URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [varasm.c] - Rev 801
Go to most recent revision | Compare with Previous | Blame | View Log
/* Output variables, constants and external declarations, for GNU compiler. Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ /* This file handles generation of all the assembler code *except* the instructions of a function. This includes declarations of variables and their initial values. We also output the assembler code for constants stored in memory and are responsible for combining constants with the same value. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "tree.h" #include "flags.h" #include "function.h" #include "expr.h" #include "hard-reg-set.h" #include "regs.h" #include "output.h" #include "diagnostic-core.h" #include "hashtab.h" #include "ggc.h" #include "langhooks.h" #include "tm_p.h" #include "debug.h" #include "target.h" #include "common/common-target.h" #include "targhooks.h" #include "tree-mudflap.h" #include "cgraph.h" #include "cfglayout.h" #include "basic-block.h" #include "tree-iterator.h" #include "pointer-set.h" #ifdef XCOFF_DEBUGGING_INFO #include "xcoffout.h" /* Needed for external data declarations for e.g. AIX 4.x. */ #endif /* The (assembler) name of the first globally-visible object output. */ extern GTY(()) const char *first_global_object_name; extern GTY(()) const char *weak_global_object_name; const char *first_global_object_name; const char *weak_global_object_name; struct addr_const; struct constant_descriptor_rtx; struct rtx_constant_pool; #define n_deferred_constants (crtl->varasm.deferred_constants) /* Number for making the label on the next constant that is stored in memory. */ static GTY(()) int const_labelno; /* Carry information from ASM_DECLARE_OBJECT_NAME to ASM_FINISH_DECLARE_OBJECT. */ int size_directive_output; /* The last decl for which assemble_variable was called, if it did ASM_DECLARE_OBJECT_NAME. If the last call to assemble_variable didn't do that, this holds 0. */ tree last_assemble_variable_decl; /* The following global variable indicates if the first basic block in a function belongs to the cold partition or not. */ bool first_function_block_is_cold; /* We give all constants their own alias set. Perhaps redundant with MEM_READONLY_P, but pre-dates it. */ static alias_set_type const_alias_set; /* Whether we saw any functions with no_split_stack. */ static bool saw_no_split_stack; static const char *strip_reg_name (const char *); static int contains_pointers_p (tree); #ifdef ASM_OUTPUT_EXTERNAL static bool incorporeal_function_p (tree); #endif static void decode_addr_const (tree, struct addr_const *); static hashval_t const_desc_hash (const void *); static int const_desc_eq (const void *, const void *); static hashval_t const_hash_1 (const tree); static int compare_constant (const tree, const tree); static tree copy_constant (tree); static void output_constant_def_contents (rtx); static void output_addressed_constants (tree); static unsigned HOST_WIDE_INT array_size_for_constructor (tree); static unsigned min_align (unsigned, unsigned); static void globalize_decl (tree); static bool decl_readonly_section_1 (enum section_category); #ifdef BSS_SECTION_ASM_OP #ifdef ASM_OUTPUT_ALIGNED_BSS static void asm_output_aligned_bss (FILE *, tree, const char *, unsigned HOST_WIDE_INT, int) ATTRIBUTE_UNUSED; #endif #endif /* BSS_SECTION_ASM_OP */ static void mark_weak (tree); static void output_constant_pool (const char *, tree); /* Well-known sections, each one associated with some sort of *_ASM_OP. */ section *text_section; section *data_section; section *readonly_data_section; section *sdata_section; section *ctors_section; section *dtors_section; section *bss_section; section *sbss_section; /* Various forms of common section. All are guaranteed to be nonnull. */ section *tls_comm_section; section *comm_section; section *lcomm_section; /* A SECTION_NOSWITCH section used for declaring global BSS variables. May be null. */ section *bss_noswitch_section; /* The section that holds the main exception table, when known. The section is set either by the target's init_sections hook or by the first call to switch_to_exception_section. */ section *exception_section; /* The section that holds the DWARF2 frame unwind information, when known. The section is set either by the target's init_sections hook or by the first call to switch_to_eh_frame_section. */ section *eh_frame_section; /* asm_out_file's current section. This is NULL if no section has yet been selected or if we lose track of what the current section is. */ section *in_section; /* True if code for the current function is currently being directed at the cold section. */ bool in_cold_section_p; /* A linked list of all the unnamed sections. */ static GTY(()) section *unnamed_sections; /* Return a nonzero value if DECL has a section attribute. */ #define IN_NAMED_SECTION(DECL) \ ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \ && DECL_SECTION_NAME (DECL) != NULL_TREE) /* Hash table of named sections. */ static GTY((param_is (section))) htab_t section_htab; /* A table of object_blocks, indexed by section. */ static GTY((param_is (struct object_block))) htab_t object_block_htab; /* The next number to use for internal anchor labels. */ static GTY(()) int anchor_labelno; /* A pool of constants that can be shared between functions. */ static GTY(()) struct rtx_constant_pool *shared_constant_pool; /* Helper routines for maintaining section_htab. */ static int section_entry_eq (const void *p1, const void *p2) { const section *old = (const section *) p1; const char *new_name = (const char *) p2; return strcmp (old->named.name, new_name) == 0; } static hashval_t section_entry_hash (const void *p) { const section *old = (const section *) p; return htab_hash_string (old->named.name); } /* Return a hash value for section SECT. */ static hashval_t hash_section (section *sect) { if (sect->common.flags & SECTION_NAMED) return htab_hash_string (sect->named.name); return sect->common.flags; } /* Helper routines for maintaining object_block_htab. */ static int object_block_entry_eq (const void *p1, const void *p2) { const struct object_block *old = (const struct object_block *) p1; const section *new_section = (const section *) p2; return old->sect == new_section; } static hashval_t object_block_entry_hash (const void *p) { const struct object_block *old = (const struct object_block *) p; return hash_section (old->sect); } /* Return a new unnamed section with the given fields. */ section * get_unnamed_section (unsigned int flags, void (*callback) (const void *), const void *data) { section *sect; sect = ggc_alloc_section (); sect->unnamed.common.flags = flags | SECTION_UNNAMED; sect->unnamed.callback = callback; sect->unnamed.data = data; sect->unnamed.next = unnamed_sections; unnamed_sections = sect; return sect; } /* Return a SECTION_NOSWITCH section with the given fields. */ static section * get_noswitch_section (unsigned int flags, noswitch_section_callback callback) { section *sect; sect = ggc_alloc_section (); sect->noswitch.common.flags = flags | SECTION_NOSWITCH; sect->noswitch.callback = callback; return sect; } /* Return the named section structure associated with NAME. Create a new section with the given fields if no such structure exists. */ section * get_section (const char *name, unsigned int flags, tree decl) { section *sect, **slot; slot = (section **) htab_find_slot_with_hash (section_htab, name, htab_hash_string (name), INSERT); flags |= SECTION_NAMED; if (*slot == NULL) { sect = ggc_alloc_section (); sect->named.common.flags = flags; sect->named.name = ggc_strdup (name); sect->named.decl = decl; *slot = sect; } else { sect = *slot; if ((sect->common.flags & ~SECTION_DECLARED) != flags && ((sect->common.flags | flags) & SECTION_OVERRIDE) == 0) { /* It is fine if one of the section flags is SECTION_WRITE | SECTION_RELRO and the other has none of these flags (i.e. read-only) in named sections and either the section hasn't been declared yet or has been declared as writable. In that case just make sure the resulting flags are SECTION_WRITE | SECTION_RELRO, ie. writable only because of relocations. */ if (((sect->common.flags ^ flags) & (SECTION_WRITE | SECTION_RELRO)) == (SECTION_WRITE | SECTION_RELRO) && (sect->common.flags & ~(SECTION_DECLARED | SECTION_WRITE | SECTION_RELRO)) == (flags & ~(SECTION_WRITE | SECTION_RELRO)) && ((sect->common.flags & SECTION_DECLARED) == 0 || (sect->common.flags & SECTION_WRITE))) { sect->common.flags |= (SECTION_WRITE | SECTION_RELRO); return sect; } /* Sanity check user variables for flag changes. */ if (decl == 0) decl = sect->named.decl; gcc_assert (decl); error ("%+D causes a section type conflict with %D", decl, sect->named.decl); if (decl != sect->named.decl) inform (DECL_SOURCE_LOCATION (sect->named.decl), "%qD was declared here", sect->named.decl); /* Make sure we don't error about one section multiple times. */ sect->common.flags |= SECTION_OVERRIDE; } } return sect; } /* Return true if the current compilation mode benefits from having objects grouped into blocks. */ static bool use_object_blocks_p (void) { return flag_section_anchors; } /* Return the object_block structure for section SECT. Create a new structure if we haven't created one already. Return null if SECT itself is null. */ static struct object_block * get_block_for_section (section *sect) { struct object_block *block; void **slot; if (sect == NULL) return NULL; slot = htab_find_slot_with_hash (object_block_htab, sect, hash_section (sect), INSERT); block = (struct object_block *) *slot; if (block == NULL) { block = ggc_alloc_cleared_object_block (); block->sect = sect; *slot = block; } return block; } /* Create a symbol with label LABEL and place it at byte offset OFFSET in BLOCK. OFFSET can be negative if the symbol's offset is not yet known. LABEL must be a garbage-collected string. */ static rtx create_block_symbol (const char *label, struct object_block *block, HOST_WIDE_INT offset) { rtx symbol; unsigned int size; /* Create the extended SYMBOL_REF. */ size = RTX_HDR_SIZE + sizeof (struct block_symbol); symbol = ggc_alloc_zone_rtx_def (size, &rtl_zone); /* Initialize the normal SYMBOL_REF fields. */ memset (symbol, 0, size); PUT_CODE (symbol, SYMBOL_REF); PUT_MODE (symbol, Pmode); XSTR (symbol, 0) = label; SYMBOL_REF_FLAGS (symbol) = SYMBOL_FLAG_HAS_BLOCK_INFO; /* Initialize the block_symbol stuff. */ SYMBOL_REF_BLOCK (symbol) = block; SYMBOL_REF_BLOCK_OFFSET (symbol) = offset; return symbol; } /* Return a section with a particular name and with whatever SECTION_* flags section_type_flags deems appropriate. The name of the section is taken from NAME if nonnull, otherwise it is taken from DECL's DECL_SECTION_NAME. DECL is the decl associated with the section (see the section comment for details) and RELOC is as for section_type_flags. */ section * get_named_section (tree decl, const char *name, int reloc) { unsigned int flags; gcc_assert (!decl || DECL_P (decl)); if (name == NULL) name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl)); flags = targetm.section_type_flags (decl, name, reloc); return get_section (name, flags, decl); } /* If required, set DECL_SECTION_NAME to a unique name. */ void resolve_unique_section (tree decl, int reloc ATTRIBUTE_UNUSED, int flag_function_or_data_sections) { if (DECL_SECTION_NAME (decl) == NULL_TREE && targetm_common.have_named_sections && (flag_function_or_data_sections || DECL_ONE_ONLY (decl))) { targetm.asm_out.unique_section (decl, reloc); DECL_HAS_IMPLICIT_SECTION_NAME_P (decl) = true; } } #ifdef BSS_SECTION_ASM_OP #ifdef ASM_OUTPUT_ALIGNED_BSS /* Utility function for targets to use in implementing ASM_OUTPUT_ALIGNED_BSS. ??? It is believed that this function will work in most cases so such support is localized here. */ static void asm_output_aligned_bss (FILE *file, tree decl ATTRIBUTE_UNUSED, const char *name, unsigned HOST_WIDE_INT size, int align) { switch_to_section (bss_section); ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT)); #ifdef ASM_DECLARE_OBJECT_NAME last_assemble_variable_decl = decl; ASM_DECLARE_OBJECT_NAME (file, name, decl); #else /* Standard thing is just output label for the object. */ ASM_OUTPUT_LABEL (file, name); #endif /* ASM_DECLARE_OBJECT_NAME */ ASM_OUTPUT_SKIP (file, size ? size : 1); } #endif #endif /* BSS_SECTION_ASM_OP */ #ifndef USE_SELECT_SECTION_FOR_FUNCTIONS /* Return the hot section for function DECL. Return text_section for null DECLs. */ static section * hot_function_section (tree decl) { if (decl != NULL_TREE && DECL_SECTION_NAME (decl) != NULL_TREE && targetm_common.have_named_sections) return get_named_section (decl, NULL, 0); else return text_section; } #endif /* Return section for TEXT_SECTION_NAME if DECL or DECL_SECTION_NAME (DECL) is NULL. When DECL_SECTION_NAME is non-NULL and it is implicit section and NAMED_SECTION_SUFFIX is non-NULL, then produce section called concatenate the name with NAMED_SECTION_SUFFIX. Otherwise produce "TEXT_SECTION_NAME.IMPLICIT_NAME". */ section * get_named_text_section (tree decl, const char *text_section_name, const char *named_section_suffix) { if (decl && DECL_SECTION_NAME (decl)) { if (named_section_suffix) { tree dsn = DECL_SECTION_NAME (decl); const char *stripped_name; char *name, *buffer; name = (char *) alloca (TREE_STRING_LENGTH (dsn) + 1); memcpy (name, TREE_STRING_POINTER (dsn), TREE_STRING_LENGTH (dsn) + 1); stripped_name = targetm.strip_name_encoding (name); buffer = ACONCAT ((stripped_name, named_section_suffix, NULL)); return get_named_section (decl, buffer, 0); } else if (DECL_HAS_IMPLICIT_SECTION_NAME_P (decl)) { const char *name; /* Do not try to split gnu_linkonce functions. This gets somewhat slipperly. */ if (DECL_ONE_ONLY (decl) && !HAVE_COMDAT_GROUP) return NULL; name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); name = targetm.strip_name_encoding (name); return get_named_section (decl, ACONCAT ((text_section_name, ".", name, NULL)), 0); } else return NULL; } return get_named_section (decl, text_section_name, 0); } /* Choose named function section based on its frequency. */ section * default_function_section (tree decl, enum node_frequency freq, bool startup, bool exit) { #if defined HAVE_LD_EH_GC_SECTIONS && defined HAVE_LD_EH_GC_SECTIONS_BUG /* Old GNU linkers have buggy --gc-section support, which sometimes results in .gcc_except_table* sections being garbage collected. */ if (decl && DECL_SECTION_NAME (decl) && DECL_HAS_IMPLICIT_SECTION_NAME_P (decl)) return NULL; #endif if (!flag_reorder_functions || !targetm_common.have_named_sections) return NULL; /* Startup code should go to startup subsection unless it is unlikely executed (this happens especially with function splitting where we can split away unnecesary parts of static constructors. */ if (startup && freq != NODE_FREQUENCY_UNLIKELY_EXECUTED) return get_named_text_section (decl, ".text.startup", NULL); /* Similarly for exit. */ if (exit && freq != NODE_FREQUENCY_UNLIKELY_EXECUTED) return get_named_text_section (decl, ".text.exit", NULL); /* Group cold functions together, similarly for hot code. */ switch (freq) { case NODE_FREQUENCY_UNLIKELY_EXECUTED: return get_named_text_section (decl, ".text.unlikely", NULL); case NODE_FREQUENCY_HOT: return get_named_text_section (decl, ".text.hot", NULL); default: return NULL; } } /* Return the section for function DECL. If DECL is NULL_TREE, return the text section. We can be passed NULL_TREE under some circumstances by dbxout.c at least. If FORCE_COLD is true, return cold function section ignoring the frequency info of cgraph_node. */ static section * function_section_1 (tree decl, bool force_cold) { section *section = NULL; enum node_frequency freq = NODE_FREQUENCY_NORMAL; bool startup = false, exit = false; if (decl) { struct cgraph_node *node = cgraph_get_node (decl); if (node) { freq = node->frequency; startup = node->only_called_at_startup; exit = node->only_called_at_exit; } } if (force_cold) freq = NODE_FREQUENCY_UNLIKELY_EXECUTED; #ifdef USE_SELECT_SECTION_FOR_FUNCTIONS if (decl != NULL_TREE && DECL_SECTION_NAME (decl) != NULL_TREE) { if (targetm.asm_out.function_section) section = targetm.asm_out.function_section (decl, freq, startup, exit); if (section) return section; return get_named_section (decl, NULL, 0); } else return targetm.asm_out.select_section (decl, freq == NODE_FREQUENCY_UNLIKELY_EXECUTED, DECL_ALIGN (decl)); #else if (targetm.asm_out.function_section) section = targetm.asm_out.function_section (decl, freq, startup, exit); if (section) return section; return hot_function_section (decl); #endif } /* Return the section for function DECL. If DECL is NULL_TREE, return the text section. We can be passed NULL_TREE under some circumstances by dbxout.c at least. */ section * function_section (tree decl) { /* Handle cases where function splitting code decides to put function entry point into unlikely executed section despite the fact that the function itself is not cold (i.e. it is called rarely but contains a hot loop that is better to live in hot subsection for the code locality). */ return function_section_1 (decl, first_function_block_is_cold); } /* Return the section for the current function, take IN_COLD_SECTION_P into account. */ section * current_function_section (void) { return function_section_1 (current_function_decl, in_cold_section_p); } /* Tell assembler to switch to unlikely-to-be-executed text section. */ section * unlikely_text_section (void) { return function_section_1 (current_function_decl, true); } /* When called within a function context, return true if the function has been assigned a cold text section and if SECT is that section. When called outside a function context, return true if SECT is the default cold section. */ bool unlikely_text_section_p (section *sect) { return sect == function_section_1 (current_function_decl, true); } /* Return the read-only data section associated with function DECL. */ section * default_function_rodata_section (tree decl) { if (decl != NULL_TREE && DECL_SECTION_NAME (decl)) { const char *name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl)); if (DECL_ONE_ONLY (decl) && HAVE_COMDAT_GROUP) { const char *dot; size_t len; char* rname; dot = strchr (name + 1, '.'); if (!dot) dot = name; len = strlen (dot) + 8; rname = (char *) alloca (len); strcpy (rname, ".rodata"); strcat (rname, dot); return get_section (rname, SECTION_LINKONCE, decl); } /* For .gnu.linkonce.t.foo we want to use .gnu.linkonce.r.foo. */ else if (DECL_ONE_ONLY (decl) && strncmp (name, ".gnu.linkonce.t.", 16) == 0) { size_t len = strlen (name) + 1; char *rname = (char *) alloca (len); memcpy (rname, name, len); rname[14] = 'r'; return get_section (rname, SECTION_LINKONCE, decl); } /* For .text.foo we want to use .rodata.foo. */ else if (flag_function_sections && flag_data_sections && strncmp (name, ".text.", 6) == 0) { size_t len = strlen (name) + 1; char *rname = (char *) alloca (len + 2); memcpy (rname, ".rodata", 7); memcpy (rname + 7, name + 5, len - 5); return get_section (rname, 0, decl); } } return readonly_data_section; } /* Return the read-only data section associated with function DECL for targets where that section should be always the single readonly data section. */ section * default_no_function_rodata_section (tree decl ATTRIBUTE_UNUSED) { return readonly_data_section; } /* Return the section to use for string merging. */ static section * mergeable_string_section (tree decl ATTRIBUTE_UNUSED, unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED, unsigned int flags ATTRIBUTE_UNUSED) { HOST_WIDE_INT len; if (HAVE_GAS_SHF_MERGE && flag_merge_constants && TREE_CODE (decl) == STRING_CST && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE && align <= 256 && (len = int_size_in_bytes (TREE_TYPE (decl))) > 0 && TREE_STRING_LENGTH (decl) >= len) { enum machine_mode mode; unsigned int modesize; const char *str; HOST_WIDE_INT i; int j, unit; const char *prefix = targetm.asm_out.mergeable_rodata_prefix; char *name = (char *) alloca (strlen (prefix) + 30); mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (decl))); modesize = GET_MODE_BITSIZE (mode); if (modesize >= 8 && modesize <= 256 && (modesize & (modesize - 1)) == 0) { if (align < modesize) align = modesize; str = TREE_STRING_POINTER (decl); unit = GET_MODE_SIZE (mode); /* Check for embedded NUL characters. */ for (i = 0; i < len; i += unit) { for (j = 0; j < unit; j++) if (str[i + j] != '\0') break; if (j == unit) break; } if (i == len - unit) { sprintf (name, "%s.str%d.