list, false, NULL); last = gimple_build_assign (comp, value); gimple_seq_add_stmt (&list, last); gcc_assert (SSA_NAME_DEF_STMT (comp) == last); return list; } /* Extract the real or imaginary part of a complex variable or constant. Make sure that it's a proper gimple_val and gimplify it if not. Emit any new code before gsi. */ static tree extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p, bool gimple_p) { switch (TREE_CODE (t)) { case COMPLEX_CST: return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t); case COMPLEX_EXPR: gcc_unreachable (); case VAR_DECL: case RESULT_DECL: case PARM_DECL: case COMPONENT_REF: case ARRAY_REF: case VIEW_CONVERT_EXPR: case MEM_REF: { tree inner_type = TREE_TYPE (TREE_TYPE (t)); t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR), inner_type, unshare_expr (t)); if (gimple_p) t = force_gimple_operand_gsi (gsi, t, true, NULL, true, GSI_SAME_STMT); return t; } case SSA_NAME: return get_component_ssa_name (t, imagpart_p); default: gcc_unreachable (); } } /* Update the complex components of the ssa name on the lhs of STMT. */ static void update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r, tree i) { tree lhs; gimple_seq list; lhs = gimple_get_lhs (stmt); list = set_component_ssa_name (lhs, false, r); if (list) gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); list = set_component_ssa_name (lhs, true, i); if (list) gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); } static void update_complex_components_on_edge (edge e, tree lhs, tree r, tree i) { gimple_seq list; list = set_component_ssa_name (lhs, false, r); if (list) gsi_insert_seq_on_edge (e, list); list = set_component_ssa_name (lhs, true, i); if (list) gsi_insert_seq_on_edge (e, list); } /* Update an assignment to a complex variable in place. */ static void update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i) { gimple_stmt_iterator orig_si = *gsi; gimple stmt; if (gimple_in_ssa_p (cfun)) update_complex_components (gsi, gsi_stmt (*gsi), r, i); gimple_assign_set_rhs_with_ops (&orig_si, COMPLEX_EXPR, r, i); stmt = gsi_stmt (orig_si); update_stmt (stmt); if (maybe_clean_eh_stmt (stmt)) gimple_purge_dead_eh_edges (gimple_bb (stmt)); } /* Generate code at the entry point of the function to initialize the component variables for a complex parameter. */ static void update_parameter_components (void) { edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR); tree parm; for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm)) { tree type = TREE_TYPE (parm); tree ssa_name, r, i; if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm)) continue; type = TREE_TYPE (type); ssa_name = gimple_default_def (cfun, parm); if (!ssa_name) continue; r = build1 (REALPART_EXPR, type, ssa_name); i = build1 (IMAGPART_EXPR, type, ssa_name); update_complex_components_on_edge (entry_edge, ssa_name, r, i); } } /* Generate code to set the component variables of a complex variable to match the PHI statements in block BB. */ static void update_phi_components (basic_block bb) { gimple_stmt_iterator gsi; for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple phi = gsi_stmt (gsi); if (is_complex_reg (gimple_phi_result (phi))) { tree lr, li; gimple pr = NULL, pi = NULL; unsigned int i, n; lr = get_component_ssa_name (gimple_phi_result (phi), false); if (TREE_CODE (lr) == SSA_NAME) { pr = create_phi_node (lr, bb); SSA_NAME_DEF_STMT (lr) = pr; } li = get_component_ssa_name (gimple_phi_result (phi), true); if (TREE_CODE (li) == SSA_NAME) { pi = create_phi_node (li, bb); SSA_NAME_DEF_STMT (li) = pi; } for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i) { tree comp, arg = gimple_phi_arg_def (phi, i); if (pr) { comp = extract_component (NULL, arg, false, false); SET_PHI_ARG_DEF (pr, i, comp); } if (pi) { comp = extract_component (NULL, arg, true, false); SET_PHI_ARG_DEF (pi, i, comp); } } } } } /* Expand a complex move to scalars. */ static void expand_complex_move (gimple_stmt_iterator *gsi, tree type) { tree inner_type = TREE_TYPE (type); tree r, i, lhs, rhs; gimple stmt = gsi_stmt (*gsi); if (is_gimple_assign (stmt)) { lhs = gimple_assign_lhs (stmt); if (gimple_num_ops (stmt) == 2) rhs = gimple_assign_rhs1 (stmt); else rhs = NULL_TREE; } else if (is_gimple_call (stmt)) { lhs = gimple_call_lhs (stmt); rhs = NULL_TREE; } else gcc_unreachable (); if (TREE_CODE (lhs) == SSA_NAME) { if (is_ctrl_altering_stmt (stmt)) { edge e; /* The value is not assigned on the exception edges, so we need not concern ourselves there. We do need to update on the fallthru edge. Find it. */ e = find_fallthru_edge (gsi_bb (*gsi)->succs); if (!e) gcc_unreachable (); r = build1 (REALPART_EXPR, inner_type, lhs); i = build1 (IMAGPART_EXPR, inner_type, lhs); update_complex_components_on_edge (e, lhs, r, i); } else if (is_gimple_call (stmt) || gimple_has_side_effects (stmt) || gimple_assign_rhs_code (stmt) == PAREN_EXPR) { r = build1 (REALPART_EXPR, inner_type, lhs); i = build1 (IMAGPART_EXPR, inner_type, lhs); update_complex_components (gsi, stmt, r, i); } else { if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR) { r = extract_component (gsi, rhs, 0, true); i = extract_component (gsi, rhs, 1, true); } else { r = gimple_assign_rhs1 (stmt); i = gimple_assign_rhs2 (stmt); } update_complex_assignment (gsi, r, i); } } else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs)) { tree x; gimple t; r = extract_component (gsi, rhs, 0, false); i = extract_component (gsi, rhs, 1, false); x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs)); t = gimple_build_assign (x, r); gsi_insert_before (gsi, t, GSI_SAME_STMT); if (stmt == gsi_stmt (*gsi)) { x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs)); gimple_assign_set_lhs (stmt, x); gimple_assign_set_rhs1 (stmt, i); } else { x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs)); t = gimple_build_assign (x, i); gsi_insert_before (gsi, t, GSI_SAME_STMT); stmt = gsi_stmt (*gsi); gcc_assert (gimple_code (stmt) == GIMPLE_RETURN); gimple_return_set_retval (stmt, lhs); } update_stmt (stmt); } } /* Expand complex addition to scalars: a + b = (ar + br) + i(ai + bi) a - b = (ar - br) + i(ai + bi) */ static void expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type, tree ar, tree ai, tree br, tree bi, enum tree_code code, complex_lattice_t al, complex_lattice_t bl) { tree rr, ri; switch (PAIR (al, bl)) { case PAIR (ONLY_REAL, ONLY_REAL): rr = gimplify_build2 (gsi, code, inner_type, ar, br); ri = ai; break; case PAIR (ONLY_REAL, ONLY_IMAG): rr = ar; if (code == MINUS_EXPR) ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi); else ri = bi; break; case PAIR (ONLY_IMAG, ONLY_REAL): if (code == MINUS_EXPR) rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br); else rr = br; ri = ai; break; case PAIR (ONLY_IMAG, ONLY_IMAG): rr = ar; ri = gimplify_build2 (gsi, code, inner_type, ai, bi); break; case PAIR (VARYING, ONLY_REAL): rr = gimplify_build2 (gsi, code, inner_type, ar, br); ri = ai; break; case PAIR (VARYING, ONLY_IMAG): rr = ar; ri = gimplify_build2 (gsi, code, inner_type, ai, bi); break; case PAIR (ONLY_REAL, VARYING): if (code == MINUS_EXPR) goto general; rr = gimplify_build2 (gsi, code, inner_type, ar, br); ri = bi; break; case PAIR (ONLY_IMAG, VARYING): if (code == MINUS_EXPR) goto general; rr = br; ri = gimplify_build2 (gsi, code, inner_type, ai, bi); break; case PAIR (VARYING, VARYING): general: rr = gimplify_build2 (gsi, code, inner_type, ar, br); ri = gimplify_build2 (gsi, code, inner_type, ai, bi); break; default: gcc_unreachable (); } update_complex_assignment (gsi, rr, ri); } /* Expand a complex multiplication or division to a libcall to the c99 compliant routines. */ static void expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai, tree br, tree bi, enum tree_code code) { enum machine_mode mode; enum built_in_function bcode; tree fn, type, lhs; gimple old_stmt, stmt; old_stmt = gsi_stmt (*gsi); lhs = gimple_assign_lhs (old_stmt); type = TREE_TYPE (lhs); mode = TYPE_MODE (type); gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT); if (code == MULT_EXPR) bcode = ((enum built_in_function) (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT)); else