%d", prefix, modesize / 8, (int) (align / 8)); flags |= (modesize / 8) | SECTION_MERGE | SECTION_STRINGS; return get_section (name, flags, NULL); } } } return readonly_data_section; } /* Return the section to use for constant merging. */ section * mergeable_constant_section (enum machine_mode mode ATTRIBUTE_UNUSED, unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED, unsigned int flags ATTRIBUTE_UNUSED) { unsigned int modesize = GET_MODE_BITSIZE (mode); if (HAVE_GAS_SHF_MERGE && flag_merge_constants && mode != VOIDmode && mode != BLKmode && modesize <= align && align >= 8 && align <= 256 && (align & (align - 1)) == 0) { const char *prefix = targetm.asm_out.mergeable_rodata_prefix; char *name = (char *) alloca (strlen (prefix) + 30); sprintf (name, "%s.cst%d", prefix, (int) (align / 8)); flags |= (align / 8) | SECTION_MERGE; return get_section (name, flags, NULL); } return readonly_data_section; } /* Given NAME, a putative register name, discard any customary prefixes. */ static const char * strip_reg_name (const char *name) { #ifdef REGISTER_PREFIX if (!strncmp (name, REGISTER_PREFIX, strlen (REGISTER_PREFIX))) name += strlen (REGISTER_PREFIX); #endif if (name[0] == '%' || name[0] == '#') name++; return name; } /* The user has asked for a DECL to have a particular name. Set (or change) it in such a way that we don't prefix an underscore to it. */ void set_user_assembler_name (tree decl, const char *name) { char *starred = (char *) alloca (strlen (name) + 2); starred[0] = '*'; strcpy (starred + 1, name); change_decl_assembler_name (decl, get_identifier (starred)); SET_DECL_RTL (decl, NULL_RTX); } /* Decode an `asm' spec for a declaration as a register name. Return the register number, or -1 if nothing specified, or -2 if the ASMSPEC is not `cc' or `memory' and is not recognized, or -3 if ASMSPEC is `cc' and is not recognized, or -4 if ASMSPEC is `memory' and is not recognized. Accept an exact spelling or a decimal number. Prefixes such as % are optional. */ int decode_reg_name_and_count (const char *asmspec, int *pnregs) { /* Presume just one register is clobbered. */ *pnregs = 1; if (asmspec != 0) { int i; /* Get rid of confusing prefixes. */ asmspec = strip_reg_name (asmspec); /* Allow a decimal number as a "register name". */ for (i = strlen (asmspec) - 1; i >= 0; i--) if (! ISDIGIT (asmspec[i])) break; if (asmspec[0] != 0 && i < 0) { i = atoi (asmspec); if (i < FIRST_PSEUDO_REGISTER && i >= 0) return i; else return -2; } for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (reg_names[i][0] && ! strcmp (asmspec, strip_reg_name (reg_names[i]))) return i; #ifdef OVERLAPPING_REGISTER_NAMES { static const struct { const char *const name; const int number; const int nregs; } table[] = OVERLAPPING_REGISTER_NAMES; for (i = 0; i < (int) ARRAY_SIZE (table); i++) if (table[i].name[0] && ! strcmp (asmspec, table[i].name)) { *pnregs = table[i].nregs; return table[i].number; } } #endif /* OVERLAPPING_REGISTER_NAMES */ #ifdef ADDITIONAL_REGISTER_NAMES { static const struct { const char *const name; const int number; } table[] = ADDITIONAL_REGISTER_NAMES; for (i = 0; i < (int) ARRAY_SIZE (table); i++) if (table[i].name[0] && ! strcmp (asmspec, table[i].name)) return table[i].number; } #endif /* ADDITIONAL_REGISTER_NAMES */ if (!strcmp (asmspec, "memory")) return -4; if (!strcmp (asmspec, "cc")) return -3; return -2; } return -1; } int decode_reg_name (const char *name) { int count; return decode_reg_name_and_count (name, &count); } /* Return true if DECL's initializer is suitable for a BSS section. */ static bool bss_initializer_p (const_tree decl) { return (DECL_INITIAL (decl) == NULL || DECL_INITIAL (decl) == error_mark_node || (flag_zero_initialized_in_bss /* Leave constant zeroes in .rodata so they can be shared. */ && !TREE_READONLY (decl) && initializer_zerop (DECL_INITIAL (decl)))); } /* Compute the alignment of variable specified by DECL. DONT_OUTPUT_DATA is from assemble_variable. */ void align_variable (tree decl, bool dont_output_data) { unsigned int align = DECL_ALIGN (decl); /* In the case for initialing an array whose length isn't specified, where we have not yet been able to do the layout, figure out the proper alignment now. */ if (dont_output_data && DECL_SIZE (decl) == 0 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE) align = MAX (align, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (decl)))); /* Some object file formats have a maximum alignment which they support. In particular, a.out format supports a maximum alignment of 4. */ if (align > MAX_OFILE_ALIGNMENT) { warning (0, "alignment of %q+D is greater than maximum object " "file alignment. Using %d", decl, MAX_OFILE_ALIGNMENT/BITS_PER_UNIT); align = MAX_OFILE_ALIGNMENT; } /* On some machines, it is good to increase alignment sometimes. */ if (! DECL_USER_ALIGN (decl)) { #ifdef DATA_ALIGNMENT unsigned int data_align = DATA_ALIGNMENT (TREE_TYPE (decl), align); /* Don't increase alignment too much for TLS variables - TLS space is too precious. */ if (! DECL_THREAD_LOCAL_P (decl) || data_align <= BITS_PER_WORD) align = data_align; #endif #ifdef CONSTANT_ALIGNMENT if (DECL_INITIAL (decl) != 0 && DECL_INITIAL (decl) != error_mark_node) { unsigned int const_align = CONSTANT_ALIGNMENT (DECL_INITIAL (decl), align); /* Don't increase alignment too much for TLS variables - TLS space is too precious. */ if (! DECL_THREAD_LOCAL_P (decl) || const_align <= BITS_PER_WORD) align = const_align; } #endif } /* Reset the alignment in case we have made it tighter, so we can benefit from it in get_pointer_alignment. */ DECL_ALIGN (decl) = align; } /* Return the section into which the given VAR_DECL or CONST_DECL should be placed. PREFER_NOSWITCH_P is true if a noswitch section should be used wherever possible. */ section * get_variable_section (tree decl, bool prefer_noswitch_p) { addr_space_t as = ADDR_SPACE_GENERIC; int reloc; if (TREE_TYPE (decl) != error_mark_node) as = TYPE_ADDR_SPACE (TREE_TYPE (decl)); if (DECL_COMMON (decl)) { /* If the decl has been given an explicit section name, or it resides in a non-generic address space, then it isn't common, and shouldn't be handled as such. */ gcc_assert (DECL_SECTION_NAME (decl) == NULL && ADDR_SPACE_GENERIC_P (as)); if (DECL_THREAD_LOCAL_P (decl)) return tls_comm_section; else if (TREE_PUBLIC (decl) && bss_initializer_p (decl)) return comm_section; } if (DECL_INITIAL (decl) == error_mark_node) reloc = contains_pointers_p (TREE_TYPE (decl)) ? 3 : 0; else if (DECL_INITIAL (decl)) reloc = compute_reloc_for_constant (DECL_INITIAL (decl)); else reloc = 0; resolve_unique_section (decl, reloc, flag_data_sections); if (IN_NAMED_SECTION (decl)) return get_named_section (decl, NULL, reloc); if (ADDR_SPACE_GENERIC_P (as) && !DECL_THREAD_LOCAL_P (decl) && !(prefer_noswitch_p && targetm.have_switchable_bss_sections) && bss_initializer_p (decl)) { if (!TREE_PUBLIC (decl)) return lcomm_section; if (bss_noswitch_section) return bss_noswitch_section; } return targetm.asm_out.select_section (decl, reloc, DECL_ALIGN (decl)); } /* Return the block into which object_block DECL should be placed. */ static struct object_block * get_block_for_decl (tree decl) { section *sect; if (TREE_CODE (decl) == VAR_DECL) { /* The object must be defined in this translation unit. */ if (DECL_EXTERNAL (decl)) return NULL; /* There's no point using object blocks for something that is isolated by definition. */ if (DECL_ONE_ONLY (decl)) return NULL; } /* We can only calculate block offsets if the decl has a known constant size. */ if (DECL_SIZE_UNIT (decl) == NULL) return NULL; if (!host_integerp (DECL_SIZE_UNIT (decl), 1)) return NULL; /* Find out which section should contain DECL. We cannot put it into an object block if it requires a standalone definition. */ if (TREE_CODE (decl) == VAR_DECL) align_variable (decl, 0); sect = get_variable_section (decl, true); if (SECTION_STYLE (sect) == SECTION_NOSWITCH) return NULL; return get_block_for_section (sect); } /* Make sure block symbol SYMBOL is in block BLOCK. */ static void change_symbol_block (rtx symbol, struct object_block *block) { if (block != SYMBOL_REF_BLOCK (symbol)) { gcc_assert (SYMBOL_REF_BLOCK_OFFSET (symbol) < 0); SYMBOL_REF_BLOCK (symbol) = block; } } /* Return true if it is possible to put DECL in an object_block. */ static bool use_blocks_for_decl_p (tree decl) { /* Only data DECLs can be placed into object blocks. */ if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != CONST_DECL) return false; /* Detect decls created by dw2_force_const_mem. Such decls are special because DECL_INITIAL doesn't specify the decl's true value. dw2_output_indirect_constants will instead call assemble_variable with dont_output_data set to 1 and then print the contents itself. */ if (DECL_INITIAL (decl) == decl) return false; /* If this decl is an alias, then we don't want to emit a definition. */ if (lookup_attribute ("alias", DECL_ATTRIBUTES (decl))) return false; return true; } /* Create the DECL_RTL for a VAR_DECL or FUNCTION_DECL. DECL should have static storage duration. In other words, it should not be an automatic variable, including PARM_DECLs. There is, however, one exception: this function handles variables explicitly placed in a particular register by the user. This is never called for PARM_DECL nodes. */ void make_decl_rtl (tree decl) { const char *name = 0; int reg_number; rtx x; /* Check that we are not being given an automatic variable. */ gcc_assert (TREE_CODE (decl) != PARM_DECL && TREE_CODE (decl) != RESULT_DECL); /* A weak alias has TREE_PUBLIC set but not the other bits. */ gcc_assert (TREE_CODE (decl) != VAR_DECL || TREE_STATIC (decl) || TREE_PUBLIC (decl) || DECL_EXTERNAL (decl) || DECL_REGISTER (decl)); /* And that we were not given a type or a label. */ gcc_assert (TREE_CODE (decl) != TYPE_DECL && TREE_CODE (decl) != LABEL_DECL); /* For a duplicate declaration, we can be called twice on the same DECL node. Don't discard the RTL already made. */ if (DECL_RTL_SET_P (decl)) { /* If the old RTL had the wrong mode, fix the mode. */ x = DECL_RTL (decl); if (GET_MODE (x) != DECL_MODE (decl)) SET_DECL_RTL (decl, adjust_address_nv (x, DECL_MODE (decl), 0)); if (TREE_CODE (decl) != FUNCTION_DECL && DECL_REGISTER (decl)) return; /* ??? Another way to do this would be to maintain a hashed table of such critters. Instead of adding stuff to a DECL to give certain attributes to it, we could use an external hash map from DECL to set of attributes. */ /* Let the target reassign the RTL if it wants. This is necessary, for example, when one machine specific decl attribute overrides another. */ targetm.encode_section_info (decl, DECL_RTL (decl), false); /* If the symbol has a SYMBOL_REF_BLOCK field, update it based on the new decl information. */ if (MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF && SYMBOL_REF_HAS_BLOCK_INFO_P (XEXP (x, 0))) change_symbol_block (XEXP (x, 0), get_block_for_decl (decl)); /* Make this function static known to the mudflap runtime. */ if (flag_mudflap && TREE_CODE (decl) == VAR_DECL) mudflap_enqueue_decl (decl); return; } /* If this variable belongs to the global constant pool, retrieve the pre-computed RTL or recompute it in LTO mode. */ if (TREE_CODE (decl) == VAR_DECL && DECL_IN_CONSTANT_POOL (decl)) { SET_DECL_RTL (decl, output_constant_def (DECL_INITIAL (decl), 1)); return; } name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); if (name[0] != '*' && TREE_CODE (decl) != FUNCTION_DECL && DECL_REGISTER (decl)) { error ("register name not specified for %q+D", decl); } else if (TREE_CODE (decl) != FUNCTION_DECL && DECL_REGISTER (decl)) { const char *asmspec = name+1; enum machine_mode mode = DECL_MODE (decl); reg_number = decode_reg_name (asmspec); /* First detect errors in declaring global registers. */ if (reg_number == -1) error ("register name not specified for %q+D", decl); else if (reg_number < 0) error ("invalid register name for %q+D", decl); else if (mode == BLKmode) error ("data type of %q+D isn%'t suitable for a register", decl); else if (!in_hard_reg_set_p (accessible_reg_set, mode, reg_number)) error ("the register specified for %q+D cannot be accessed" " by the current target", decl); else if (!in_hard_reg_set_p (operand_reg_set, mode, reg_number)) error ("the register specified for %q+D is not general enough" " to be used as a register variable", decl); else if (!HARD_REGNO_MODE_OK (reg_number, mode)) error ("register specified for %q+D isn%'t suitable for data type", decl); /* Now handle properly declared static register variables. */ else { int nregs; if (DECL_INITIAL (decl) != 0 && TREE_STATIC (decl)) { DECL_INITIAL (decl) = 0; error ("global register variable has initial value"); } if (TREE_THIS_VOLATILE (decl)) warning (OPT_Wvolatile_register_var, "optimization may eliminate reads and/or " "writes to register variables"); /* If the user specified one of the eliminables registers here, e.g., FRAME_POINTER_REGNUM, we don't want to get this variable confused with that register and be eliminated. This usage is somewhat suspect... */ SET_DECL_RTL (decl, gen_rtx_raw_REG (mode, reg_number)); ORIGINAL_REGNO (DECL_RTL (decl)) = reg_number; REG_USERVAR_P (DECL_RTL (decl)) = 1; if (TREE_STATIC (decl)) { /* Make this register global, so not usable for anything else. */ #ifdef ASM_DECLARE_REGISTER_GLOBAL name = IDENTIFIER_POINTER (DECL_NAME (decl)); ASM_DECLARE_REGISTER_GLOBAL (asm_out_file, decl, reg_number, name); #endif nregs = hard_regno_nregs[reg_number][mode]; while (nregs > 0) globalize_reg (decl, reg_number + --nregs); } /* As a register variable, it has no section. */ return; } } /* Now handle ordinary static variables and functions (in memory). Also handle vars declared register invalidly. */ else if (name[0] == '*') { #ifdef REGISTER_PREFIX if (strlen (REGISTER_PREFIX) != 0) { reg_number = decode_reg_name (name); if (reg_number >= 0 || reg_number == -3) error ("register name given for non-register variable %q+D", decl); } #endif } /* Specifying a section attribute on a variable forces it into a non-.bss section, and thus it cannot be common. */ /* FIXME: In general this code should not be necessary because visibility pass is doing the same work. But notice_global_symbol is called early and it needs to make DECL_RTL to get the name. we take care of recomputing the DECL_RTL after visibility is changed. */ if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl) != NULL_TREE && DECL_INITIAL (decl) == NULL_TREE && DECL_COMMON (decl)) DECL_COMMON (decl) = 0; /* Variables can't be both common and weak. */ if (TREE_CODE (decl) == VAR_DECL && DECL_WEAK (decl)) DECL_COMMON (decl) = 0; if (use_object_blocks_p () && use_blocks_for_decl_p (decl)) x = create_block_symbol (name, get_block_for_decl (decl), -1); else { enum machine_mode address_mode = Pmode; if (TREE_TYPE (decl) != error_mark_node) { addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (decl)); address_mode = targetm.addr_space.address_mode (as); } x = gen_rtx_SYMBOL_REF (address_mode, name); } SYMBOL_REF_WEAK (x) = DECL_WEAK (decl); SET_SYMBOL_REF_DECL (x, decl); x = gen_rtx_MEM (DECL_MODE (decl), x); if (TREE_CODE (decl) != FUNCTION_DECL) set_mem_attributes (x, decl, 1); SET_DECL_RTL (decl, x); /* Optionally set flags or add text to the name to record information such as that it is a function name. If the name is changed, the macro ASM_OUTPUT_LABELREF will have to know how to strip this information. */ targetm.encode_section_info (decl, DECL_RTL (decl), true); /* Make this function static known to the mudflap runtime. */ if (flag_mudflap && TREE_CODE (decl) == VAR_DECL) mudflap_enqueue_decl (decl); } /* Like make_decl_rtl, but inhibit creation of new alias sets when calling make_decl_rtl. Also, reset DECL_RTL before returning the rtl. */ rtx make_decl_rtl_for_debug (tree decl) { unsigned int save_aliasing_flag, save_mudflap_flag; rtx rtl; if (DECL_RTL_SET_P (decl)) return DECL_RTL (decl); /* Kludge alert! Somewhere down the call chain, make_decl_rtl will call new_alias_set. If running with -fcompare-debug, sometimes we do not want to create alias sets that will throw the alias numbers off in the comparison dumps. So... clearing flag_strict_aliasing will keep new_alias_set() from creating a new set. It is undesirable to register decl with mudflap in this case as well. */ save_aliasing_flag = flag_strict_aliasing; flag_strict_aliasing = 0; save_mudflap_flag = flag_mudflap; flag_mudflap = 0; rtl = DECL_RTL (decl); /* Reset DECL_RTL back, as various parts of the compiler expects DECL_RTL set meaning it is actually going to be output. */ SET_DECL_RTL (decl, NULL); flag_strict_aliasing = save_aliasing_flag; flag_mudflap = save_mudflap_flag; return rtl; } /* Output a string of literal assembler code for an `asm' keyword used between functions. */ void assemble_asm (tree string) { app_enable (); if (TREE_CODE (string) == ADDR_EXPR) string = TREE_OPERAND (string, 0); fprintf (asm_out_file, "\t%s\n", TREE_STRING_POINTER (string)); } /* Record an element in the table of global destructors. SYMBOL is a SYMBOL_REF of the function to be called; PRIORITY is a number between 0 and MAX_INIT_PRIORITY. */ void default_stabs_asm_out_destructor (rtx symbol ATTRIBUTE_UNUSED, int priority ATTRIBUTE_UNUSED) { #if defined DBX_DEBUGGING_INFO || defined XCOFF_DEBUGGING_INFO /* Tell GNU LD that this is part of the static destructor set. This will work for any system that uses stabs, most usefully aout systems. */ dbxout_begin_simple_stabs ("___DTOR_LIST__", 22 /* N_SETT */); dbxout_stab_value_label (XSTR (symbol, 0)); #else sorry ("global destructors not supported on this target"); #endif } /* Write the address of the entity given by SYMBOL to SEC. */ void assemble_addr_to_section (rtx symbol, section *sec) { switch_to_section (sec); assemble_align (POINTER_SIZE); assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1); } /* Return the numbered .ctors.N (if CONSTRUCTOR_P) or .dtors.N (if not) section for PRIORITY. */ section * get_cdtor_priority_section (int priority, bool constructor_p) { char buf[16]; /* ??? This only works reliably with the GNU linker. */ sprintf (buf, "%s.%.5u", constructor_p ? ".ctors" : ".dtors", /* Invert the numbering so the linker puts us in the proper order; constructors are run from right to left, and the linker sorts in increasing order. */ MAX_INIT_PRIORITY - priority); return get_section (buf, SECTION_WRITE, NULL); } void default_named_section_asm_out_destructor (rtx symbol, int priority) { section *sec; if (priority != DEFAULT_INIT_PRIORITY) sec = get_cdtor_priority_section (priority, /*constructor_p=*/false); else sec = get_section (".dtors", SECTION_WRITE, NULL); assemble_addr_to_section (symbol, sec); } #ifdef DTORS_SECTION_ASM_OP void default_dtor_section_asm_out_destructor (rtx symbol, int priority ATTRIBUTE_UNUSED) { assemble_addr_to_section (symbol, dtors_section); } #endif /* Likewise for global constructors. */ void default_stabs_asm_out_constructor (rtx symbol ATTRIBUTE_UNUSED, int priority ATTRIBUTE_UNUSED) { #if defined DBX_DEBUGGING_INFO || defined XCOFF_DEBUGGING_INFO /* Tell GNU LD that this is part of the static destructor set. This will work for any system that uses stabs, most usefully aout systems. */ dbxout_begin_simple_stabs ("___CTOR_LIST__", 22 /* N_SETT */); dbxout_stab_value_label (XSTR (symbol, 0)); #else sorry ("global constructors not supported on this target"); #endif } void default_named_section_asm_out_constructor (rtx symbol, int priority) { section *sec; if (priority != DEFAULT_INIT_PRIORITY) sec = get_cdtor_priority_section (priority, /*constructor_p=*/true); else sec = get_section (".ctors", SECTION_WRITE, NULL); assemble_addr_to_section (symbol, sec); } #ifdef CTORS_SECTION_ASM_OP void default_ctor_section_asm_out_constructor (rtx symbol, int priority ATTRIBUTE_UNUSED) { assemble_addr_to_section (symbol, ctors_section); } #endif /* CONSTANT_POOL_BEFORE_FUNCTION may be defined as an expression with a nonzero value if the constant pool should be output before the start of the function, or a zero value if the pool should output after the end of the function. The default is to put it before the start. */ #ifndef CONSTANT_POOL_BEFORE_FUNCTION #define CONSTANT_POOL_BEFORE_FUNCTION 1 #endif /* DECL is an object (either VAR_DECL or FUNCTION_DECL) which is going to be output to assembler. Set first_global_object_name and weak_global_object_name as appropriate. */ void notice_global_symbol (tree decl) { const char **type = &first_global_object_name; if (first_global_object_name || !TREE_PUBLIC (decl) || DECL_EXTERNAL (decl) || !DECL_NAME (decl) || (TREE_CODE (decl) != FUNCTION_DECL && (TREE_CODE (decl) != VAR_DECL || (DECL_COMMON (decl) && (DECL_INITIAL (decl) == 0 || DECL_INITIAL (decl) == error_mark_node)))) || !MEM_P (DECL_RTL (decl))) return; /* We win when global object is found, but it is useful to know about weak symbol as well so we can produce nicer unique names. */ if (DECL_WEAK (decl) || DECL_ONE_ONLY (decl) || flag_shlib) type = &weak_global_object_name; if (!*type) { const char *p; const char *name; rtx decl_rtl = DECL_RTL (decl); p = targetm.strip_name_encoding (XSTR (XEXP (decl_rtl, 0), 0)); name = ggc_strdup (p); *type = name; } } /* If not using flag_reorder_blocks_and_partition, decide early whether the current function goes into the cold section, so that targets can use current_function_section during RTL expansion. DECL describes the function. */ void decide_function_section (tree decl) { first_function_block_is_cold = false; if (flag_reorder_blocks_and_partition) /* We will decide in assemble_start_function. */ return; if (DECL_SECTION_NAME (decl)) { struct cgraph_node *node = cgraph_get_node (current_function_decl); /* Calls to function_section rely on first_function_block_is_cold being accurate. */ first_function_block_is_cold = (node && node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED); } in_cold_section_p = first_function_block_is_cold; } /* Output assembler code for the constant pool of a function and associated with defining the name of the function. DECL describes the function. NAME is the function's name. For the constant pool, we use the current constant pool data. */ void assemble_start_function (tree decl, const char *fnname) { int align; char tmp_label[100]; bool hot_label_written = false; if (flag_reorder_blocks_and_partition) { ASM_GENERATE_INTERNAL_LABEL (tmp_label, "LHOTB", const_labelno); crtl->subsections.hot_section_label = ggc_strdup (tmp_label); ASM_GENERATE_INTERNAL_LABEL (tmp_label, "LCOLDB", const_labelno); crtl->subsections.cold_section_label = ggc_strdup (tmp_label); ASM_GENERATE_INTERNAL_LABEL (tmp_label, "LHOTE", const_labelno); crtl->subsections.hot_section_end_label = ggc_strdup (tmp_label); ASM_GENERATE_INTERNAL_LABEL (tmp_label, "LCOLDE", const_labelno); crtl->subsections.cold_section_end_label = ggc_strdup (tmp_label); const_labelno++; } else { crtl->subsections.hot_section_label = NULL; crtl->subsections.cold_section_label = NULL; crtl->subsections.hot_section_end_label = NULL; crtl->subsections.cold_section_end_label = NULL; } /* The following code does not need preprocessing in the assembler. */ app_disable (); if (CONSTANT_POOL_BEFORE_FUNCTION) output_constant_pool (fnname, decl); /* Make sure the not and cold text (code) sections are properly aligned. This is necessary here in the case where the function has both hot and cold sections, because we don't want to re-set the alignment when the section switch happens mid-function. */ if (flag_reorder_blocks_and_partition) { first_function_block_is_cold = false; switch_to_section (unlikely_text_section ()); assemble_align (DECL_ALIGN (decl)); ASM_OUTPUT_LABEL (asm_out_file, crtl->subsections.cold_section_label); /* When the function starts with a cold section, we need to explicitly align the hot section and write out the hot section label. But if the current function is a thunk, we do not have a CFG. */ if (!cfun->is_thunk && BB_PARTITION (ENTRY_BLOCK_PTR->next_bb) == BB_COLD_PARTITION) { switch_to_section (text_section); assemble_align (DECL_ALIGN (decl)); ASM_OUTPUT_LABEL (asm_out_file, crtl->subsections.hot_section_label); hot_label_written = true; first_function_block_is_cold = true; } in_cold_section_p = first_function_block_is_cold; } /* Switch to the correct text section for the start of the function. */ switch_to_section (function_section (decl)); if (flag_reorder_blocks_and_partition && !hot_label_written) ASM_OUTPUT_LABEL (asm_out_file, crtl->subsections.hot_section_label); /* Tell assembler to move to target machine's alignment for functions. */ align = floor_log2 (DECL_ALIGN (decl) / BITS_PER_UNIT); if (align > 0) { ASM_OUTPUT_ALIGN (asm_out_file, align); } /* Handle a user-specified function alignment. Note that we still need to align to DECL_ALIGN, as above, because ASM_OUTPUT_MAX_SKIP_ALIGN might not do any alignment at all. */ if (! DECL_USER_ALIGN (decl) && align_functions_log > align && optimize_function_for_speed_p (cfun)) { #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN ASM_OUTPUT_MAX_SKIP_ALIGN (asm_out_file, align_functions_log, align_functions - 1); #else ASM_OUTPUT_ALIGN (asm_out_file, align_functions_log); #endif } #ifdef ASM_OUTPUT_FUNCTION_PREFIX ASM_OUTPUT_FUNCTION_PREFIX (asm_out_file, fnname); #endif if (!DECL_IGNORED_P (decl)) (*debug_hooks->begin_function) (decl); /* Make function name accessible from other files, if appropriate. */ if (TREE_PUBLIC (decl)) { notice_global_symbol (decl); globalize_decl (decl); maybe_assemble_visibility (decl); } if (DECL_PRESERVE_P (decl)) targetm.asm_out.mark_decl_preserved (fnname); /* Do any machine/system dependent processing of the function name. */ #ifdef ASM_DECLARE_FUNCTION_NAME ASM_DECLARE_FUNCTION_NAME (asm_out_file, fnname, current_function_decl); #else /* Standard thing is just output label for the function. */ ASM_OUTPUT_FUNCTION_LABEL (asm_out_file, fnname, current_function_decl); #endif /* ASM_DECLARE_FUNCTION_NAME */ if (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (decl))) saw_no_split_stack = true; } /* Output assembler code associated with defining the size of the function. DECL describes the function. NAME is the function's name. */ void assemble_end_function (tree decl, const char *fnname ATTRIBUTE_UNUSED) { #ifdef ASM_DECLARE_FUNCTION_SIZE /* We could have switched section in the middle of the function. */ if (flag_reorder_blocks_and_partition) switch_to_section (function_section (decl)); ASM_DECLARE_FUNCTION_SIZE (asm_out_file, fnname, decl); #endif if (! CONSTANT_POOL_BEFORE_FUNCTION) { output_constant_pool (fnname, decl); switch_to_section (function_section (decl)); /* need to switch back */ } /* Output labels for end of hot/cold text sections (to be used by debug info.) */ if (flag_reorder_blocks_and_partition) { section *save_text_section; save_text_section = in_section; switch_to_section (unlikely_text_section ()); ASM_OUTPUT_LABEL (asm_out_file, crtl->subsections.cold_section_end_label); if (first_function_block_is_cold) switch_to_section (text_section); else switch_to_section (function_section (decl)); ASM_OUTPUT_LABEL (asm_out_file, crtl->subsections.hot_section_end_label); switch_to_section (save_text_section); } } /* Assemble code to leave SIZE bytes of zeros. */ void assemble_zeros (unsigned HOST_WIDE_INT size) { /* Do no output if -fsyntax-only. */ if (flag_syntax_only) return; #ifdef ASM_NO_SKIP_IN_TEXT /* The `space' pseudo in the text section outputs nop insns rather than 0s, so we must output 0s explicitly in the text section. */ if (ASM_NO_SKIP_IN_TEXT && (in_section->common.flags & SECTION_CODE) != 0) { unsigned HOST_WIDE_INT i; for (i = 0; i < size; i++) assemble_integer (const0_rtx, 1, BITS_PER_UNIT, 1); } else #endif if (size > 0) ASM_OUTPUT_SKIP (asm_out_file, size); } /* Assemble an alignment pseudo op for an ALIGN-bit boundary. */ void assemble_align (int align) { if (align > BITS_PER_UNIT) { ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (align / BITS_PER_UNIT)); } } /* Assemble a string constant with the specified C string as contents. */ void assemble_string (const char *p, int size) { int pos = 0; int maximum = 2000; /* If the string is very long, split it up. */ while (pos < size) { int thissize = size - pos; if (thissize > maximum) thissize = maximum; ASM_OUTPUT_ASCII (asm_out_file, p, thissize); pos += thissize; p += thissize; } } /* A noswitch_section_callback for lcomm_section. */ static bool emit_local (tree decl ATTRIBUTE_UNUSED, const char *name ATTRIBUTE_UNUSED, unsigned HOST_WIDE_INT size ATTRIBUTE_UNUSED, unsigned HOST_WIDE_INT rounded ATTRIBUTE_UNUSED) { #if defined ASM_OUTPUT_ALIGNED_DECL_LOCAL ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, decl, name, size, DECL_ALIGN (decl)); return true; #elif defined ASM_OUTPUT_ALIGNED_LOCAL ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size, DECL_ALIGN (decl)); return true; #else ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded); return false; #endif } /* A noswitch_section_callback for bss_noswitch_section. */ #if defined ASM_OUTPUT_ALIGNED_BSS static bool emit_bss (tree decl ATTRIBUTE_UNUSED, const char *name ATTRIBUTE_UNUSED, unsigned HOST_WIDE_INT size ATTRIBUTE_UNUSED, unsigned HOST_WIDE_INT rounded ATTRIBUTE_UNUSED) { #if defined ASM_OUTPUT_ALIGNED_BSS ASM_OUTPUT_ALIGNED_BSS (asm_out_file, decl, name, size, DECL_ALIGN (decl)); return true; #endif } #endif /* A noswitch_section_callback for comm_section. */ static bool emit_common (tree decl ATTRIBUTE_UNUSED, const char *name ATTRIBUTE_UNUSED, unsigned HOST_WIDE_INT size ATTRIBUTE_UNUSED, unsigned HOST_WIDE_INT rounded ATTRIBUTE_UNUSED) { #if defined ASM_OUTPUT_ALIGNED_DECL_COMMON ASM_OUTPUT_ALIGNED_DECL_COMMON (asm_out_file, decl, name, size, DECL_ALIGN (decl)); return true; #elif defined ASM_OUTPUT_ALIGNED_COMMON ASM_OUTPUT_ALIGNED_COMMON (asm_out_file, name, size, DECL_ALIGN (decl)); return true; #else ASM_OUTPUT_COMMON (asm_out_file, name, size, rounded); return false; #endif } /* A noswitch_section_callback for tls_comm_section. */ static bool emit_tls_common (tree decl ATTRIBUTE_UNUSED, const char *name ATTRIBUTE_UNUSED, unsigned HOST_WIDE_INT size ATTRIBUTE_UNUSED, unsigned HOST_WIDE_INT rounded ATTRIBUTE_UNUSED) { #ifdef ASM_OUTPUT_TLS_COMMON ASM_OUTPUT_TLS_COMMON (asm_out_file, decl, name, size); return true; #else sorry ("thread-local COMMON data not implemented"); return true; #endif } /* Assemble DECL given that it belongs in SECTION_NOSWITCH section SECT. NAME is the name of DECL's SYMBOL_REF. */ static void assemble_noswitch_variable (tree decl, const char *name, section *sect) { unsigned HOST_WIDE_INT size, rounded; size = tree_low_cst (DECL_SIZE_UNIT (decl), 1); rounded = size; /* Don't allocate zero bytes of common, since that means "undefined external" in the linker. */ if (size == 0) rounded = 1; /* Round size up to multiple of BIGGEST_ALIGNMENT bits so that each uninitialized object starts on such a boundary. */ rounded += (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1; rounded = (rounded / (BIGGEST_ALIGNMENT / BITS_PER_UNIT) * (BIGGEST_ALIGNMENT / BITS_PER_UNIT)); if (!sect->noswitch.callback (decl, name, size, rounded) && (unsigned HOST_WIDE_INT) DECL_ALIGN_UNIT (decl) > rounded) warning (0, "requested alignment for %q+D is greater than " "implemented alignment of %wu", decl, rounded); } /* A subroutine of assemble_variable. Output the label and contents of DECL, whose address is a SYMBOL_REF with name NAME. DONT_OUTPUT_DATA is as for assemble_variable. */ static void assemble_variable_contents (tree decl, const char *name, bool dont_output_data) { /* Do any machine/system dependent processing of the object. */ #ifdef ASM_DECLARE_OBJECT_NAME last_assemble_variable_decl = decl; ASM_DECLARE_OBJECT_NAME (asm_out_file, name, decl); #else /* Standard thing is just output label for the object. */ ASM_OUTPUT_LABEL (asm_out_file, name); #endif /* ASM_DECLARE_OBJECT_NAME */ if (!dont_output_data) { if (DECL_INITIAL (decl) && DECL_INITIAL (decl) != error_mark_node && !initializer_zerop (DECL_INITIAL (decl))) /* Output the actual data. */ output_constant (DECL_INITIAL (decl), tree_low_cst (DECL_SIZE_UNIT (decl), 1), DECL_ALIGN (decl)); else /* Leave space for it. */ assemble_zeros (tree_low_cst (DECL_SIZE_UNIT (decl), 1)); } } /* Assemble everything that is needed for a variable or function declaration. Not used for automatic variables, and not used for function definitions. Should not be called for variables of incomplete structure type. TOP_LEVEL is nonzero if this variable has file scope. AT_END is nonzero if this is the special handling, at end of compilation, to define things that have had only tentative definitions. DONT_OUTPUT_DATA if nonzero means don't actually output the initial value (that will be done by the caller). */ void assemble_variable (tree decl, int top_level ATTRIBUTE_UNUSED, int at_end ATTRIBUTE_UNUSED, int dont_output_data) { const char *name; rtx decl_rtl, symbol; section *sect; /* This function is supposed to handle VARIABLES. Ensure we have one. */ gcc_assert (TREE_CODE (decl) == VAR_DECL); /* Emulated TLS had better not get this far. */ gcc_checking_assert (targetm.have_tls || !DECL_THREAD_LOCAL_P (decl)); last_assemble_variable_decl = 0; /* Normally no need to say anything here for external references, since assemble_external is called by the language-specific code when a declaration is first seen. */ if (DECL_EXTERNAL (decl)) return; /* Do nothing for global register variables. */ if (DECL_RTL_SET_P (decl) && REG_P (DECL_RTL (decl))) { TREE_ASM_WRITTEN (decl) = 1; return; } /* If type was incomplete when the variable was declared, see if it is complete now. */ if (DECL_SIZE (decl) == 0) layout_decl (decl, 0); /* Still incomplete => don't allocate it; treat the tentative defn (which is what it must have been) as an `extern' reference. */ if (!dont_output_data && DECL_SIZE (decl) == 0) { error ("storage size of %q+D isn%'t known", decl); TREE_ASM_WRITTEN (decl) = 1; return; } /* The first declaration of a variable that comes through this function decides whether it is global (in C, has external linkage) or local (in C, has internal linkage). So do nothing more if this function has already run. */ if (TREE_ASM_WRITTEN (decl)) return; /* Make sure targetm.encode_section_info is invoked before we set ASM_WRITTEN. */ decl_rtl = DECL_RTL (decl); TREE_ASM_WRITTEN (decl) = 1; /* Do no output if -fsyntax-only. */ if (flag_syntax_only) return; if (! dont_output_data && ! host_integerp (DECL_SIZE_UNIT (decl), 1)) { error ("size of variable %q+D is too large", decl); return; } gcc_assert (MEM_P (decl_rtl)); gcc_assert (GET_CODE (XEXP (decl_rtl, 0)) == SYMBOL_REF); symbol = XEXP (decl_rtl, 0); /* If this symbol belongs to the tree constant pool, output the constant if it hasn't already been written. */ if (TREE_CONSTANT_POOL_ADDRESS_P (symbol)) { tree decl = SYMBOL_REF_DECL (symbol); if (!TREE_ASM_WRITTEN (DECL_INITIAL (decl))) output_constant_def_contents (symbol); return; } app_disable (); name = XSTR (symbol, 0); if (TREE_PUBLIC (decl) && DECL_NAME (decl)) notice_global_symbol (decl); /* Compute the alignment of this data. */ align_variable (decl, dont_output_data); set_mem_align (decl_rtl, DECL_ALIGN (decl)); if (TREE_PUBLIC (decl)) maybe_assemble_visibility (decl); if (DECL_PRESERVE_P (decl)) targetm.asm_out.mark_decl_preserved (name); /* First make the assembler name(s) global if appropriate. */ sect = get_variable_section (decl, false); if (TREE_PUBLIC (decl) && (sect->common.flags & SECTION_COMMON) == 0) globalize_decl (decl); /* Output any data that we will need to use the address of. */ if (DECL_INITIAL (decl) && DECL_INITIAL (decl) != error_mark_node) output_addressed_constants (DECL_INITIAL (decl)); /* dbxout.c needs to know this. */ if (sect && (sect->common.flags & SECTION_CODE) != 0) DECL_IN_TEXT_SECTION (decl) = 1; /* If the decl is part of an object_block, make sure that the decl has been positioned within its block, but do not write out its definition yet. output_object_blocks will do that later. */ if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol) && SYMBOL_REF_BLOCK (symbol)) { gcc_assert (!dont_output_data); place_block_symbol (symbol); } else if (SECTION_STYLE (sect) == SECTION_NOSWITCH) assemble_noswitch_variable (decl, name, sect); else { switch_to_section (sect); if (DECL_ALIGN (decl) > BITS_PER_UNIT) ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (DECL_ALIGN_UNIT (decl))); assemble_variable_contents (decl, name, dont_output_data); } } /* Return 1 if type TYPE contains any pointers. */ static int contains_pointers_p (tree type) { switch (TREE_CODE (type)) { case POINTER_TYPE: case REFERENCE_TYPE: /* I'm not sure whether OFFSET_TYPE needs this treatment, so I'll play safe and return 1. */ case OFFSET_TYPE: return 1; case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: { tree fields; /* For a type that has fields, see if the fields have pointers. */ for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields)) if (TREE_CODE (fields) == FIELD_DECL && contains_pointers_p (TREE_TYPE (fields))) return 1; return 0; } case ARRAY_TYPE: /* An array type contains pointers if its element type does. */ return contains_pointers_p (TREE_TYPE (type)); default: return 0; } } /* We delay assemble_external processing until the compilation unit is finalized. This is the best we can do for right now (i.e. stage 3 of GCC 4.0) - the right thing is to delay it all the way to final. See PR 17982 for further discussion. */ static GTY(()) tree pending_assemble_externals; #ifdef ASM_OUTPUT_EXTERNAL /* True if DECL is a function decl for which no out-of-line copy exists. It is assumed that DECL's assembler name has been set. */ static bool incorporeal_function_p (tree decl) { if (TREE_CODE (decl) == FUNCTION_DECL && DECL_BUILT_IN (decl)) { const char *name; if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL && (DECL_FUNCTION_CODE (decl) == BUILT_IN_ALLOCA || DECL_FUNCTION_CODE (decl) == BUILT_IN_ALLOCA_WITH_ALIGN)) return true; name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); /* Atomic or sync builtins which have survived this far will be resolved externally and therefore are not incorporeal. */ if (strncmp (name, "__builtin_", 10) == 0) return true; } return false; } /* Actually do the tests to determine if this is necessary, and invoke ASM_OUTPUT_EXTERNAL. */ static void assemble_external_real (tree decl) { rtx rtl = DECL_RTL (decl); if (MEM_P (rtl) && GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF && !SYMBOL_REF_USED (XEXP (rtl, 0)) && !incorporeal_function_p (decl)) { /* Some systems do require some output. */ SYMBOL_REF_USED (XEXP (rtl, 0)) = 1; ASM_OUTPUT_EXTERNAL (asm_out_file, decl, XSTR (XEXP (rtl, 0), 0)); } } #endif void process_pending_assemble_externals (void) { #ifdef ASM_OUTPUT_EXTERNAL tree list; for (list = pending_assemble_externals; list; list = TREE_CHAIN (list)) assemble_external_real (TREE_VALUE (list)); pending_assemble_externals = 0; #endif } /* This TREE_LIST contains any weak symbol declarations waiting to be emitted. */ static GTY(()) tree weak_decls; /* Output something to declare an external symbol to the assembler, and qualifiers such as weakness. (Most assemblers don't need extern declaration, so we normally output nothing.) Do nothing if DECL is not external. */ void assemble_external (tree decl ATTRIBUTE_UNUSED) { /* Because most platforms do not define ASM_OUTPUT_EXTERNAL, the main body of this code is only rarely exercised. To provide some testing, on all platforms, we make sure that the ASM_OUT_FILE is open. If it's not, we should not be calling this function. */ gcc_assert (asm_out_file); if (!DECL_P (decl) || !DECL_EXTERNAL (decl) || !TREE_PUBLIC (decl)) return; /* We want to output annotation for weak and external symbols at very last to check if they are references or not. */ if (TARGET_SUPPORTS_WEAK && DECL_WEAK (decl) /* TREE_STATIC is a weird and abused creature which is not generally the right test for whether an entity has been locally emitted, inlined or otherwise not-really-extern, but for declarations that can be weak, it happens to be match. */ && !TREE_STATIC (decl) && lookup_attribute ("weak", DECL_ATTRIBUTES (decl)) && value_member (decl, weak_decls) == NULL_TREE) weak_decls = tree_cons (NULL, decl, weak_decls); #ifdef ASM_OUTPUT_EXTERNAL if (value_member (decl, pending_assemble_externals) == NULL_TREE) pending_assemble_externals = tree_cons (NULL, decl, pending_assemble_externals); #endif } /* Similar, for calling a library function FUN. */ void assemble_external_libcall (rtx fun) { /* Declare library function name external when first used, if nec. */ if (! SYMBOL_REF_USED (fun)) { SYMBOL_REF_USED (fun) = 1; targetm.asm_out.external_libcall (fun); } } /* Assemble a label named NAME. */ void assemble_label (FILE *file, const char *name) { ASM_OUTPUT_LABEL (file, name); } /* Set the symbol_referenced flag for ID. */ void mark_referenced (tree id) { TREE_SYMBOL_REFERENCED (id) = 1; } /* Set the symbol_referenced flag for DECL and notify callgraph. */ void mark_decl_referenced (tree decl) { if (TREE_CODE (decl) == FUNCTION_DECL) { /* Extern inline functions don't become needed when referenced. If we know a method will be emitted in other TU and no new functions can be marked reachable, just use the external definition. */ struct cgraph_node *node = cgraph_get_create_node (decl); if (!DECL_EXTERNAL (decl) && !node->local.finalized) cgraph_mark_needed_node (node); } else if (TREE_CODE (decl) == VAR_DECL) { struct varpool_node *node = varpool_node (decl); varpool_mark_needed_node (node); /* C++ frontend use mark_decl_references to force COMDAT variables to be output that might appear dead otherwise. */ node->force_output = true; } /* else do nothing - we can get various sorts of CST nodes here, which do not need to be marked. */ } /* Follow the IDENTIFIER_TRANSPARENT_ALIAS chain starting at *ALIAS until we find an identifier that is not itself a transparent alias. Modify the alias passed to it by reference (and all aliases on the way to the ultimate target), such that they do not have to be followed again, and return the ultimate target of the alias chain. */ static inline tree ultimate_transparent_alias_target (tree *alias) { tree target = *alias; if (IDENTIFIER_TRANSPARENT_ALIAS (target)) { gcc_assert (TREE_CHAIN (target)); target = ultimate_transparent_alias_target (&TREE_CHAIN (target)); gcc_assert (! IDENTIFIER_TRANSPARENT_ALIAS (target) && ! TREE_CHAIN (target)); *alias = target; } return target; } /* Output to FILE (an assembly file) a reference to NAME. If NAME starts with a *, the rest of NAME is output verbatim. Otherwise NAME is transformed in a target-specific way (usually by the addition of an underscore). */ void assemble_name_raw (FILE *file, const char *name) { if (name[0] == '*') fputs (&name[1], file); else ASM_OUTPUT_LABELREF (file, name); } /* Like assemble_name_raw, but should be used when NAME might refer to an entity that is also represented as a tree (like a function or variable). If NAME does refer to such an entity, that entity will be marked as referenced. */ void assemble_name (FILE *file, const char *name) { const char *real_name; tree id; real_name = targetm.strip_name_encoding (name); id = maybe_get_identifier (real_name); if (id) { tree id_orig = id; mark_referenced (id); ultimate_transparent_alias_target (&id); if (id != id_orig) name = IDENTIFIER_POINTER (id); gcc_assert (! TREE_CHAIN (id)); } assemble_name_raw (file, name); } /* Allocate SIZE bytes writable static space with a gensym name and return an RTX to refer to its address. */ rtx assemble_static_space (unsigned HOST_WIDE_INT size) { char name[12]; const char *namestring; rtx x; ASM_GENERATE_INTERNAL_LABEL (name, "LF", const_labelno); ++const_labelno; namestring = ggc_strdup (name); x = gen_rtx_SYMBOL_REF (Pmode, namestring); SYMBOL_REF_FLAGS (x) = SYMBOL_FLAG_LOCAL; #ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, NULL_TREE, name, size, BIGGEST_ALIGNMENT); #else #ifdef ASM_OUTPUT_ALIGNED_LOCAL ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size, BIGGEST_ALIGNMENT); #else { /* Round size up to multiple of BIGGEST_ALIGNMENT bits so that each uninitialized object starts on such a boundary. */ /* Variable `rounded' might or might not be used in ASM_OUTPUT_LOCAL. */ unsigned HOST_WIDE_INT rounded ATTRIBUTE_UNUSED = ((size + (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1) / (BIGGEST_ALIGNMENT / BITS_PER_UNIT) * (BIGGEST_ALIGNMENT / BITS_PER_UNIT)); ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded); } #endif #endif return x; } /* Assemble the static constant template for function entry trampolines. This is done at most once per compilation. Returns an RTX for the address of the template. */ static GTY(()) rtx initial_trampoline; rtx assemble_trampoline_template (void) { char label[256]; const char *name; int align; rtx symbol; gcc_assert (targetm.asm_out.trampoline_template != NULL); if (initial_trampoline) return initial_trampoline; /* By default, put trampoline templates in read-only data section. */ #ifdef TRAMPOLINE_SECTION switch_to_section (TRAMPOLINE_SECTION); #else switch_to_section (readonly_data_section); #endif /* Write the assembler code to define one. */ align = floor_log2 (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT); if (align > 0) ASM_OUTPUT_ALIGN (asm_out_file, align); targetm.asm_out.internal_label (asm_out_file, "LTRAMP", 0); targetm.asm_out.trampoline_template (asm_out_file); /* Record the rtl to refer to it. */ ASM_GENERATE_INTERNAL_LABEL (label, "LTRAMP", 0); name = ggc_strdup (label); symbol = gen_rtx_SYMBOL_REF (Pmode, name); SYMBOL_REF_FLAGS (symbol) = SYMBOL_FLAG_LOCAL; initial_trampoline = gen_const_mem (BLKmode, symbol); set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT); set_mem_size (initial_trampoline, TRAMPOLINE_SIZE); return initial_trampoline; } /* A and B are either alignments or offsets. Return the minimum alignment that may be assumed after adding the two together. */ static inline unsigned min_align (unsigned int a, unsigned int b) { return (a | b) & -(a | b); } /* Return the assembler directive for creating a given kind of integer object. SIZE is the number of bytes in the object and ALIGNED_P indicates whether it is known to be aligned. Return NULL if the assembly dialect has no such directive. The returned string should be printed at the start of a new line and be followed immediately by the object's initial value. */ const char * integer_asm_op (int size, int aligned_p) { struct asm_int_op *ops; if (aligned_p) ops = &targetm.asm_out.aligned_op; else ops = &targetm.asm_out.unaligned_op; switch (size) { case 1: return targetm.asm_out.byte_op; case 2: return ops->hi; case 4: return ops->si; case 8: return ops->di; case 16: return ops->ti; default: return NULL; } } /* Use directive OP to assemble an integer object X. Print OP at the start of the line, followed immediately by the value of X. */ void assemble_integer_with_op (const char *op, rtx x) { fputs (op, asm_out_file); output_addr_const (asm_out_file, x); fputc ('\n', asm_out_file); } /* The default implementation of the asm_out.integer target hook. */ bool default_assemble_integer (rtx x ATTRIBUTE_UNUSED, unsigned int size ATTRIBUTE_UNUSED, int aligned_p ATTRIBUTE_UNUSED) { const char *op = integer_asm_op (size, aligned_p); /* Avoid GAS bugs for large values. Specifically negative values whose absolute value fits in a bfd_vma, but not in a bfd_signed_vma. */ if (size > UNITS_PER_WORD && size > POINTER_SIZE / BITS_PER_UNIT) return false; return op && (assemble_integer_with_op (op, x), true); } /* Assemble the integer constant X into an object of SIZE bytes. ALIGN is the alignment of the integer in bits. Return 1 if we were able to output the constant, otherwise 0. We must be able to output the constant, if FORCE is nonzero. */ bool assemble_integer (rtx x, unsigned int size, unsigned int align, int force) { int aligned_p; aligned_p = (align >= MIN (size * BITS_PER_UNIT, BIGGEST_ALIGNMENT)); /* See if the target hook can handle this kind of object. */ if (targetm.asm_out.integer (x, size, aligned_p)) return true; /* If the object is a multi-byte one, try splitting it up. Split it into words it if is multi-word, otherwise split it into bytes. */ if (size > 1) { enum machine_mode omode, imode; unsigned int subalign; unsigned int subsize, i; enum mode_class mclass; subsize = size > UNITS_PER_WORD? UNITS_PER_WORD : 1; subalign = MIN (align, subsize * BITS_PER_UNIT); if (GET_CODE (x) == CONST_FIXED) mclass = GET_MODE_CLASS (GET_MODE (x)); else mclass = MODE_INT; omode = mode_for_size (subsize * BITS_PER_UNIT, mclass, 0); imode = mode_for_size (size * BITS_PER_UNIT, mclass, 0); for (i = 0; i < size; i += subsize) { rtx partial = simplify_subreg (omode, x, imode, i); if (!partial || !assemble_integer (partial, subsize, subalign, 0)) break; } if (i == size) return true; /* If we've printed some of it, but not all of it, there's no going back now. */ gcc_assert (!i); } gcc_assert (!force); return false; } void assemble_real (REAL_VALUE_TYPE d, enum machine_mode mode, unsigned int align) { long data[4] = {0, 0, 0, 0}; int i; int bitsize, nelts, nunits, units_per; /* This is hairy. We have a quantity of known size. real_to_target will put it into an array of *host* longs, 32 bits per element (even if long is more than 32 bits). We need to determine the number of array elements that are occupied (nelts) and the number of *target* min-addressable units that will be occupied in the object file (nunits). We cannot assume that 32 divides the mode's bitsize (size * BITS_PER_UNIT) evenly. size * BITS_PER_UNIT is used here to make sure that padding bits (which might appear at either end of the value; real_to_target will include the padding bits in its output array) are included. */ nunits = GET_MODE_SIZE (mode); bitsize = nunits * BITS_PER_UNIT; nelts = CEIL (bitsize, 32); units_per = 32 / BITS_PER_UNIT; real_to_target (data, &d, mode); /* Put out the first word with the specified alignment. */ assemble_integer (GEN_INT (data[0]), MIN (nunits, units_per), align, 1); nunits -= units_per; /* Subsequent words need only 32-bit alignment. */ align = min_align (align, 32); for (i = 1; i < nelts; i++) { assemble_integer (GEN_INT (data[i]), MIN (nunits, units_per), align, 1); nunits -= units_per; } } /* Given an expression EXP with a constant value, reduce it to the sum of an assembler symbol and an integer. Store them both in the structure *VALUE. EXP must be reducible. */ struct addr_const { rtx base; HOST_WIDE_INT offset; }; static void decode_addr_const (tree exp, struct addr_const *value) { tree target = TREE_OPERAND (exp, 0); int offset = 0; rtx x; while (1) { if (TREE_CODE (target) == COMPONENT_REF && host_integerp (byte_position (TREE_OPERAND (target, 1)), 0)) { offset += int_byte_position (TREE_OPERAND (target, 1)); target = TREE_OPERAND (target, 0); } else if (TREE_CODE (target) == ARRAY_REF || TREE_CODE (target) == ARRAY_RANGE_REF) { offset += (tree_low_cst (TYPE_SIZE_UNIT (TREE_TYPE (target)), 1) * tree_low_cst (TREE_OPERAND (target, 1), 0)); target = TREE_OPERAND (target, 0); } else if (TREE_CODE (target) == MEM_REF && TREE_CODE (TREE_OPERAND (target, 0)) == ADDR_EXPR) { offset += mem_ref_offset (target).low; target = TREE_OPERAND (TREE_OPERAND (target, 0), 0); } else if (TREE_CODE (target) == INDIRECT_REF && TREE_CODE (TREE_OPERAND (target, 0)) == NOP_EXPR && TREE_CODE (TREE_OPERAND (TREE_OPERAND (target, 0), 0)) == ADDR_EXPR) target = TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (target, 0), 0), 0); else break; } switch (TREE_CODE (target)) { case VAR_DECL: case FUNCTION_DECL: x = DECL_RTL (target); break; case LABEL_DECL: x = gen_rtx_MEM (FUNCTION_MODE, gen_rtx_LABEL_REF (Pmode, force_label_rtx (target))); break; case REAL_CST: case FIXED_CST: case STRING_CST: case COMPLEX_CST: case CONSTRUCTOR: case INTEGER_CST: x = output_constant_def (target, 1); break; default: gcc_unreachable (); } gcc_assert (MEM_P (x)); x = XEXP (x, 0); value->base = x; value->offset = offset; } static GTY((param_is (struct constant_descriptor_tree))) htab_t const_desc_htab; static void maybe_output_constant_def_contents (struct constant_descriptor_tree *, int); /* Constant pool accessor function. */ htab_t constant_pool_htab (void) { return const_desc_htab; } /* Compute a hash code for a constant expression. */ static hashval_t const_desc_hash (const void *ptr) { return ((const struct constant_descriptor_tree *)ptr)->hash; } static hashval_t const_hash_1 (const tree exp) { const char *p; hashval_t hi; int len, i; enum tree_code code = TREE_CODE (exp); /* Either set P and LEN to the address and len of something to hash and exit the switch or return a value. */ switch (code) { case INTEGER_CST: p = (char *) &TREE_INT_CST (exp); len = sizeof TREE_INT_CST (exp); break; case REAL_CST: return real_hash (TREE_REAL_CST_PTR (exp)); case FIXED_CST: return fixed_hash (TREE_FIXED_CST_PTR (exp)); case STRING_CST: p = TREE_STRING_POINTER (exp); len = TREE_STRING_LENGTH (exp); break; case COMPLEX_CST: return (const_hash_1 (TREE_REALPART (exp)) * 5 + const_hash_1 (TREE_IMAGPART (exp))); case VECTOR_CST: { tree link; hi = 7 + TYPE_VECTOR_SUBPARTS (TREE_TYPE (exp)); for (link = TREE_VECTOR_CST_ELTS (exp); link; link = TREE_CHAIN (link)) hi = hi * 563 + const_hash_1 (TREE_VALUE (link)); return hi; } case CONSTRUCTOR: { unsigned HOST_WIDE_INT idx; tree value; hi = 5 + int_size_in_bytes (TREE_TYPE (exp)); FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value) if (value) hi = hi * 603 + const_hash_1 (value); return hi; } case ADDR_EXPR: case FDESC_EXPR: { struct addr_const value; decode_addr_const (exp, &value); switch (GET_CODE (value.base)) { case SYMBOL_REF: /* Don't hash the address of the SYMBOL_REF; only use the offset and the symbol name. */ hi = value.offset; p = XSTR (value.base, 0); for (i = 0; p[i] != 0; i++) hi = ((hi * 613) + (unsigned) (p[i])); break; case LABEL_REF: hi = value.offset + CODE_LABEL_NUMBER (XEXP (value.base, 0)) * 13; break; default: gcc_unreachable (); } } return hi; case PLUS_EXPR: case POINTER_PLUS_EXPR: case MINUS_EXPR: return (const_hash_1 (TREE_OPERAND (exp, 0)) * 9 + const_hash_1 (TREE_OPERAND (exp, 1))); CASE_CONVERT: return const_hash_1 (TREE_OPERAND (exp, 0)) * 7 + 2; default: /* A language specific constant. Just hash the code. */ return code; } /* Compute hashing function. */ hi = len; for (i = 0; i < len; i++) hi = ((hi * 613) + (unsigned) (p[i])); return hi; } /* Wrapper of compare_constant, for the htab interface. */ static int const_desc_eq (const void *p1, const void *p2) { const struct constant_descriptor_tree *const c1 = (const struct constant_descriptor_tree *) p1; const struct constant_descriptor_tree *const c2 = (const struct constant_descriptor_tree *) p2; if (c1->hash != c2->hash) return 0; return compare_constant (c1->value, c2->value); } /* Compare t1 and t2, and return 1 only if they are known to result in the same bit pattern on output. */ static int compare_constant (const tree t1, const tree t2) { enum tree_code typecode; if (t1 == NULL_TREE) return t2 == NULL_TREE; if (t2 == NULL_TREE) return 0; if (TREE_CODE (t1) != TREE_CODE (t2)) return 0; switch (TREE_CODE (t1)) { case INTEGER_CST: /* Integer constants are the same only if the same width of type. */ if (TYPE_PRECISION (TREE_TYPE (t1)) != TYPE_PRECISION (TREE_TYPE (t2))) return 0; if (TYPE_MODE (TREE_TYPE (t1)) != TYPE_MODE (TREE_TYPE (t2))) return 0; return tree_int_cst_equal (t1, t2); case REAL_CST: /* Real constants are the same only if the same width of type. */ if (TYPE_PRECISION (TREE_TYPE (t1)) != TYPE_PRECISION (TREE_TYPE (t2))) return 0; return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2)); case FIXED_CST: /* Fixed constants are the same only if the same width of type. */ if (TYPE_PRECISION (TREE_TYPE (t1)) != TYPE_PRECISION (TREE_TYPE (t2))) return 0; return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2)); case STRING_CST: if (TYPE_MODE (TREE_TYPE (t1)) != TYPE_MODE (TREE_TYPE (t2))) return 0; return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2) && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2), TREE_STRING_LENGTH (t1))); case COMPLEX_CST: return (compare_constant (TREE_REALPART (t1), TREE_REALPART (t2)) && compare_constant (TREE_IMAGPART (t1), TREE_IMAGPART (t2))); case VECTOR_CST: { tree link1, link2; if (TYPE_VECTOR_SUBPARTS (TREE_TYPE (t1)) != TYPE_VECTOR_SUBPARTS (TREE_TYPE (t2))) return 0; link2 = TREE_VECTOR_CST_ELTS (t2); for (link1 = TREE_VECTOR_CST_ELTS (t1); link1; link1 = TREE_CHAIN (link1)) { if (!compare_constant (TREE_VALUE (link1), TREE_VALUE (link2))) return 0; link2 = TREE_CHAIN (link2); } return 1; } case CONSTRUCTOR: { VEC(constructor_elt, gc) *v1, *v2; unsigned HOST_WIDE_INT idx; typecode = TREE_CODE (TREE_TYPE (t1)); if (typecode != TREE_CODE (TREE_TYPE (t2))) return 0; if (typecode == ARRAY_TYPE) { HOST_WIDE_INT size_1 = int_size_in_bytes (TREE_TYPE (t1)); /* For arrays, check that the sizes all match. */ if (TYPE_MODE (TREE_TYPE (t1)) != TYPE_MODE (TREE_TYPE (t2)) || size_1 == -1 || size_1 != int_size_in_bytes (TREE_TYPE (t2))) return 0; } else { /* For record and union constructors, require exact type equality. */ if (TREE_TYPE (t1) != TREE_TYPE (t2)) return 