if (code == RDIV_EXPR) bcode = ((enum built_in_function) (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT)); else gcc_unreachable (); fn = builtin_decl_explicit (bcode); stmt = gimple_build_call (fn, 4, ar, ai, br, bi); gimple_call_set_lhs (stmt, lhs); update_stmt (stmt); gsi_replace (gsi, stmt, false); if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)) gimple_purge_dead_eh_edges (gsi_bb (*gsi)); if (gimple_in_ssa_p (cfun)) { type = TREE_TYPE (type); update_complex_components (gsi, stmt, build1 (REALPART_EXPR, type, lhs), build1 (IMAGPART_EXPR, type, lhs)); SSA_NAME_DEF_STMT (lhs) = stmt; } } /* Expand complex multiplication to scalars: a * b = (ar*br - ai*bi) + i(ar*bi + br*ai) */ static void expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type, tree ar, tree ai, tree br, tree bi, complex_lattice_t al, complex_lattice_t bl) { tree rr, ri; if (al < bl) { complex_lattice_t tl; rr = ar, ar = br, br = rr; ri = ai, ai = bi, bi = ri; tl = al, al = bl, bl = tl; } switch (PAIR (al, bl)) { case PAIR (ONLY_REAL, ONLY_REAL): rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); ri = ai; break; case PAIR (ONLY_IMAG, ONLY_REAL): rr = ar; if (TREE_CODE (ai) == REAL_CST && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1)) ri = br; else ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); break; case PAIR (ONLY_IMAG, ONLY_IMAG): rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr); ri = ar; break; case PAIR (VARYING, ONLY_REAL): rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); break; case PAIR (VARYING, ONLY_IMAG): rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr); ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi); break; case PAIR (VARYING, VARYING): if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type)) { expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR); return; } else { tree t1, t2, t3, t4; t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi); /* Avoid expanding redundant multiplication for the common case of squaring a complex number. */ if (ar == br && ai == bi) t4 = t3; else t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2); ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4); } break; default: gcc_unreachable (); } update_complex_assignment (gsi, rr, ri); } /* Keep this algorithm in sync with fold-const.c:const_binop(). Expand complex division to scalars, straightforward algorithm. a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t) t = br*br + bi*bi */ static void expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type, tree ar, tree ai, tree br, tree bi, enum tree_code code) { tree rr, ri, div, t1, t2, t3; t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br); t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi); div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2); t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2); rr = gimplify_build2 (gsi, code, inner_type, t3, div); t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi); t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2); ri = gimplify_build2 (gsi, code, inner_type, t3, div); update_complex_assignment (gsi, rr, ri); } /* Keep this algorithm in sync with fold-const.c:const_binop(). Expand complex division to scalars, modified algorithm to minimize overflow with wide input ranges. */ static void expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type, tree ar, tree ai, tree br, tree bi, enum tree_code code) { tree rr, ri, ratio, div, t1, t2, tr, ti, compare; basic_block bb_cond, bb_true, bb_false, bb_join; gimple stmt; /* Examine |br| < |bi|, and branch. */ t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br); t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi); compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), LT_EXPR, boolean_type_node, t1, t2); STRIP_NOPS (compare); bb_cond = bb_true = bb_false = bb_join = NULL; rr = ri = tr = ti = NULL; if (TREE_CODE (compare) != INTEGER_CST) { edge e; gimple stmt; tree cond, tmp; tmp = create_tmp_var (boolean_type_node, NULL); stmt = gimple_build_assign (tmp, compare); if (gimple_in_ssa_p (cfun)) { tmp = make_ssa_name (tmp, stmt); gimple_assign_set_lhs (stmt, tmp); } gsi_insert_before (gsi, stmt, GSI_SAME_STMT); cond = fold_build2_loc (gimple_location (stmt), EQ_EXPR, boolean_type_node, tmp, boolean_true_node); stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE); gsi_insert_before (gsi, stmt, GSI_SAME_STMT); /* Split the original block, and create the TRUE and FALSE blocks. */ e = split_block (gsi_bb (*gsi), stmt); bb_cond = e->src; bb_join = e->dest; bb_true = create_empty_bb (bb_cond); bb_false = create_empty_bb (bb_true); /* Wire the blocks together. */ e->flags = EDGE_TRUE_VALUE; redirect_edge_succ (e, bb_true); make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE); make_edge (bb_true, bb_join, EDGE_FALLTHRU); make_edge (bb_false, bb_join, EDGE_FALLTHRU); /* Update dominance info. Note that bb_join's data was updated by split_block. */ if (dom_info_available_p (CDI_DOMINATORS)) { set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond); set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond); } rr = make_rename_temp (inner_type, NULL); ri = make_rename_temp (inner_type, NULL); } /* In the TRUE branch, we compute ratio = br/bi; div = (br * ratio) + bi; tr = (ar * ratio) + ai; ti = (ai * ratio) - ar; tr = tr / div; ti = ti / div; */ if (bb_true || integer_nonzerop (compare)) { if (bb_true) { *gsi = gsi_last_bb (bb_true); gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT); } ratio = gimplify_build2 (gsi, code, inner_type, br, bi); t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio); div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi); t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio); tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai); t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio); ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar); tr = gimplify_build2 (gsi, code, inner_type, tr, div); ti = gimplify_build2 (gsi, code, inner_type, ti, div); if (bb_true) { stmt = gimple_build_assign (rr, tr); gsi_insert_before (gsi, stmt, GSI_SAME_STMT); stmt = gimple_build_assign (ri, ti); gsi_insert_before (gsi, stmt, GSI_SAME_STMT); gsi_remove (gsi, true); } } /* In the FALSE branch, we compute ratio = d/c; divisor = (d * ratio) + c; tr = (b * ratio) + a; ti = b - (a * ratio); tr = tr / div; ti = ti / div; */ if (bb_false || integer_zerop (compare)) { if (bb_false) { *gsi = gsi_last_bb (bb_false); gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT); } ratio = gimplify_build2 (gsi, code, inner_type, bi, br); t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio); div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br); t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio); tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar); t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio); ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1); tr = gimplify_build2 (gsi, code, inner_type, tr, div); ti = gimplify_build2 (gsi, code, inner_type, ti, div); if (bb_false) { stmt = gimple_build_assign (rr, tr); gsi_insert_before (gsi, stmt, GSI_SAME_STMT); stmt = gimple_build_assign (ri, ti); gsi_insert_before (gsi, stmt, GSI_SAME_STMT); gsi_remove (gsi, true); } } if (bb_join) *gsi = gsi_start_bb (bb_join); else rr = tr, ri = ti; update_complex_assignment (gsi, rr, ri); } /* Expand complex division to scalars. */ static void expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type, tree ar, tree ai, tree br, tree bi, enum tree_code code, complex_lattice_t al, complex_lattice_t bl) { tree rr, ri; switch (PAIR (al, bl)) { case PAIR (ONLY_REAL, ONLY_REAL): rr = gimplify_build2 (gsi, code, inner_type, ar, br); ri = ai; break; case PAIR (ONLY_REAL, ONLY_IMAG): rr = ai; ri = gimplify_build2 (gsi, code, inner_type, ar, bi); ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri); break; case PAIR (ONLY_IMAG, ONLY_REAL): rr = ar; ri = gimplify_build2 (gsi, code, inner_type, ai, br); break; case PAIR (ONLY_IMAG, ONLY_IMAG): rr = gimplify_build2 (gsi, code, inner_type, ai, bi); ri = ar; break; case PAIR (VARYING, ONLY_REAL): rr = gimplify_build2 (gsi, code, inner_type, ar, br); ri = gimplify_build2 (gsi, code, inner_type, ai, br); break; case PAIR (VARYING, ONLY_IMAG): rr = gimplify_build2 (gsi, code, inner_type, ai, bi); ri = gimplify_build2 (gsi, code, inner_type, ar, bi); ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri); case PAIR (ONLY_REAL, VARYING): case PAIR (ONLY_IMAG, VARYING): case PAIR (VARYING, VARYING): switch (flag_complex_method) { case 0: /* straightforward implementation of complex divide acceptable. */ expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code); break; case 2: if (SCALAR_FLOAT_TYPE_P (inner_type)) { expand_complex_libcall (gsi, ar, ai, br, bi, code); break; } /* FALLTHRU */ case 1: /* wide ranges of inputs must work for complex divide. */ expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code); break; default: gcc_unreachable (); } return; default: gcc_unreachable (); } update_complex_assignment (gsi, rr, ri); } /* Expand complex negation to scalars: -a = (-ar) + i(-ai) */ static void expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type, tree ar, tree ai) { tree rr, ri; rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar); ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai); update_complex_assignment (gsi, rr, ri); } /* Expand complex conjugate to scalars: ~a = (ar) + i(-ai) */ static void expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type, tree ar, tree ai) { tree ri; ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai); update_complex_assignment (gsi, ar, ri); } /* Expand complex comparison (EQ or NE only). */ static void expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai, tree br, tree bi, enum tree_code code) { tree cr, ci, cc, type; gimple stmt; cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br); ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi); cc = gimplify_build2 (gsi, (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR), boolean_type_node, cr, ci); stmt = gsi_stmt (*gsi); switch (gimple_code (stmt)) { case GIMPLE_RETURN: type = TREE_TYPE (gimple_return_retval (stmt)); gimple_return_set_retval (stmt, fold_convert (type, cc)); break; case GIMPLE_ASSIGN: type = TREE_TYPE (gimple_assign_lhs (stmt)); gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc)); stmt = gsi_stmt (*gsi); break; case GIMPLE_COND: gimple_cond_set_code (stmt, EQ_EXPR); gimple_cond_set_lhs (stmt, cc); gimple_cond_set_rhs (stmt, boolean_true_node); break; default: gcc_unreachable (); } update_stmt (stmt); } /* Process one statement. If we identify a complex operation, expand it. */ static void expand_complex_operations_1 (gimple_stmt_iterator *gsi) { gimple stmt = gsi_stmt (*gsi); tree type, inner_type, lhs; tree ac, ar, ai, bc, br, bi; complex_lattice_t al, bl; enum tree_code code; lhs = gimple_get_lhs (stmt); if (!lhs && gimple_code (stmt) != GIMPLE_COND) return; type = TREE_TYPE (gimple_op (stmt, 0)); code = gimple_expr_code (stmt); /* Initial filter for operations we handle. */ switch (code) { case PLUS_EXPR: case MINUS_EXPR: case MULT_EXPR: case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR: case ROUND_DIV_EXPR: case RDIV_EXPR: case NEGATE_EXPR: case CONJ_EXPR: if (TREE_CODE (type) != COMPLEX_TYPE) return; inner_type = TREE_TYPE (type); break; case EQ_EXPR: case NE_EXPR: /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR subocde, so we need to access the operands using gimple_op. */ inner_type = TREE_TYPE (gimple_op (stmt, 1)); if (TREE_CODE (inner_type) != COMPLEX_TYPE) return; break; default: { tree rhs; /* GIMPLE_COND may also fallthru here, but we do not need to do anything with it. */ if (gimple_code (stmt) == GIMPLE_COND) return; if (TREE_CODE (type) == COMPLEX_TYPE) expand_complex_move (gsi, type); else if (is_gimple_assign (stmt) && (gimple_assign_rhs_code (stmt) == REALPART_EXPR || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR) && TREE_CODE (lhs) == SSA_NAME) { rhs = gimple_assign_rhs1 (stmt); rhs = extract_component (gsi, TREE_OPERAND (rhs, 0), gimple_assign_rhs_code (stmt) == IMAGPART_EXPR, false); gimple_assign_set_rhs_from_tree (gsi, rhs); stmt = gsi_stmt (*gsi); update_stmt (stmt); } } return; } /* Extract the components of the two complex values. Make sure and handle the common case of the same value used twice specially. */ if (is_gimple_assign (stmt)) { ac = gimple_assign_rhs1 (stmt); bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL; } /* GIMPLE_CALL can not get here. */ else { ac = gimple_cond_lhs (stmt); bc = gimple_cond_rhs (stmt); } ar = extract_component (gsi, ac, false, true); ai = extract_component (gsi, ac, true, true); if (ac == bc) br = ar, bi = ai; else if (bc) { br = extract_component (gsi, bc, 0, true); bi = extract_component (gsi, bc, 1, true); } else br = bi = NULL_TREE; if (gimple_in_ssa_p (cfun)) { al = find_lattice_value (ac); if (al == UNINITIALIZED) al = VARYING; if (TREE_CODE_CLASS (code) == tcc_unary) bl = UNINITIALIZED; else if (ac == bc) bl = al; else { bl = find_lattice_value (bc); if (bl == UNINITIALIZED) bl = VARYING; } } else al = bl = VARYING; switch (code) { case PLUS_EXPR: case MINUS_EXPR: expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl); break; case MULT_EXPR: expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl); break; case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR: case ROUND_DIV_EXPR: case RDIV_EXPR: expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl); break; case NEGATE_EXPR: expand_complex_negation (gsi, inner_type, ar, ai); break; case CONJ_EXPR: expand_complex_conjugate (gsi, inner_type, ar, ai); break; case EQ_EXPR: case NE_EXPR: expand_complex_comparison (gsi, ar, ai, br, bi, code); break; default: gcc_unreachable (); } } /* Entry point for complex operation lowering during optimization. */ static unsigned int tree_lower_complex (void) { int old_last_basic_block; gimple_stmt_iterator gsi; basic_block bb; if (!init_dont_simulate_again ()) return 0; complex_lattice_values = VEC_alloc (complex_lattice_t, heap, num_ssa_names); VEC_safe_grow_cleared (complex_lattice_t, heap, complex_lattice_values, num_ssa_names); init_parameter_lattice_values (); ssa_propagate (complex_visit_stmt, complex_visit_phi); complex_variable_components = htab_create (10, int_tree_map_hash, int_tree_map_eq, free); complex_ssa_name_components = VEC_alloc (tree, heap, 2*num_ssa_names); VEC_safe_grow_cleared (tree, heap, complex_ssa_name_components, 2 * num_ssa_names); update_parameter_components (); /* ??? Ideally we'd traverse the blocks in breadth-first order. */ old_last_basic_block = last_basic_block; FOR_EACH_BB (bb) { if (bb->index >= old_last_basic_block) continue; update_phi_components (bb); for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) expand_complex_operations_1 (&gsi); } gsi_commit_edge_inserts (); htab_delete (complex_variable_components); VEC_free (tree, heap, complex_ssa_name_components); VEC_free (complex_lattice_t, heap, complex_lattice_values); return 0; } struct gimple_opt_pass pass_lower_complex = { { GIMPLE_PASS, "cplxlower", /* name */ 0, /* gate */ tree_lower_complex, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_NONE, /* tv_id */ PROP_ssa, /* properties_required */ PROP_gimple_lcx, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_ggc_collect | TODO_update_ssa | TODO_verify_stmts /* todo_flags_finish */ } }; static bool gate_no_optimization (void) { /* With errors, normal optimization passes are not run. If we don't lower complex operations at all, rtl expansion will abort. */ return !(cfun->curr_properties & PROP_gimple_lcx); } struct gimple_opt_pass pass_lower_complex_O0 = { { GIMPLE_PASS, "cplxlower0", /* name */ gate_no_optimization, /* gate */ tree_lower_complex, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_NONE, /* tv_id */ PROP_cfg, /* properties_required */ PROP_gimple_lcx, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_ggc_collect | TODO_update_ssa | TODO_verify_stmts /* todo_flags_finish */ } };
Go to most recent revision | Compare with Previous | Blame | View Log