0; } v1 = CONSTRUCTOR_ELTS (t1); v2 = CONSTRUCTOR_ELTS (t2); if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2)) return 0; for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx) { constructor_elt *c1 = VEC_index (constructor_elt, v1, idx); constructor_elt *c2 = VEC_index (constructor_elt, v2, idx); /* Check that each value is the same... */ if (!compare_constant (c1->value, c2->value)) return 0; /* ... and that they apply to the same fields! */ if (typecode == ARRAY_TYPE) { if (!compare_constant (c1->index, c2->index)) return 0; } else { if (c1->index != c2->index) return 0; } } return 1; } case ADDR_EXPR: case FDESC_EXPR: { struct addr_const value1, value2; enum rtx_code code; int ret; decode_addr_const (t1, &value1); decode_addr_const (t2, &value2); if (value1.offset != value2.offset) return 0; code = GET_CODE (value1.base); if (code != GET_CODE (value2.base)) return 0; switch (code) { case SYMBOL_REF: ret = (strcmp (XSTR (value1.base, 0), XSTR (value2.base, 0)) == 0); break; case LABEL_REF: ret = (CODE_LABEL_NUMBER (XEXP (value1.base, 0)) == CODE_LABEL_NUMBER (XEXP (value2.base, 0))); break; default: gcc_unreachable (); } return ret; } case PLUS_EXPR: case POINTER_PLUS_EXPR: case MINUS_EXPR: case RANGE_EXPR: return (compare_constant (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)) && compare_constant(TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1))); CASE_CONVERT: case VIEW_CONVERT_EXPR: return compare_constant (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); default: return 0; } gcc_unreachable (); } /* Make a copy of the whole tree structure for a constant. This handles the same types of nodes that compare_constant handles. */ static tree copy_constant (tree exp) { switch (TREE_CODE (exp)) { case ADDR_EXPR: /* For ADDR_EXPR, we do not want to copy the decl whose address is requested. We do want to copy constants though. */ if (CONSTANT_CLASS_P (TREE_OPERAND (exp, 0))) return build1 (TREE_CODE (exp), TREE_TYPE (exp), copy_constant (TREE_OPERAND (exp, 0))); else return copy_node (exp); case INTEGER_CST: case REAL_CST: case FIXED_CST: case STRING_CST: return copy_node (exp); case COMPLEX_CST: return build_complex (TREE_TYPE (exp), copy_constant (TREE_REALPART (exp)), copy_constant (TREE_IMAGPART (exp))); case PLUS_EXPR: case POINTER_PLUS_EXPR: case MINUS_EXPR: return build2 (TREE_CODE (exp), TREE_TYPE (exp), copy_constant (TREE_OPERAND (exp, 0)), copy_constant (TREE_OPERAND (exp, 1))); CASE_CONVERT: case VIEW_CONVERT_EXPR: return build1 (TREE_CODE (exp), TREE_TYPE (exp), copy_constant (TREE_OPERAND (exp, 0))); case VECTOR_CST: return build_vector (TREE_TYPE (exp), copy_list (TREE_VECTOR_CST_ELTS (exp))); case CONSTRUCTOR: { tree copy = copy_node (exp); VEC(constructor_elt, gc) *v; unsigned HOST_WIDE_INT idx; tree purpose, value; v = VEC_alloc(constructor_elt, gc, VEC_length(constructor_elt, CONSTRUCTOR_ELTS (exp))); FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, purpose, value) { constructor_elt *ce = VEC_quick_push (constructor_elt, v, NULL); ce->index = purpose; ce->value = copy_constant (value); } CONSTRUCTOR_ELTS (copy) = v; return copy; } default: gcc_unreachable (); } } /* Return the section into which constant EXP should be placed. */ static section * get_constant_section (tree exp, unsigned int align) { return targetm.asm_out.select_section (exp, compute_reloc_for_constant (exp), align); } /* Return the size of constant EXP in bytes. */ static HOST_WIDE_INT get_constant_size (tree exp) { HOST_WIDE_INT size; size = int_size_in_bytes (TREE_TYPE (exp)); if (TREE_CODE (exp) == STRING_CST) size = MAX (TREE_STRING_LENGTH (exp), size); return size; } /* Subroutine of output_constant_def: No constant equal to EXP is known to have been output. Make a constant descriptor to enter EXP in the hash table. Assign the label number and construct RTL to refer to the constant's location in memory. Caller is responsible for updating the hash table. */ static struct constant_descriptor_tree * build_constant_desc (tree exp) { struct constant_descriptor_tree *desc; rtx symbol, rtl; char label[256]; int labelno; tree decl; desc = ggc_alloc_constant_descriptor_tree (); desc->value = copy_constant (exp); /* Propagate marked-ness to copied constant. */ if (flag_mudflap && mf_marked_p (exp)) mf_mark (desc->value); /* Create a string containing the label name, in LABEL. */ labelno = const_labelno++; ASM_GENERATE_INTERNAL_LABEL (label, "LC", labelno); /* Construct the VAR_DECL associated with the constant. */ decl = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (label), TREE_TYPE (exp)); DECL_ARTIFICIAL (decl) = 1; DECL_IGNORED_P (decl) = 1; TREE_READONLY (decl) = 1; TREE_STATIC (decl) = 1; TREE_ADDRESSABLE (decl) = 1; /* We don't set the RTL yet as this would cause varpool to assume that the variable is referenced. Moreover, it would just be dropped in LTO mode. Instead we set the flag that will be recognized in make_decl_rtl. */ DECL_IN_CONSTANT_POOL (decl) = 1; DECL_INITIAL (decl) = desc->value; /* ??? CONSTANT_ALIGNMENT hasn't been updated for vector types on most architectures so use DATA_ALIGNMENT as well, except for strings. */ if (TREE_CODE (exp) == STRING_CST) { #ifdef CONSTANT_ALIGNMENT DECL_ALIGN (decl) = CONSTANT_ALIGNMENT (exp, DECL_ALIGN (decl)); #endif } else align_variable (decl, 0); /* Now construct the SYMBOL_REF and the MEM. */ if (use_object_blocks_p ()) { section *sect = get_constant_section (exp, DECL_ALIGN (decl)); symbol = create_block_symbol (ggc_strdup (label), get_block_for_section (sect), -1); } else symbol = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (label)); SYMBOL_REF_FLAGS (symbol) |= SYMBOL_FLAG_LOCAL; SET_SYMBOL_REF_DECL (symbol, decl); TREE_CONSTANT_POOL_ADDRESS_P (symbol) = 1; rtl = gen_const_mem (TYPE_MODE (TREE_TYPE (exp)), symbol); set_mem_attributes (rtl, exp, 1); set_mem_alias_set (rtl, 0); set_mem_alias_set (rtl, const_alias_set); /* We cannot share RTX'es in pool entries. Mark this piece of RTL as required for unsharing. */ RTX_FLAG (rtl, used) = 1; /* Set flags or add text to the name to record information, such as that it is a local symbol. If the name is changed, the macro ASM_OUTPUT_LABELREF will have to know how to strip this information. This call might invalidate our local variable SYMBOL; we can't use it afterward. */ targetm.encode_section_info (exp, rtl, true); desc->rtl = rtl; return desc; } /* Return an rtx representing a reference to constant data in memory for the constant expression EXP. If assembler code for such a constant has already been output, return an rtx to refer to it. Otherwise, output such a constant in memory and generate an rtx for it. If DEFER is nonzero, this constant can be deferred and output only if referenced in the function after all optimizations. `const_desc_table' records which constants already have label strings. */ rtx output_constant_def (tree exp, int defer) { struct constant_descriptor_tree *desc; struct constant_descriptor_tree key; void **loc; /* Look up EXP in the table of constant descriptors. If we didn't find it, create a new one. */ key.value = exp; key.hash = const_hash_1 (exp); loc = htab_find_slot_with_hash (const_desc_htab, &key, key.hash, INSERT); desc = (struct constant_descriptor_tree *) *loc; if (desc == 0) { desc = build_constant_desc (exp); desc->hash = key.hash; *loc = desc; } maybe_output_constant_def_contents (desc, defer); return desc->rtl; } /* Subroutine of output_constant_def: Decide whether or not we need to output the constant DESC now, and if so, do it. */ static void maybe_output_constant_def_contents (struct constant_descriptor_tree *desc, int defer) { rtx symbol = XEXP (desc->rtl, 0); tree exp = desc->value; if (flag_syntax_only) return; if (TREE_ASM_WRITTEN (exp)) /* Already output; don't do it again. */ return; /* We can always defer constants as long as the context allows doing so. */ if (defer) { /* Increment n_deferred_constants if it exists. It needs to be at least as large as the number of constants actually referred to by the function. If it's too small we'll stop looking too early and fail to emit constants; if it's too large we'll only look through the entire function when we could have stopped earlier. */ if (cfun) n_deferred_constants++; return; } output_constant_def_contents (symbol); } /* Subroutine of output_constant_def_contents. Output the definition of constant EXP, which is pointed to by label LABEL. ALIGN is the constant's alignment in bits. */ static void assemble_constant_contents (tree exp, const char *label, unsigned int align) { HOST_WIDE_INT size; size = get_constant_size (exp); /* Do any machine/system dependent processing of the constant. */ targetm.asm_out.declare_constant_name (asm_out_file, label, exp, size); /* Output the value of EXP. */ output_constant (exp, size, align); } /* We must output the constant data referred to by SYMBOL; do so. */ static void output_constant_def_contents (rtx symbol) { tree decl = SYMBOL_REF_DECL (symbol); tree exp = DECL_INITIAL (decl); unsigned int align; /* Make sure any other constants whose addresses appear in EXP are assigned label numbers. */ output_addressed_constants (exp); /* We are no longer deferring this constant. */ TREE_ASM_WRITTEN (decl) = TREE_ASM_WRITTEN (exp) = 1; /* If the constant is part of an object block, make sure that the decl has been positioned within its block, but do not write out its definition yet. output_object_blocks will do that later. */ if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol) && SYMBOL_REF_BLOCK (symbol)) place_block_symbol (symbol); else { align = DECL_ALIGN (decl); switch_to_section (get_constant_section (exp, align)); if (align > BITS_PER_UNIT) ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (align / BITS_PER_UNIT)); assemble_constant_contents (exp, XSTR (symbol, 0), align); } if (flag_mudflap) mudflap_enqueue_constant (exp); } /* Look up EXP in the table of constant descriptors. Return the rtl if it has been emitted, else null. */ rtx lookup_constant_def (tree exp) { struct constant_descriptor_tree *desc; struct constant_descriptor_tree key; key.value = exp; key.hash = const_hash_1 (exp); desc = (struct constant_descriptor_tree *) htab_find_with_hash (const_desc_htab, &key, key.hash); return (desc ? desc->rtl : NULL_RTX); } /* Return a tree representing a reference to constant data in memory for the constant expression EXP. This is the counterpart of output_constant_def at the Tree level. */ tree tree_output_constant_def (tree exp) { struct constant_descriptor_tree *desc, key; void **loc; tree decl; /* Look up EXP in the table of constant descriptors. If we didn't find it, create a new one. */ key.value = exp; key.hash = const_hash_1 (exp); loc = htab_find_slot_with_hash (const_desc_htab, &key, key.hash, INSERT); desc = (struct constant_descriptor_tree *) *loc; if (desc == 0) { desc = build_constant_desc (exp); desc->hash = key.hash; *loc = desc; } decl = SYMBOL_REF_DECL (XEXP (desc->rtl, 0)); varpool_finalize_decl (decl); return decl; } /* Used in the hash tables to avoid outputting the same constant twice. Unlike 'struct constant_descriptor_tree', RTX constants are output once per function, not once per file. */ /* ??? Only a few targets need per-function constant pools. Most can use one per-file pool. Should add a targetm bit to tell the difference. */ struct GTY(()) rtx_constant_pool { /* Pointers to first and last constant in pool, as ordered by offset. */ struct constant_descriptor_rtx *first; struct constant_descriptor_rtx *last; /* Hash facility for making memory-constants from constant rtl-expressions. It is used on RISC machines where immediate integer arguments and constant addresses are restricted so that such constants must be stored in memory. */ htab_t GTY((param_is (struct constant_descriptor_rtx))) const_rtx_htab; /* Current offset in constant pool (does not include any machine-specific header). */ HOST_WIDE_INT offset; }; struct GTY((chain_next ("%h.next"))) constant_descriptor_rtx { struct constant_descriptor_rtx *next; rtx mem; rtx sym; rtx constant; HOST_WIDE_INT offset; hashval_t hash; enum machine_mode mode; unsigned int align; int labelno; int mark; }; /* Hash and compare functions for const_rtx_htab. */ static hashval_t const_desc_rtx_hash (const void *ptr) { const struct constant_descriptor_rtx *const desc = (const struct constant_descriptor_rtx *) ptr; return desc->hash; } static int const_desc_rtx_eq (const void *a, const void *b) { const struct constant_descriptor_rtx *const x = (const struct constant_descriptor_rtx *) a; const struct constant_descriptor_rtx *const y = (const struct constant_descriptor_rtx *) b; if (x->mode != y->mode) return 0; return rtx_equal_p (x->constant, y->constant); } /* This is the worker function for const_rtx_hash, called via for_each_rtx. */ static int const_rtx_hash_1 (rtx *xp, void *data) { unsigned HOST_WIDE_INT hwi; enum machine_mode mode; enum rtx_code code; hashval_t h, *hp; rtx x; x = *xp; code = GET_CODE (x); mode = GET_MODE (x); h = (hashval_t) code * 1048573 + mode; switch (code) { case CONST_INT: hwi = INTVAL (x); fold_hwi: { int shift = sizeof (hashval_t) * CHAR_BIT; const int n = sizeof (HOST_WIDE_INT) / sizeof (hashval_t); int i; h ^= (hashval_t) hwi; for (i = 1; i < n; ++i) { hwi >>= shift; h ^= (hashval_t) hwi; } } break; case CONST_DOUBLE: if (mode == VOIDmode) { hwi = CONST_DOUBLE_LOW (x) ^ CONST_DOUBLE_HIGH (x); goto fold_hwi; } else h ^= real_hash (CONST_DOUBLE_REAL_VALUE (x)); break; case CONST_FIXED: h ^= fixed_hash (CONST_FIXED_VALUE (x)); break; case CONST_VECTOR: { int i; for (i = XVECLEN (x, 0); i-- > 0; ) h = h * 251 + const_rtx_hash_1 (&XVECEXP (x, 0, i), data); } break; case SYMBOL_REF: h ^= htab_hash_string (XSTR (x, 0)); break; case LABEL_REF: h = h * 251 + CODE_LABEL_NUMBER (XEXP (x, 0)); break; case UNSPEC: case UNSPEC_VOLATILE: h = h * 251 + XINT (x, 1); break; default: break; } hp = (hashval_t *) data; *hp = *hp * 509 + h; return 0; } /* Compute a hash value for X, which should be a constant. */ static hashval_t const_rtx_hash (rtx x) { hashval_t h = 0; for_each_rtx (&x, const_rtx_hash_1, &h); return h; } /* Create and return a new rtx constant pool. */ static struct rtx_constant_pool * create_constant_pool (void) { struct rtx_constant_pool *pool; pool = ggc_alloc_rtx_constant_pool (); pool->const_rtx_htab = htab_create_ggc (31, const_desc_rtx_hash, const_desc_rtx_eq, NULL); pool->first = NULL; pool->last = NULL; pool->offset = 0; return pool; } /* Initialize constant pool hashing for a new function. */ void init_varasm_status (void) { crtl->varasm.pool = create_constant_pool (); crtl->varasm.deferred_constants = 0; } /* Given a MINUS expression, simplify it if both sides include the same symbol. */ rtx simplify_subtraction (rtx x) { rtx r = simplify_rtx (x); return r ? r : x; } /* Given a constant rtx X, make (or find) a memory constant for its value and return a MEM rtx to refer to it in memory. */ rtx force_const_mem (enum machine_mode mode, rtx x) { struct constant_descriptor_rtx *desc, tmp; struct rtx_constant_pool *pool; char label[256]; rtx def, symbol; hashval_t hash; unsigned int align; void **slot; /* If we're not allowed to drop X into the constant pool, don't. */ if (targetm.cannot_force_const_mem (mode, x)) return NULL_RTX; /* Record that this function has used a constant pool entry. */ crtl->uses_const_pool = 1; /* Decide which pool to use. */ pool = (targetm.use_blocks_for_constant_p (mode, x) ? shared_constant_pool : crtl->varasm.pool); /* Lookup the value in the hashtable. */ tmp.constant = x; tmp.mode = mode; hash = const_rtx_hash (x); slot = htab_find_slot_with_hash (pool->const_rtx_htab, &tmp, hash, INSERT); desc = (struct constant_descriptor_rtx *) *slot; /* If the constant was already present, return its memory. */ if (desc) return copy_rtx (desc->mem); /* Otherwise, create a new descriptor. */ desc = ggc_alloc_constant_descriptor_rtx (); *slot = desc; /* Align the location counter as required by EXP's data type. */ align = GET_MODE_ALIGNMENT (mode == VOIDmode ? word_mode : mode); #ifdef CONSTANT_ALIGNMENT { tree type = lang_hooks.types.type_for_mode (mode, 0); if (type != NULL_TREE) align = CONSTANT_ALIGNMENT (make_tree (type, x), align); } #endif pool->offset += (align / BITS_PER_UNIT) - 1; pool->offset &= ~ ((align / BITS_PER_UNIT) - 1); desc->next = NULL; desc->constant = copy_rtx (tmp.constant); desc->offset = pool->offset; desc->hash = hash; desc->mode = mode; desc->align = align; desc->labelno = const_labelno; desc->mark = 0; pool->offset += GET_MODE_SIZE (mode); if (pool->last) pool->last->next = desc; else pool->first = pool->last = desc; pool->last = desc; /* Create a string containing the label name, in LABEL. */ ASM_GENERATE_INTERNAL_LABEL (label, "LC", const_labelno); ++const_labelno; /* Construct the SYMBOL_REF. Make sure to mark it as belonging to the constants pool. */ if (use_object_blocks_p () && targetm.use_blocks_for_constant_p (mode, x)) { section *sect = targetm.asm_out.select_rtx_section (mode, x, align); symbol = create_block_symbol (ggc_strdup (label), get_block_for_section (sect), -1); } else symbol = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (label)); desc->sym = symbol; SYMBOL_REF_FLAGS (symbol) |= SYMBOL_FLAG_LOCAL; CONSTANT_POOL_ADDRESS_P (symbol) = 1; SET_SYMBOL_REF_CONSTANT (symbol, desc); /* Construct the MEM. */ desc->mem = def = gen_const_mem (mode, symbol); set_mem_attributes (def, lang_hooks.types.type_for_mode (mode, 0), 1); set_mem_align (def, align); /* If we're dropping a label to the constant pool, make sure we don't delete it. */ if (GET_CODE (x) == LABEL_REF) LABEL_PRESERVE_P (XEXP (x, 0)) = 1; return copy_rtx (def); } /* Given a constant pool SYMBOL_REF, return the corresponding constant. */ rtx get_pool_constant (rtx addr) { return SYMBOL_REF_CONSTANT (addr)->constant; } /* Given a constant pool SYMBOL_REF, return the corresponding constant and whether it has been output or not. */ rtx get_pool_constant_mark (rtx addr, bool *pmarked) { struct constant_descriptor_rtx *desc; desc = SYMBOL_REF_CONSTANT (addr); *pmarked = (desc->mark != 0); return desc->constant; } /* Similar, return the mode. */ enum machine_mode get_pool_mode (const_rtx addr) { return SYMBOL_REF_CONSTANT (addr)->mode; } /* Return the size of the constant pool. */ int get_pool_size (void) { return crtl->varasm.pool->offset; } /* Worker function for output_constant_pool_1. Emit assembly for X in MODE with known alignment ALIGN. */ static void output_constant_pool_2 (enum machine_mode mode, rtx x, unsigned int align) { switch (GET_MODE_CLASS (mode)) { case MODE_FLOAT: case MODE_DECIMAL_FLOAT: { REAL_VALUE_TYPE r; gcc_assert (GET_CODE (x) == CONST_DOUBLE); REAL_VALUE_FROM_CONST_DOUBLE (r, x); assemble_real (r, mode, align); break; } case MODE_INT: case MODE_PARTIAL_INT: case MODE_FRACT: case MODE_UFRACT: case MODE_ACCUM: case MODE_UACCUM: assemble_integer (x, GET_MODE_SIZE (mode), align, 1); break; case MODE_VECTOR_FLOAT: case MODE_VECTOR_INT: case MODE_VECTOR_FRACT: case MODE_VECTOR_UFRACT: case MODE_VECTOR_ACCUM: case MODE_VECTOR_UACCUM: { int i, units; enum machine_mode submode = GET_MODE_INNER (mode); unsigned int subalign = MIN (align, GET_MODE_BITSIZE (submode)); gcc_assert (GET_CODE (x) == CONST_VECTOR); units = CONST_VECTOR_NUNITS (x); for (i = 0; i < units; i++) { rtx elt = CONST_VECTOR_ELT (x, i); output_constant_pool_2 (submode, elt, i ? subalign : align); } } break; default: gcc_unreachable (); } } /* Worker function for output_constant_pool. Emit constant DESC, giving it ALIGN bits of alignment. */ static void output_constant_pool_1 (struct constant_descriptor_rtx *desc, unsigned int align) { rtx x, tmp; x = desc->constant; /* See if X is a LABEL_REF (or a CONST referring to a LABEL_REF) whose CODE_LABEL has been deleted. This can occur if a jump table is eliminated by optimization. If so, write a constant of zero instead. Note that this can also happen by turning the CODE_LABEL into a NOTE. */ /* ??? This seems completely and utterly wrong. Certainly it's not true for NOTE_INSN_DELETED_LABEL, but I disbelieve proper functioning even with INSN_DELETED_P and friends. */ tmp = x; switch (GET_CODE (tmp)) { case CONST: if (GET_CODE (XEXP (tmp, 0)) != PLUS || GET_CODE (XEXP (XEXP (tmp, 0), 0)) != LABEL_REF) break; tmp = XEXP (XEXP (tmp, 0), 0); /* FALLTHRU */ case LABEL_REF: tmp = XEXP (tmp, 0); gcc_assert (!INSN_DELETED_P (tmp)); gcc_assert (!NOTE_P (tmp) || NOTE_KIND (tmp) != NOTE_INSN_DELETED); break; default: break; } #ifdef ASM_OUTPUT_SPECIAL_POOL_ENTRY ASM_OUTPUT_SPECIAL_POOL_ENTRY (asm_out_file, x, desc->mode, align, desc->labelno, done); #endif assemble_align (align); /* Output the label. */ targetm.asm_out.internal_label (asm_out_file, "LC", desc->labelno); /* Output the data. */ output_constant_pool_2 (desc->mode, x, align); /* Make sure all constants in SECTION_MERGE and not SECTION_STRINGS sections have proper size. */ if (align > GET_MODE_BITSIZE (desc->mode) && in_section && (in_section->common.flags & SECTION_MERGE)) assemble_align (align); #ifdef ASM_OUTPUT_SPECIAL_POOL_ENTRY done: #endif return; } /* Given a SYMBOL_REF CURRENT_RTX, mark it and all constants it refers to as used. Emit referenced deferred strings. This function can be used with for_each_rtx to mark all SYMBOL_REFs in an rtx. */ static int mark_constant (rtx *current_rtx, void *data ATTRIBUTE_UNUSED) { rtx x = *current_rtx; if (x == NULL_RTX || GET_CODE (x) != SYMBOL_REF) return 0; if (CONSTANT_POOL_ADDRESS_P (x)) { struct constant_descriptor_rtx *desc = SYMBOL_REF_CONSTANT (x); if (desc->mark == 0) { desc->mark = 1; for_each_rtx (&desc->constant, mark_constant, NULL); } } else if (TREE_CONSTANT_POOL_ADDRESS_P (x)) { tree decl = SYMBOL_REF_DECL (x); if (!TREE_ASM_WRITTEN (DECL_INITIAL (decl))) { n_deferred_constants--; output_constant_def_contents (x); } } return -1; } /* Look through appropriate parts of INSN, marking all entries in the constant pool which are actually being used. Entries that are only referenced by other constants are also marked as used. Emit deferred strings that are used. */ static void mark_constants (rtx insn) { if (!INSN_P (insn)) return; /* Insns may appear inside a SEQUENCE. Only check the patterns of insns, not any notes that may be attached. We don't want to mark a constant just because it happens to appear in a REG_EQUIV note. */ if (GET_CODE (PATTERN (insn)) == SEQUENCE) { rtx seq = PATTERN (insn); int i, n = XVECLEN (seq, 0); for (i = 0; i < n; ++i) { rtx subinsn = XVECEXP (seq, 0, i); if (INSN_P (subinsn)) for_each_rtx (&PATTERN (subinsn), mark_constant, NULL); } } else for_each_rtx (&PATTERN (insn), mark_constant, NULL); } /* Look through the instructions for this function, and mark all the entries in POOL which are actually being used. Emit deferred constants which have indeed been used. */ static void mark_constant_pool (void) { rtx insn, link; if (!crtl->uses_const_pool && n_deferred_constants == 0) return; for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) mark_constants (insn); for (link = crtl->epilogue_delay_list; link; link = XEXP (link, 1)) mark_constants (XEXP (link, 0)); } /* Write all the constants in POOL. */ static void output_constant_pool_contents (struct rtx_constant_pool *pool) { struct constant_descriptor_rtx *desc; for (desc = pool->first; desc ; desc = desc->next) if (desc->mark) { /* If the constant is part of an object_block, make sure that the constant has been positioned within its block, but do not write out its definition yet. output_object_blocks will do that later. */ if (SYMBOL_REF_HAS_BLOCK_INFO_P (desc->sym) && SYMBOL_REF_BLOCK (desc->sym)) place_block_symbol (desc->sym); else { switch_to_section (targetm.asm_out.select_rtx_section (desc->mode, desc->constant, desc->align)); output_constant_pool_1 (desc, desc->align); } } } /* Mark all constants that are used in the current function, then write out the function's private constant pool. */ static void output_constant_pool (const char *fnname ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED) { struct rtx_constant_pool *pool = crtl->varasm.pool; /* It is possible for gcc to call force_const_mem and then to later discard the instructions which refer to the constant. In such a case we do not need to output the constant. */ mark_constant_pool (); #ifdef ASM_OUTPUT_POOL_PROLOGUE ASM_OUTPUT_POOL_PROLOGUE (asm_out_file, fnname, fndecl, pool->offset); #endif output_constant_pool_contents (pool); #ifdef ASM_OUTPUT_POOL_EPILOGUE ASM_OUTPUT_POOL_EPILOGUE (asm_out_file, fnname, fndecl, pool->offset); #endif } /* Write the contents of the shared constant pool. */ void output_shared_constant_pool (void) { output_constant_pool_contents (shared_constant_pool); } /* Determine what kind of relocations EXP may need. */ int compute_reloc_for_constant (tree exp) { int reloc = 0, reloc2; tree tem; switch (TREE_CODE (exp)) { case ADDR_EXPR: case FDESC_EXPR: /* Go inside any operations that get_inner_reference can handle and see if what's inside is a constant: no need to do anything here for addresses of variables or functions. */ for (tem = TREE_OPERAND (exp, 0); handled_component_p (tem); tem = TREE_OPERAND (tem, 0)) ; if (TREE_PUBLIC (tem)) reloc |= 2; else reloc |= 1; break; case PLUS_EXPR: case POINTER_PLUS_EXPR: reloc = compute_reloc_for_constant (TREE_OPERAND (exp, 0)); reloc |= compute_reloc_for_constant (TREE_OPERAND (exp, 1)); break; case MINUS_EXPR: reloc = compute_reloc_for_constant (TREE_OPERAND (exp, 0)); reloc2 = compute_reloc_for_constant (TREE_OPERAND (exp, 1)); /* The difference of two local labels is computable at link time. */ if (reloc == 1 && reloc2 == 1) reloc = 0; else reloc |= reloc2; break; CASE_CONVERT: case VIEW_CONVERT_EXPR: reloc = compute_reloc_for_constant (TREE_OPERAND (exp, 0)); break; case CONSTRUCTOR: { unsigned HOST_WIDE_INT idx; FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, tem) if (tem != 0) reloc |= compute_reloc_for_constant (tem); } break; default: break; } return reloc; } /* Find all the constants whose addresses are referenced inside of EXP, and make sure assembler code with a label has been output for each one. Indicate whether an ADDR_EXPR has been encountered. */ static void output_addressed_constants (tree exp) { tree tem; switch (TREE_CODE (exp)) { case ADDR_EXPR: case FDESC_EXPR: /* Go inside any operations that get_inner_reference can handle and see if what's inside is a constant: no need to do anything here for addresses of variables or functions. */ for (tem = TREE_OPERAND (exp, 0); handled_component_p (tem); tem = TREE_OPERAND (tem, 0)) ; /* If we have an initialized CONST_DECL, retrieve the initializer. */ if (TREE_CODE (tem) == CONST_DECL && DECL_INITIAL (tem)) tem = DECL_INITIAL (tem); if (CONSTANT_CLASS_P (tem) || TREE_CODE (tem) == CONSTRUCTOR) output_constant_def (tem, 0); break; case PLUS_EXPR: case POINTER_PLUS_EXPR: case MINUS_EXPR: output_addressed_constants (TREE_OPERAND (exp, 1)); /* Fall through. */ CASE_CONVERT: case VIEW_CONVERT_EXPR: output_addressed_constants (TREE_OPERAND (exp, 0)); break; case CONSTRUCTOR: { unsigned HOST_WIDE_INT idx; FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, tem) if (tem != 0) output_addressed_constants (tem); } break; default: break; } } /* Whether a constructor CTOR is a valid static constant initializer if all its elements are. This used to be internal to initializer_constant_valid_p and has been exposed to let other functions like categorize_ctor_elements evaluate the property while walking a constructor for other purposes. */ bool constructor_static_from_elts_p (const_tree ctor) { return (TREE_CONSTANT (ctor) && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE || TREE_CODE (TREE_TYPE (ctor)) == RECORD_TYPE || TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)); } static tree initializer_constant_valid_p_1 (tree value, tree endtype, tree *cache); /* A subroutine of initializer_constant_valid_p. VALUE is a MINUS_EXPR, PLUS_EXPR or POINTER_PLUS_EXPR. This looks for cases of VALUE which are valid when ENDTYPE is an integer of any size; in particular, this does not accept a pointer minus a constant. This returns null_pointer_node if the VALUE is an absolute constant which can be used to initialize a static variable. Otherwise it returns NULL. */ static tree narrowing_initializer_constant_valid_p (tree value, tree endtype, tree *cache) { tree op0, op1; if (!INTEGRAL_TYPE_P (endtype)) return NULL_TREE; op0 = TREE_OPERAND (value, 0); op1 = TREE_OPERAND (value, 1); /* Like STRIP_NOPS except allow the operand mode to widen. This works around a feature of fold that simplifies (int)(p1 - p2) to ((int)p1 - (int)p2) under the theory that the narrower operation is cheaper. */ while (CONVERT_EXPR_P (op0) || TREE_CODE (op0) == NON_LVALUE_EXPR) { tree inner = TREE_OPERAND (op0, 0); if (inner == error_mark_node || ! INTEGRAL_MODE_P (TYPE_MODE (TREE_TYPE (inner))) || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0))) > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (inner))))) break; op0 = inner; } while (CONVERT_EXPR_P (op1) || TREE_CODE (op1) == NON_LVALUE_EXPR) { tree inner = TREE_OPERAND (op1, 0); if (inner == error_mark_node || ! INTEGRAL_MODE_P (TYPE_MODE (TREE_TYPE (inner))) || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op1))) > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (inner))))) break; op1 = inner; } op0 = initializer_constant_valid_p_1 (op0, endtype, cache); if (!op0) return NULL_TREE; op1 = initializer_constant_valid_p_1 (op1, endtype, cache ? cache + 2 : NULL); /* Both initializers must be known. */ if (op1) { if (op0 == op1 && (op0 == null_pointer_node || TREE_CODE (value) == MINUS_EXPR)) return null_pointer_node; /* Support differences between labels. */ if (TREE_CODE (op0) == LABEL_DECL && TREE_CODE (op1) == LABEL_DECL) return null_pointer_node; if (TREE_CODE (op0) == STRING_CST && TREE_CODE (op1) == STRING_CST && operand_equal_p (op0, op1, 1)) return null_pointer_node; } return NULL_TREE; } /* Helper function of initializer_constant_valid_p. Return nonzero if VALUE is a valid constant-valued expression for use in initializing a static variable; one that can be an element of a "constant" initializer. Return null_pointer_node if the value is absolute; if it is relocatable, return the variable that determines the relocation. We assume that VALUE has been folded as much as possible; therefore, we do not need to check for such things as arithmetic-combinations of integers. Use CACHE (pointer to 2 tree values) for caching if non-NULL. */ static tree initializer_constant_valid_p_1 (tree value, tree endtype, tree *cache) { tree ret; switch (TREE_CODE (value)) { case CONSTRUCTOR: if (constructor_static_from_elts_p (value)) { unsigned HOST_WIDE_INT idx; tree elt; bool absolute = true; if (cache && cache[0] == value) return cache[1]; FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (value), idx, elt) { tree reloc; reloc = initializer_constant_valid_p_1 (elt, TREE_TYPE (elt), NULL); if (!reloc) { if (cache) { cache[0] = value; cache[1] = NULL_TREE; } return NULL_TREE; } if (reloc != null_pointer_node) absolute = false; } /* For a non-absolute relocation, there is no single variable that can be "the variable that determines the relocation." */ if (cache) { cache[0] = value; cache[1] = absolute ? null_pointer_node : error_mark_node; } return absolute ? null_pointer_node : error_mark_node; } return TREE_STATIC (value) ? null_pointer_node : NULL_TREE; case INTEGER_CST: case VECTOR_CST: case REAL_CST: case FIXED_CST: case STRING_CST: case COMPLEX_CST: return null_pointer_node; case ADDR_EXPR: case FDESC_EXPR: { tree op0 = staticp (TREE_OPERAND (value, 0)); if (op0) { /* "&(*a).f" is like unto pointer arithmetic. If "a" turns out to be a constant, this is old-skool offsetof-like nonsense. */ if (TREE_CODE (op0) == INDIRECT_REF && TREE_CONSTANT (TREE_OPERAND (op0, 0))) return null_pointer_node; /* Taking the address of a nested function involves a trampoline, unless we don't need or want one. */ if (TREE_CODE (op0) == FUNCTION_DECL && DECL_STATIC_CHAIN (op0) && !TREE_NO_TRAMPOLINE (value)) return NULL_TREE; /* "&{...}" requires a temporary to hold the constructed object. */ if (TREE_CODE (op0) == CONSTRUCTOR) return NULL_TREE; } return op0; } case NON_LVALUE_EXPR: return initializer_constant_valid_p_1 (TREE_OPERAND (value, 0), endtype, cache); case VIEW_CONVERT_EXPR: { tree src = TREE_OPERAND (value, 0); tree src_type = TREE_TYPE (src); tree dest_type = TREE_TYPE (value); /* Allow view-conversions from aggregate to non-aggregate type only if the bit pattern is fully preserved afterwards; otherwise, the RTL expander won't be able to apply a subsequent transformation to the underlying constructor. */ if (AGGREGATE_TYPE_P (src_type) && !AGGREGATE_TYPE_P (dest_type)) { if (TYPE_MODE (endtype) == TYPE_MODE (dest_type)) return initializer_constant_valid_p_1 (src, endtype, cache); else return NULL_TREE; } /* Allow all other kinds of view-conversion. */ return initializer_constant_valid_p_1 (src, endtype, cache); } CASE_CONVERT: { tree src = TREE_OPERAND (value, 0); tree src_type = TREE_TYPE (src); tree dest_type = TREE_TYPE (value); /* Allow conversions between pointer types, floating-point types, and offset types. */ if ((POINTER_TYPE_P (dest_type) && POINTER_TYPE_P (src_type)) || (FLOAT_TYPE_P (dest_type) && FLOAT_TYPE_P (src_type)) || (TREE_CODE (dest_type) == OFFSET_TYPE && TREE_CODE (src_type) == OFFSET_TYPE)) return initializer_constant_valid_p_1 (src, endtype, cache); /* Allow length-preserving conversions between integer types. */ if (INTEGRAL_TYPE_P (dest_type) && INTEGRAL_TYPE_P (src_type) && (TYPE_PRECISION (dest_type) == TYPE_PRECISION (src_type))) return initializer_constant_valid_p_1 (src, endtype, cache); /* Allow conversions between other integer types only if explicit value. */ if (INTEGRAL_TYPE_P (dest_type) && INTEGRAL_TYPE_P (src_type)) { tree inner = initializer_constant_valid_p_1 (src, endtype, cache); if (inner == null_pointer_node) return null_pointer_node; break; } /* Allow (int) &foo provided int is as wide as a pointer. */ if (INTEGRAL_TYPE_P (dest_type) && POINTER_TYPE_P (src_type) && (TYPE_PRECISION (dest_type) >= TYPE_PRECISION (src_type))) return initializer_constant_valid_p_1 (src, endtype, cache); /* Likewise conversions from int to pointers, but also allow conversions from 0. */ if ((POINTER_TYPE_P (dest_type) || TREE_CODE (dest_type) == OFFSET_TYPE) && INTEGRAL_TYPE_P (src_type)) { if (TREE_CODE (src) == INTEGER_CST && TYPE_PRECISION (dest_type) >= TYPE_PRECISION (src_type)) return null_pointer_node; if (integer_zerop (src)) return null_pointer_node; else if (TYPE_PRECISION (dest_type) <= TYPE_PRECISION (src_type)) return initializer_constant_valid_p_1 (src, endtype, cache); } /* Allow conversions to struct or union types if the value inside is okay. */ if (TREE_CODE (dest_type) == RECORD_TYPE || TREE_CODE (dest_type) == UNION_TYPE) return initializer_constant_valid_p_1 (src, endtype, cache); } break; case POINTER_PLUS_EXPR: case PLUS_EXPR: /* Any valid floating-point constants will have been folded by now; with -frounding-math we hit this with addition of two constants. */ if (TREE_CODE (endtype) == REAL_TYPE) return NULL_TREE; if (cache && cache[0] == value) return cache[1]; if (! INTEGRAL_TYPE_P (endtype) || TYPE_PRECISION (endtype) >= TYPE_PRECISION (TREE_TYPE (value))) { tree ncache[4] = { NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE }; tree valid0 = initializer_constant_valid_p_1 (TREE_OPERAND (value, 0), endtype, ncache); tree valid1 = initializer_constant_valid_p_1 (TREE_OPERAND (value, 1), endtype, ncache + 2); /* If either term is absolute, use the other term's relocation. */ if (valid0 == null_pointer_node) ret = valid1; else if (valid1 == null_pointer_node) ret = valid0; /* Support narrowing pointer differences. */ else ret = narrowing_initializer_constant_valid_p (value, endtype, ncache); } else /* Support narrowing pointer differences. */ ret = narrowing_initializer_constant_valid_p (value, endtype, NULL); if (cache) { cache[0] = value; cache[1] = ret; } return ret; case MINUS_EXPR: if (TREE_CODE (endtype) == REAL_TYPE) return NULL_TREE; if (cache && cache[0] == value) return cache[1]; if (! INTEGRAL_TYPE_P (endtype) || TYPE_PRECISION (endtype) >= TYPE_PRECISION (TREE_TYPE (value))) { tree ncache[4] = { NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE }; tree valid0 = initializer_constant_valid_p_1 (TREE_OPERAND (value, 0), endtype, ncache); tree valid1 = initializer_constant_valid_p_1 (TREE_OPERAND (value, 1), endtype, ncache + 2); /* Win if second argument is absolute. */ if (valid1 == null_pointer_node) ret = valid0; /* Win if both arguments have the same relocation. Then the value is absolute. */ else if (valid0 == valid1 && valid0 != 0) ret = null_pointer_node; /* Since GCC guarantees that string constants are unique in the generated code, a subtraction between two copies of the same constant string is absolute. */ else if (valid0 && TREE_CODE (valid0) == STRING_CST && valid1 && TREE_CODE (valid1) == STRING_CST && operand_equal_p (valid0, valid1, 1)) ret = null_pointer_node; /* Support narrowing differences. */ else ret = narrowing_initializer_constant_valid_p (value, endtype, ncache); } else /* Support narrowing differences. */ ret = narrowing_initializer_constant_valid_p (value, endtype, NULL); if (cache) { cache[0] = value; cache[1] = ret; } return ret; default: break; } return NULL_TREE; } /* Return nonzero if VALUE is a valid constant-valued expression for use in initializing a static variable; one that can be an element of a "constant" initializer. Return null_pointer_node if the value is absolute; if it is relocatable, return the variable that determines the relocation. We assume that VALUE has been folded as much as possible; therefore, we do not need to check for such things as arithmetic-combinations of integers. */ tree initializer_constant_valid_p (tree value, tree endtype) { return initializer_constant_valid_p_1 (value, endtype, NULL); } /* Return true if VALUE is a valid constant-valued expression for use in initializing a static bit-field; one that can be an element of a "constant" initializer. */ bool initializer_constant_valid_for_bitfield_p (tree value) { /* For bitfields we support integer constants or possibly nested aggregates of such. */ switch (TREE_CODE (value)) { case CONSTRUCTOR: { unsigned HOST_WIDE_INT idx; tree elt; FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (value), idx, elt) if (!initializer_constant_valid_for_bitfield_p (elt)) return false; return true; } case INTEGER_CST: return true; case VIEW_CONVERT_EXPR: case NON_LVALUE_EXPR: return initializer_constant_valid_for_bitfield_p (TREE_OPERAND (value, 0)); default: break; } return false; } /* output_constructor outer state of relevance in recursive calls, typically for nested aggregate bitfields. */ typedef struct { unsigned int bit_offset; /* current position in ... */ int byte; /* ... the outer byte buffer. */ } oc_outer_state; static unsigned HOST_WIDE_INT output_constructor (tree, unsigned HOST_WIDE_INT, unsigned int, oc_outer_state *); /* Output assembler code for constant EXP to FILE, with no label. This includes the pseudo-op such as ".int" or ".byte", and a newline. Assumes output_addressed_constants has been done on EXP already. Generate exactly SIZE bytes of assembler data, padding at the end with zeros if necessary. SIZE must always be specified. SIZE is important for structure constructors, since trailing members may have been omitted from the constructor. It is also important for initialization of arrays from string constants since the full length of the string constant might not be wanted. It is also needed for initialization of unions, where the initializer's type is just one member, and that may not be as long as the union. There a case in which we would fail to output exactly SIZE bytes: for a structure constructor that wants to produce more than SIZE bytes. But such constructors will never be generated for any possible input. ALIGN is the alignment of the data in bits. */ void output_constant (tree exp, unsigned HOST_WIDE_INT size, unsigned int align) { enum tree_code code; unsigned HOST_WIDE_INT thissize; if (size == 0 || flag_syntax_only) return; /* See if we're trying to initialize a pointer in a non-default mode to the address of some declaration somewhere. If the target says the mode is valid for pointers, assume the target has a way of resolving it. */ if (TREE_CODE (exp) == NOP_EXPR && POINTER_TYPE_P (TREE_TYPE (exp)) && targetm.addr_space.valid_pointer_mode (TYPE_MODE (TREE_TYPE (exp)), TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp))))) { tree saved_type = TREE_TYPE (exp); /* Peel off any intermediate conversions-to-pointer for valid pointer modes. */ while (TREE_CODE (exp) == NOP_EXPR && POINTER_TYPE_P (TREE_TYPE (exp)) && targetm.addr_space.valid_pointer_mode (TYPE_MODE (TREE_TYPE (exp)), TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp))))) exp = TREE_OPERAND (exp, 0); /* If what we're left with is the address of something, we can convert the address to the final type and output it that way. */ if (TREE_CODE (exp) == ADDR_EXPR) exp = build1 (ADDR_EXPR, saved_type, TREE_OPERAND (exp, 0)); /* Likewise for constant ints. */ else if (TREE_CODE (exp) == INTEGER_CST) exp = build_int_cst_wide (saved_type, TREE_INT_CST_LOW (exp), TREE_INT_CST_HIGH (exp)); } /* Eliminate any conversions since we'll be outputting the underlying constant. */ while (CONVERT_EXPR_P (exp) || TREE_CODE (exp) == NON_LVALUE_EXPR || TREE_CODE (exp) == VIEW_CONVERT_EXPR) { HOST_WIDE_INT type_size = int_size_in_bytes (TREE_TYPE (exp)); HOST_WIDE_INT op_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (exp, 0))); /* Make sure eliminating the conversion is really a no-op, except with VIEW_CONVERT_EXPRs to allow for wild Ada unchecked conversions and union types to allow for Ada unchecked unions. */ if (type_size > op_size && TREE_CODE (exp) != VIEW_CONVERT_EXPR && TREE_CODE (TREE_TYPE (exp)) != UNION_TYPE) /* Keep the conversion. */ break; else exp = TREE_OPERAND (exp, 0); } code = TREE_CODE (TREE_TYPE (exp)); thissize = int_size_in_bytes (TREE_TYPE (exp)); /* Allow a constructor with no elements for any data type. This means to fill the space with zeros. */ if (TREE_CODE (exp) == CONSTRUCTOR && VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (exp))) { assemble_zeros (size); return; } if (TREE_CODE (exp) == FDESC_EXPR) { #ifdef ASM_OUTPUT_FDESC HOST_WIDE_INT part = tree_low_cst (TREE_OPERAND (exp, 1), 0); tree decl = TREE_OPERAND (exp, 0); ASM_OUTPUT_FDESC (asm_out_file, decl, part); #else gcc_unreachable (); #endif return; } /* Now output the underlying data. If we've handling the padding, return. Otherwise, break and ensure SIZE is the size written. */ switch (code) { case BOOLEAN_TYPE: case INTEGER_TYPE: case ENUMERAL_TYPE: case POINTER_TYPE: case REFERENCE_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE: if (! assemble_integer (expand_expr (exp, NULL_RTX, VOIDmode, EXPAND_INITIALIZER), MIN (size, thissize), align, 0)) error ("initializer for integer/fixed-point value is too complicated"); break; case REAL_TYPE: if (TREE_CODE (exp) != REAL_CST) error ("initializer for floating value is not a floating constant"); else assemble_real (TREE_REAL_CST (exp), TYPE_MODE (TREE_TYPE (exp)), align); break; case COMPLEX_TYPE: output_constant (TREE_REALPART (exp), thissize / 2, align); output_constant (TREE_IMAGPART (exp), thissize / 2, min_align (align, BITS_PER_UNIT * (thissize / 2))); break; case ARRAY_TYPE: case VECTOR_TYPE: switch (TREE_CODE (exp)) { case CONSTRUCTOR: output_constructor (exp, size, align, NULL); return; case STRING_CST: thissize = MIN ((unsigned HOST_WIDE_INT)TREE_STRING_LENGTH (exp), size); assemble_string (TREE_STRING_POINTER (exp), thissize); break; case VECTOR_CST: { int elt_size; tree link; unsigned int nalign; enum machine_mode inner; inner = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp))); nalign = MIN (align, GET_MODE_ALIGNMENT (inner)); elt_size = GET_MODE_SIZE (inner); link = TREE_VECTOR_CST_ELTS (exp); output_constant (TREE_VALUE (link), elt_size, align); thissize = elt_size; while ((link = TREE_CHAIN (link)) != NULL) { output_constant (TREE_VALUE (link), elt_size, nalign); thissize += elt_size; } break; } default: gcc_unreachable (); } break; case RECORD_TYPE: case UNION_TYPE: gcc_assert (TREE_CODE (exp) == CONSTRUCTOR); output_constructor (exp, size, align, NULL); return; case ERROR_MARK: return; default: gcc_unreachable (); } if (size > thissize) assemble_zeros (size - thissize); } /* Subroutine of output_constructor, used for computing the size of arrays of unspecified length. VAL must be a CONSTRUCTOR of an array type with an unspecified upper bound. */ static unsigned HOST_WIDE_INT array_size_for_constructor (tree val) { tree max_index; unsigned HOST_WIDE_INT cnt; tree index, value, tmp; double_int i; /* This code used to attempt to handle string constants that are not arrays of single-bytes, but nothing else does, so there's no point in doing it here. */ if (TREE_CODE (val) == STRING_CST) return TREE_STRING_LENGTH (val); max_index = NULL_TREE; FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (val), cnt, index, value) { if (TREE_CODE (index) == RANGE_EXPR) index = TREE_OPERAND (index, 1); if (max_index == NULL_TREE || tree_int_cst_lt (max_index, index)) max_index = index; } if (max_index == NULL_TREE) return 0; /* Compute the total number of array elements. */ tmp = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (val))); i = double_int_sub (tree_to_double_int (max_index), tree_to_double_int (tmp)); i = double_int_add (i, double_int_one); /* Multiply by the array element unit size to find number of bytes. */ i = double_int_mul (i, tree_to_double_int (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (val))))); gcc_assert (double_int_fits_in_uhwi_p (i)); return i.low; } /* Other datastructures + helpers for output_constructor. */ /* output_constructor local state to support interaction with helpers. */ typedef struct { /* Received arguments. */ tree exp; /* Constructor expression. */ unsigned HOST_WIDE_INT size; /* # bytes to output - pad if necessary. */ unsigned int align; /* Known initial alignment. */ /* Constructor expression data. */ tree type; /* Expression type. */ tree field; /* Current field decl in a record. */ tree min_index; /* Lower bound if specified for an array. */ /* Output processing state. */ HOST_WIDE_INT total_bytes; /* # bytes output so far / current position. */ bool byte_buffer_in_use; /* Whether byte ... */ int byte; /* ... contains part of a bitfield byte yet to be output. */ int last_relative_index; /* Implicit or explicit index of the last array element output within a bitfield. */ /* Current element. */ tree val; /* Current element value. */ tree index; /* Current element index. */ } oc_local_state; /* Helper for output_constructor. From the current LOCAL state, output a RANGE_EXPR element. */ static void output_constructor_array_range (oc_local_state *local) { unsigned HOST_WIDE_INT fieldsize = int_size_in_bytes (TREE_TYPE (local->type)); HOST_WIDE_INT lo_index = tree_low_cst (TREE_OPERAND (local->index, 0), 0); HOST_WIDE_INT hi_index = tree_low_cst (TREE_OPERAND (local->index, 1), 0); HOST_WIDE_INT index; unsigned int align2 = min_align (local->align, fieldsize * BITS_PER_UNIT); for (index = lo_index; index <= hi_index; index++) { /* Output the element's initial value. */ if (local->val == NULL_TREE) assemble_zeros (fieldsize); else output_constant (local->val, fieldsize, align2); /* Count its size. */ local->total_bytes += fieldsize; } } /* Helper for output_constructor. From the current LOCAL state, output a field element that is not true bitfield or part of an outer one. */ static void output_constructor_regular_field (oc_local_state *local) { /* Field size and position. Since this structure is static, we know the positions are constant. */ unsigned HOST_WIDE_INT fieldsize; HOST_WIDE_INT fieldpos; unsigned int align2; if (local->index != NULL_TREE) { double_int idx = double_int_sub (tree_to_double_int (local->index), tree_to_double_int (local->min_index)); gcc_assert (double_int_fits_in_shwi_p (idx)); fieldpos = (tree_low_cst (TYPE_SIZE_UNIT (TREE_TYPE (local->val)), 1) * idx.low); } else if (local->field != NULL_TREE) fieldpos = int_byte_position (local->field); else fieldpos = 0; /* Output any buffered-up bit-fields preceding this element. */ if (local->byte_buffer_in_use) { assemble_integer (GEN_INT (local->byte), 1, BITS_PER_UNIT, 1); local->total_bytes++; local->byte_buffer_in_use = false; } /* Advance to offset of this element. Note no alignment needed in an array, since that is guaranteed if each element has the proper size. */ if ((local->field != NULL_TREE || local->index != NULL_TREE) && fieldpos != local->total_bytes) { gcc_assert (fieldpos >= local->total_bytes); assemble_zeros (fieldpos - local->total_bytes); local->total_bytes = fieldpos; } /* Find the alignment of this element. */ align2 = min_align (local->align, BITS_PER_UNIT * fieldpos); /* Determine size this element should occupy. */ if (local->field) { fieldsize = 0; /* If this is an array with an unspecified upper bound, the initializer determines the size. */ /* ??? This ought to only checked if DECL_SIZE_UNIT is NULL, but we cannot do this until the deprecated support for initializing zero-length array members is removed. */ if (TREE_CODE (TREE_TYPE (local->field)) == ARRAY_TYPE && TYPE_DOMAIN (TREE_TYPE (local->field)) && ! TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (local->field)))) { fieldsize = array_size_for_constructor (local->val); /* Given a non-empty initialization, this field had better be last. */ gcc_assert (!fieldsize || !DECL_CHAIN (local->field)); } else fieldsize = tree_low_cst (DECL_SIZE_UNIT (local->field), 1); } else fieldsize = int_size_in_bytes (TREE_TYPE (local->type)); /* Output the element's initial value. */ if (local->val == NULL_TREE) assemble_zeros (fieldsize); else output_constant (local->val, fieldsize, align2); /* Count its size. */ local->total_bytes += fieldsize; } /* Helper for output_constructor. From the current LOCAL and OUTER states, output an element that is a true bitfield or part of an outer one. */ static void output_constructor_bitfield (oc_local_state *local, oc_outer_state *outer) { /* Bit size of this element. */ HOST_WIDE_INT ebitsize = (local->field ? tree_low_cst (DECL_SIZE (local->field), 1) : tree_low_cst (TYPE_SIZE (TREE_TYPE (local->type)), 1)); /* Relative index of this element if this is an array component. */ HOST_WIDE_INT relative_index = (!local->field ? (local->index ? (tree_low_cst (local->index, 0) - tree_low_cst (local->min_index, 0)) : local->last_relative_index + 1) : 0); /* Bit position of this element from the start of the containing constructor. */ HOST_WIDE_INT constructor_relative_ebitpos = (local->field ? int_bit_position (local->field) : ebitsize * relative_index); /* Bit position of this element from the start of a possibly ongoing outer byte buffer. */ HOST_WIDE_INT byte_relative_ebitpos = ((outer ? outer->bit_offset : 0) + constructor_relative_ebitpos); /* From the start of a possibly ongoing outer byte buffer, offsets to the first bit of this element and to the first bit past the end of this element. */ HOST_WIDE_INT next_offset = byte_relative_ebitpos; HOST_WIDE_INT end_offset = byte_relative_ebitpos + ebitsize; local->last_relative_index = relative_index; if (local->val == NULL_TREE) local->val = integer_zero_node; while (TREE_CODE (local->val) == VIEW_CONVERT_EXPR || TREE_CODE (local->val) == NON_LVALUE_EXPR) local->val = TREE_OPERAND (local->val, 0); if (TREE_CODE (local->val) != INTEGER_CST && TREE_CODE (local->val) != CONSTRUCTOR) { error ("invalid initial value for member %qE", DECL_NAME (local->field)); return; } /* If this field does not start in this (or, next) byte, skip some bytes. */ if (next_offset / BITS_PER_UNIT != local->total_bytes) { /* Output remnant of any bit field in previous bytes. */ if (local->byte_buffer_in_use) { assemble_integer (GEN_INT (local->byte), 1, BITS_PER_UNIT, 1); local->total_bytes++; local->byte_buffer_in_use = false; } /* If still not at proper byte, advance to there. */ if (next_offset / BITS_PER_UNIT != local->total_bytes) { gcc_assert (next_offset / BITS_PER_UNIT >= local->total_bytes); assemble_zeros (next_offset / BITS_PER_UNIT - local->total_bytes); local->total_bytes = next_offset / BITS_PER_UNIT; } } /* Set up the buffer if necessary. */ if (!local->byte_buffer_in_use) { local->byte = 0; if (ebitsize > 0) local->byte_buffer_in_use = true; } /* If this is nested constructor, recurse passing the bit offset and the pending data, then retrieve the new pending data afterwards. */ if (TREE_CODE (local->val) == CONSTRUCTOR) { oc_outer_state output_state; output_state.bit_offset = next_offset % BITS_PER_UNIT; output_state.byte = local->byte; local->total_bytes += output_constructor (local->val, 0, 0, &output_state); local->byte = output_state.byte; return; } /* Otherwise, we must split the element into pieces that fall within separate bytes, and combine each byte with previous or following bit-fields. */ while (next_offset < end_offset) { int this_time; int shift; HOST_WIDE_INT value; HOST_WIDE_INT next_byte = next_offset / BITS_PER_UNIT; HOST_WIDE_INT next_bit = next_offset % BITS_PER_UNIT; /* Advance from byte to byte within this element when necessary. */ while (next_byte != local->total_bytes) { assemble_integer (GEN_INT (local->byte), 1, BITS_PER_UNIT, 1); local->total_bytes++; local->byte = 0; } /* Number of bits we can process at once (all part of the same byte). */ this_time = MIN (end_offset - next_offset, BITS_PER_UNIT - next_bit); if (BYTES_BIG_ENDIAN) { /* On big-endian machine, take the most significant bits first (of the bits that are significant) and put them into bytes from the most significant end. */ shift = end_offset - next_offset - this_time; /* Don't try to take a bunch of bits that cross the word boundary in the INTEGER_CST. We can only select bits from the LOW or HIGH part not from both. */ if (shift < HOST_BITS_PER_WIDE_INT && shift + this_time > HOST_BITS_PER_WIDE_INT) { this_time = shift + this_time - HOST_BITS_PER_WIDE_INT; shift = HOST_BITS_PER_WIDE_INT; } /* Now get the bits from the appropriate constant word. */ if (shift < HOST_BITS_PER_WIDE_INT) value = TREE_INT_CST_LOW (local->val); else { gcc_assert (shift < 2 * HOST_BITS_PER_WIDE_INT); value = TREE_INT_CST_HIGH (local->val); shift -= HOST_BITS_PER_WIDE_INT; } /* Get the result. This works only when: 1 <= this_time <= HOST_BITS_PER_WIDE_INT. */ local->byte |= (((value >> shift) & (((HOST_WIDE_INT) 2 << (this_time - 1)) - 1)) << (BITS_PER_UNIT - this_time - next_bit)); } else { /* On little-endian machines, take first the least significant bits of the value and pack them starting at the least significant bits of the bytes. */ shift = next_offset - byte_relative_ebitpos; /* Don't try to take a bunch of bits that cross the word boundary in the INTEGER_CST. We can only select bits from the LOW or HIGH part not from both. */ if (shift < HOST_BITS_PER_WIDE_INT && shift + this_time > HOST_BITS_PER_WIDE_INT) this_time = (HOST_BITS_PER_WIDE_INT - shift); /* Now get the bits from the appropriate constant word. */ if (shift < HOST_BITS_PER_WIDE_INT) value = TREE_INT_CST_LOW (local->val); else { gcc_assert (shift < 2 * HOST_BITS_PER_WIDE_INT); value = TREE_INT_CST_HIGH (local->val); shift -= HOST_BITS_PER_WIDE_INT; } /* Get the result. This works only when: 1 <= this_time <= HOST_BITS_PER_WIDE_INT. */ local->byte |= (((value >> shift) & (((HOST_WIDE_INT) 2 << (this_time - 1)) - 1)) << next_bit); } next_offset += this_time; local->byte_buffer_in_use = true; } } /* Subroutine of output_constant, used for CONSTRUCTORs (aggregate constants). Generate at least SIZE bytes, padding if necessary. OUTER designates the caller output state of relevance in recursive invocations. */ static unsigned HOST_WIDE_INT output_constructor (tree exp, unsigned HOST_WIDE_INT size, unsigned int align, oc_outer_state * outer) { unsigned HOST_WIDE_INT cnt; constructor_elt *ce; oc_local_state local; /* Setup our local state to communicate with helpers. */ local.exp = exp; local.size = size; local.align = align; local.total_bytes = 0; local.byte_buffer_in_use = outer != NULL; local.byte = outer ? outer->byte : 0; local.type = TREE_TYPE (exp); local.last_relative_index = -1; local.min_index = NULL_TREE; if (TREE_CODE (local.type) == ARRAY_TYPE && TYPE_DOMAIN (local.type) != NULL_TREE) local.min_index = TYPE_MIN_VALUE (TYPE_DOMAIN (local.type)); gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_UNIT); /* As CE goes through the elements of the constant, FIELD goes through the structure fields if the constant is a structure. If the constant is a union, we override this by getting the field from the TREE_LIST element. But the constant could also be an array. Then FIELD is zero. There is always a maximum of one element in the chain LINK for unions (even if the initializer in a source program incorrectly contains more one). */ local.field = NULL_TREE; if (TREE_CODE (local.type) == RECORD_TYPE) local.field = TYPE_FIELDS (local.type); for (cnt = 0; VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), cnt, ce); cnt++, local.field = local.field ? DECL_CHAIN (local.field) : 0) { local.val = ce->value; local.index = NULL_TREE; /* The element in a union constructor specifies the proper field or index. */ if ((TREE_CODE (local.type) == RECORD_TYPE || TREE_CODE (local.type) == UNION_TYPE || TREE_CODE (local.type) == QUAL_UNION_TYPE) && ce->index != NULL_TREE) local.field = ce->index; else if (TREE_CODE (local.type) == ARRAY_TYPE) local.index = ce->index; if (local.field && flag_verbose_asm) fprintf (asm_out_file, "%s %s:\n", ASM_COMMENT_START, DECL_NAME (local.field) ? IDENTIFIER_POINTER (DECL_NAME (local.field)) : "<anonymous>"); /* Eliminate the marker that makes a cast not be an lvalue. */ if (local.val != NULL_TREE) STRIP_NOPS (local.val); /* Output the current element, using the appropriate helper ... */ /* For an array slice not part of an outer bitfield. */ if (!outer && local.index != NULL_TREE && TREE_CODE (local.index) == RANGE_EXPR) output_constructor_array_range (&local); /* For a field that is neither a true bitfield nor part of an outer one, known to be at least byte aligned and multiple-of-bytes long. */ else if (!outer && (local.field == NULL_TREE || !CONSTRUCTOR_BITFIELD_P (local.field))) output_constructor_regular_field (&local); /* For a true bitfield or part of an outer one. */ else output_constructor_bitfield (&local, outer); } /* If we are not at toplevel, save the pending data for our caller. Otherwise output the pending data and padding zeros as needed. */ if (outer) outer->byte = local.byte; else { if (local.byte_buffer_in_use) { assemble_integer (GEN_INT (local.byte), 1, BITS_PER_UNIT, 1); local.total_bytes++; } if ((unsigned HOST_WIDE_INT)local.total_bytes < local.size) { assemble_zeros (local.size - local.total_bytes); local.total_bytes = local.size; } } return local.total_bytes; } /* Mark DECL as weak. */ static void mark_weak (tree decl) { DECL_WEAK (decl) = 1; if (DECL_RTL_SET_P (decl) && MEM_P (DECL_RTL (decl)) && XEXP (DECL_RTL (decl), 0) && GET_CODE (XEXP (DECL_RTL (decl), 0)) == SYMBOL_REF) SYMBOL_REF_WEAK (XEXP (DECL_RTL (decl), 0)) = 1; } /* Merge weak status between NEWDECL and OLDDECL. */ void merge_weak (tree newdecl, tree olddecl) { if (DECL_WEAK (newdecl) == DECL_WEAK (olddecl)) { if (DECL_WEAK (newdecl) && TARGET_SUPPORTS_WEAK) { tree *pwd; /* We put the NEWDECL on the weak_decls list at some point and OLDDECL as well. Keep just OLDDECL on the list. */ for (pwd = &weak_decls; *pwd; pwd = &TREE_CHAIN (*pwd)) if (TREE_VALUE (*pwd) == newdecl) { *pwd = TREE_CHAIN (*pwd); break; } } return; } if (DECL_WEAK (newdecl)) { tree wd; /* NEWDECL is weak, but OLDDECL is not. */ /* If we already output the OLDDECL, we're in trouble; we can't go back and make it weak. This should never happen in unit-at-a-time compilation. */ gcc_assert (!TREE_ASM_WRITTEN (olddecl)); /* If we've already generated rtl referencing OLDDECL, we may have done so in a way that will not function properly with a weak symbol. Again in unit-at-a-time this should be impossible. */ gcc_assert (!TREE_USED (olddecl) || !TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (olddecl))); if (TARGET_SUPPORTS_WEAK) { /* We put the NEWDECL on the weak_decls list at some point. Replace it with the OLDDECL. */ for (wd = weak_decls; wd; wd = TREE_CHAIN (wd)) if (TREE_VALUE (wd) == newdecl) { TREE_VALUE (wd) = olddecl; break; } /* We may not find the entry on the list. If NEWDECL is a weak alias, then we will have already called globalize_decl to remove the entry; in that case, we do not need to do anything. */ } /* Make the OLDDECL weak; it's OLDDECL that we'll be keeping. */ mark_weak (olddecl); } else /* OLDDECL was weak, but NEWDECL was not explicitly marked as weak. Just update NEWDECL to indicate that it's weak too. */ mark_weak (newdecl); } /* Declare DECL to be a weak symbol. */ void declare_weak (tree decl) { gcc_assert (TREE_CODE (decl) != FUNCTION_DECL || !TREE_ASM_WRITTEN (decl)); if (! TREE_PUBLIC (decl)) error ("weak declaration of %q+D must be public", decl); else if (!TARGET_SUPPORTS_WEAK) warning (0, "weak declaration of %q+D not supported", decl); mark_weak (decl); if (!lookup_attribute ("weak", DECL_ATTRIBUTES (decl))) DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("weak"), NULL, DECL_ATTRIBUTES (decl)); } static void weak_finish_1 (tree decl) { #if defined (ASM_WEAKEN_DECL) || defined (ASM_WEAKEN_LABEL) const char *const name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); #endif if (! TREE_USED (decl)) return; #ifdef ASM_WEAKEN_DECL ASM_WEAKEN_DECL (asm_out_file, decl, name, NULL); #else #ifdef ASM_WEAKEN_LABEL ASM_WEAKEN_LABEL (asm_out_file, name); #else #ifdef ASM_OUTPUT_WEAK_ALIAS { static bool warn_once = 0; if (! warn_once) { warning (0, "only weak aliases are supported in this configuration"); warn_once = 1; } return; } #endif #endif #endif } /* This TREE_LIST contains weakref targets. */ static GTY(()) tree weakref_targets; /* Forward declaration. */ static tree find_decl_and_mark_needed (tree decl, tree target); /* Emit any pending weak declarations. */ void weak_finish (void) { tree t; for (t = weakref_targets; t; t = TREE_CHAIN (t)) { tree alias_decl = TREE_PURPOSE (t); tree target = ultimate_transparent_alias_target (&TREE_VALUE (t)); if (! TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (alias_decl))) /* Remove alias_decl from the weak list, but leave entries for the target alone. */ target = NULL_TREE; #ifndef ASM_OUTPUT_WEAKREF else if (! TREE_SYMBOL_REFERENCED (target)) { /* Use ASM_WEAKEN_LABEL only if ASM_WEAKEN_DECL is not defined, otherwise we and weak_finish_1 would use different macros. */ # if defined ASM_WEAKEN_LABEL && ! defined ASM_WEAKEN_DECL ASM_WEAKEN_LABEL (asm_out_file, IDENTIFIER_POINTER (target)); # else tree decl = find_decl_and_mark_needed (alias_decl, target); if (! decl) { decl = build_decl (DECL_SOURCE_LOCATION (alias_decl), TREE_CODE (alias_decl), target, TREE_TYPE (alias_decl)); DECL_EXTERNAL (decl) = 1; TREE_PUBLIC (decl) = 1; DECL_ARTIFICIAL (decl) = 1; TREE_NOTHROW (decl) = TREE_NOTHROW (alias_decl); TREE_USED (decl) = 1; } weak_finish_1 (decl); # endif } #endif { tree *p; tree t2; /* Remove the alias and the target from the pending weak list so that we do not emit any .weak directives for the former, nor multiple .weak directives for the latter. */ for (p = &weak_decls; (t2 = *p) ; ) { if (TREE_VALUE (t2) == alias_decl || target == DECL_ASSEMBLER_NAME (TREE_VALUE (t2))) *p = TREE_CHAIN (t2); else p = &TREE_CHAIN (t2); } /* Remove other weakrefs to the same target, to speed things up. */ for (p = &TREE_CHAIN (t); (t2 = *p) ; ) { if (target == ultimate_transparent_alias_target (&TREE_VALUE (t2))) *p = TREE_CHAIN (t2); else p = &TREE_CHAIN (t2); } } } for (t = weak_decls; t; t = TREE_CHAIN (t)) { tree decl = TREE_VALUE (t); weak_finish_1 (decl); } } /* Emit the assembly bits to indicate that DECL is globally visible. */ static void globalize_decl (tree decl) { #if defined (ASM_WEAKEN_LABEL) || defined (ASM_WEAKEN_DECL) if (DECL_WEAK (decl)) { const char *name = XSTR (XEXP (DECL_RTL (decl), 0), 0); tree *p, t; #ifdef ASM_WEAKEN_DECL ASM_WEAKEN_DECL (asm_out_file, decl, name, 0); #else ASM_WEAKEN_LABEL (asm_out_file, name); #endif /* Remove this function from the pending weak list so that we do not emit multiple .weak directives for it. */ for (p = &weak_decls; (t = *p) ; ) { if (DECL_ASSEMBLER_NAME (decl) == DECL_ASSEMBLER_NAME (TREE_VALUE (t))) *p = TREE_CHAIN (t); else p = &TREE_CHAIN (t); } /* Remove weakrefs to the same target from the pending weakref list, for the same reason. */ for (p = &weakref_targets; (t = *p) ; ) { if (DECL_ASSEMBLER_NAME (decl) == ultimate_transparent_alias_target (&TREE_VALUE (t))) *p = TREE_CHAIN (t); else p = &TREE_CHAIN (t); } return; } #endif targetm.asm_out.globalize_decl_name (asm_out_file, decl); } VEC(alias_pair,gc) *alias_pairs; /* Given an assembly name, find the decl it is associated with. At the same time, mark it needed for cgraph. */ static tree find_decl_and_mark_needed (tree decl, tree target) { struct cgraph_node *fnode = NULL; struct varpool_node *vnode = NULL; if (TREE_CODE (decl) == FUNCTION_DECL) { fnode = cgraph_node_for_asm (target); if (fnode == NULL) vnode = varpool_node_for_asm (target); } else { vnode = varpool_node_for_asm (target); if (vnode == NULL) fnode = cgraph_node_for_asm (target); } if (fnode) { cgraph_mark_needed_node (fnode); return fnode->decl; } else if (vnode) { varpool_mark_needed_node (vnode); vnode->force_output = 1; return vnode->decl; } else return NULL_TREE; } /* Output the assembler code for a define (equate) using ASM_OUTPUT_DEF or ASM_OUTPUT_DEF_FROM_DECLS. The function defines the symbol whose tree node is DECL to have the value of the tree node TARGET. */ static void do_assemble_alias (tree decl, tree target) { /* Emulated TLS had better not get this var. */ gcc_assert(!(!targetm.have_tls && TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL_P (decl))); if (TREE_ASM_WRITTEN (decl)) return; /* We must force creation of DECL_RTL for debug info generation, even though we don't use it here. */ make_decl_rtl (decl); TREE_ASM_WRITTEN (decl) = 1; TREE_ASM_WRITTEN (DECL_ASSEMBLER_NAME (decl)) = 1; if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl))) { ultimate_transparent_alias_target (&target); if (!TREE_SYMBOL_REFERENCED (target)) weakref_targets = tree_cons (decl, target, weakref_targets); #ifdef ASM_OUTPUT_WEAKREF ASM_OUTPUT_WEAKREF (asm_out_file, decl, IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)), IDENTIFIER_POINTER (target)); #else if (!TARGET_SUPPORTS_WEAK) { error_at (DECL_SOURCE_LOCATION (decl), "weakref is not supported in this configuration"); return; } #endif return; } #ifdef ASM_OUTPUT_DEF /* Make name accessible from other files, if appropriate. */ if (TREE_PUBLIC (decl)) { globalize_decl (decl); maybe_assemble_visibility (decl); } if (lookup_attribute ("ifunc", DECL_ATTRIBUTES (decl))) { #if defined (ASM_OUTPUT_TYPE_DIRECTIVE) && HAVE_GNU_INDIRECT_FUNCTION ASM_OUTPUT_TYPE_DIRECTIVE (asm_out_file, IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)), IFUNC_ASM_TYPE); #else error_at (DECL_SOURCE_LOCATION (decl), "ifunc is not supported in this configuration"); #endif } # ifdef ASM_OUTPUT_DEF_FROM_DECLS ASM_OUTPUT_DEF_FROM_DECLS (asm_out_file, decl, target); # else ASM_OUTPUT_DEF (asm_out_file, IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)), IDENTIFIER_POINTER (target)); # endif #elif defined (ASM_OUTPUT_WEAK_ALIAS) || defined (ASM_WEAKEN_DECL) { const char *name; tree *p, t; name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); # ifdef ASM_WEAKEN_DECL ASM_WEAKEN_DECL (asm_out_file, decl, name, IDENTIFIER_POINTER (target)); # else ASM_OUTPUT_WEAK_ALIAS (asm_out_file, name, IDENTIFIER_POINTER (target)); # endif /* Remove this function from the pending weak list so that we do not emit multiple .weak directives for it. */ for (p = &weak_decls; (t = *p) ; ) if (DECL_ASSEMBLER_NAME (decl) == DECL_ASSEMBLER_NAME (TREE_VALUE (t))) *p = TREE_CHAIN (t); else p = &TREE_CHAIN (t); /* Remove weakrefs to the same target from the pending weakref list, for the same reason. */ for (p = &weakref_targets; (t = *p) ; ) { if (DECL_ASSEMBLER_NAME (decl) == ultimate_transparent_alias_target (&TREE_VALUE (t))) *p = TREE_CHAIN (t); else p = &TREE_CHAIN (t); } } #endif } /* Allocate and construct a symbol alias set. */ static symbol_alias_set_t * symbol_alias_set_create (void) { return pointer_set_create (); } /* Destruct and free a symbol alias set. */ void symbol_alias_set_destroy (symbol_alias_set_t *aset) { pointer_set_destroy (aset); } /* Test if a symbol alias set contains a given name. */ int symbol_alias_set_contains (const symbol_alias_set_t *aset, tree t) { /* We accept either a DECL or an IDENTIFIER directly. */ if (TREE_CODE (t) != IDENTIFIER_NODE) t = DECL_ASSEMBLER_NAME (t); t = targetm.asm_out.mangle_assembler_name (IDENTIFIER_POINTER (t)); return pointer_set_contains (aset, t); } /* Enter a new name into a symbol alias set. */ static int symbol_alias_set_insert (symbol_alias_set_t *aset, tree t) { /* We accept either a DECL or an IDENTIFIER directly. */ if (TREE_CODE (t) != IDENTIFIER_NODE) t = DECL_ASSEMBLER_NAME (t); t = targetm.asm_out.mangle_assembler_name (IDENTIFIER_POINTER (t)); return pointer_set_insert (aset, t); } /* IN_SET_P is a predicate function assuming to be taken alias_pair->decl, alias_pair->target and DATA arguments. Compute set of aliases by including everything where TRIVIALLY_VISIBLE predeicate is true and propagate across aliases such that when alias DECL is included, its TARGET is included too. */ static symbol_alias_set_t * propagate_aliases_forward (bool (*in_set_p) (tree decl, tree target, void *data), void *data) { symbol_alias_set_t *set; unsigned i; alias_pair *p; bool changed; set = symbol_alias_set_create (); for (i = 0; VEC_iterate (alias_pair, alias_pairs, i, p); ++i) if (in_set_p (p->decl, p->target, data)) symbol_alias_set_insert (set, p->decl); do { changed = false; for (i = 0; VEC_iterate (alias_pair, alias_pairs, i, p); ++i) if (symbol_alias_set_contains (set, p->decl) && !symbol_alias_set_insert (set, p->target)) changed = true; } while (changed); return set; } /* Like propagate_aliases_forward but do backward propagation. */ symbol_alias_set_t * propagate_aliases_backward (bool (*in_set_p) (tree decl, tree target, void *data), void *data) { symbol_alias_set_t *set; unsigned i; alias_pair *p; bool changed; /* We have to compute the set of set nodes including aliases themselves. */ set = symbol_alias_set_create (); for (i = 0; VEC_iterate (alias_pair, alias_pairs, i, p); ++i) if (in_set_p (p->decl, p->target, data)) symbol_alias_set_insert (set, p->target); do { changed = false; for (i = 0; VEC_iterate (alias_pair, alias_pairs, i, p); ++i) if (symbol_alias_set_contains (set, p->target) && !symbol_alias_set_insert (set, p->decl)) changed = true; } while (changed); return set; } /* See if the alias is trivially visible. This means 1) alias is expoerted from the unit or 2) alias is used in the code. We assume that unused cgraph/varpool nodes has been removed. Used as callback for propagate_aliases. */ static bool trivially_visible_alias (tree decl, tree target ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED) { struct cgraph_node *fnode = NULL; struct varpool_node *vnode = NULL; if (!TREE_PUBLIC (decl)) { if (TREE_CODE (decl) == FUNCTION_DECL) fnode = cgraph_get_node (decl); else vnode = varpool_get_node (decl); return vnode || fnode; } else return true; } /* See if the target of alias is defined in this unit. Used as callback for propagate_aliases. */ static bool trivially_defined_alias (tree decl ATTRIBUTE_UNUSED, tree target, void *data ATTRIBUTE_UNUSED) { struct cgraph_node *fnode = NULL; struct varpool_node *vnode = NULL; fnode = cgraph_node_for_asm (target); vnode = (fnode == NULL) ? varpool_node_for_asm (target) : NULL; return (fnode && fnode->analyzed) || (vnode && vnode->finalized); } /* Remove the alias pairing for functions that are no longer in the call graph. */ void remove_unreachable_alias_pairs (void) { symbol_alias_set_t *visible; unsigned i; alias_pair *p; if (alias_pairs == NULL) return; /* We have to compute the set of visible nodes including aliases themselves. */ visible = propagate_aliases_forward (trivially_visible_alias, NULL); for (i = 0; VEC_iterate (alias_pair, alias_pairs, i, p); ) { if (!DECL_EXTERNAL (p->decl) && !symbol_alias_set_contains (visible, p->decl)) { VEC_unordered_remove (alias_pair, alias_pairs, i); continue; } i++; } symbol_alias_set_destroy (visible); } /* First pass of completing pending aliases. Make sure that cgraph knows which symbols will be required. */ void finish_aliases_1 (void) { symbol_alias_set_t *defined; unsigned i; alias_pair *p; if (alias_pairs == NULL) return; /* We have to compute the set of defined nodes including aliases themselves. */ defined = propagate_aliases_backward (trivially_defined_alias, NULL); FOR_EACH_VEC_ELT (alias_pair, alias_pairs, i, p) { tree target_decl; target_decl = find_decl_and_mark_needed (p->decl, p->target); if (target_decl == NULL) { if (symbol_alias_set_contains (defined, p->target)) continue; if (! (p->emitted_diags & ALIAS_DIAG_TO_UNDEF) && ! lookup_attribute ("weakref", DECL_ATTRIBUTES (p->decl))) { error ("%q+D aliased to undefined symbol %qE", p->decl, p->target); p->emitted_diags |= ALIAS_DIAG_TO_UNDEF; } } else if (! (p->emitted_diags & ALIAS_DIAG_TO_EXTERN) && DECL_EXTERNAL (target_decl) /* We use local aliases for C++ thunks to force the tailcall to bind locally. This is a hack - to keep it working do the following (which is not strictly correct). */ && (! TREE_CODE (target_decl) == FUNCTION_DECL || ! DECL_VIRTUAL_P (target_decl)) && ! lookup_attribute ("weakref", DECL_ATTRIBUTES (p->decl))) { error ("%q+D aliased to external symbol %qE", p->decl, p->target); p->emitted_diags |= ALIAS_DIAG_TO_EXTERN; } } symbol_alias_set_destroy (defined); } /* Second pass of completing pending aliases. Emit the actual assembly. This happens at the end of compilation and thus it is assured that the target symbol has been emitted. */ void finish_aliases_2 (void) { unsigned i; alias_pair *p; FOR_EACH_VEC_ELT (alias_pair, alias_pairs, i, p) do_assemble_alias (p->decl, p->target); VEC_truncate (alias_pair, alias_pairs, 0); } /* Emit an assembler directive to make the symbol for DECL an alias to the symbol for TARGET. */ void assemble_alias (tree decl, tree target) { tree target_decl; if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl))) { tree alias = DECL_ASSEMBLER_NAME (decl); ultimate_transparent_alias_target (&target); if (alias == target) error ("weakref %q+D ultimately targets itself", decl); else { #ifndef ASM_OUTPUT_WEAKREF IDENTIFIER_TRANSPARENT_ALIAS (alias) = 1; TREE_CHAIN (alias) = target; #endif } if (TREE_PUBLIC (decl)) error ("weakref %q+D must have static linkage", decl); } else { #if !defined (ASM_OUTPUT_DEF) # if !defined(ASM_OUTPUT_WEAK_ALIAS) && !defined (ASM_WEAKEN_DECL) error_at (DECL_SOURCE_LOCATION (decl), "alias definitions not supported in this configuration"); return; # else if (!DECL_WEAK (decl)) { if (lookup_attribute ("ifunc", DECL_ATTRIBUTES (decl))) error_at (DECL_SOURCE_LOCATION (decl), "ifunc is not supported in this configuration"); else error_at (DECL_SOURCE_LOCATION (decl), "only weak aliases are supported in this configuration"); return; } # endif #endif } TREE_USED (decl) = 1; /* Allow aliases to aliases. */ if (TREE_CODE (decl) == FUNCTION_DECL) cgraph_get_create_node (decl)->alias = true; else varpool_node (decl)->alias = true; /* If the target has already been emitted, we don't have to queue the alias. This saves a tad of memory. */ if (cgraph_global_info_ready) target_decl = find_decl_and_mark_needed (decl, target); else target_decl= NULL; if (target_decl && TREE_ASM_WRITTEN (target_decl)) do_assemble_alias (decl, target); else { alias_pair *p = VEC_safe_push (alias_pair, gc, alias_pairs, NULL); p->decl = decl; p->target = target; p->emitted_diags = ALIAS_DIAG_NONE; } } /* Record and output a table of translations from original function to its transaction aware clone. Note that tm_pure functions are considered to be their own clone. */ static GTY((if_marked ("tree_map_marked_p"), param_is (struct tree_map))) htab_t tm_clone_hash; void record_tm_clone_pair (tree o, tree n) { struct tree_map **slot, *h; if (tm_clone_hash == NULL) tm_clone_hash = htab_create_ggc (32, tree_map_hash, tree_map_eq, 0); h = ggc_alloc_tree_map (); h->hash = htab_hash_pointer (o); h->base.from = o; h->to = n; slot = (struct tree_map **) htab_find_slot_with_hash (tm_clone_hash, h, h->hash, INSERT); *slot = h; } tree get_tm_clone_pair (tree o) { if (tm_clone_hash) { struct tree_map *h, in; in.base.from = o; in.hash = htab_hash_pointer (o); h = (struct tree_map *) htab_find_with_hash (tm_clone_hash, &in, in.hash); if (h) return h->to; } return NULL_TREE; } typedef struct tm_alias_pair { unsigned int uid; tree from; tree to; } tm_alias_pair; DEF_VEC_O(tm_alias_pair); DEF_VEC_ALLOC_O(tm_alias_pair,heap); /* Helper function for finish_tm_clone_pairs. Dump a hash table entry into a VEC in INFO. */ static int dump_tm_clone_to_vec (void **slot, void *info) { struct tree_map *map = (struct tree_map *) *slot; VEC(tm_alias_pair,heap) **tm_alias_pairs = (VEC(tm_alias_pair, heap) **) info; tm_alias_pair *p; p = VEC_safe_push (tm_alias_pair, heap, *tm_alias_pairs, NULL); p->from = map->base.from; p->to = map->to; p->uid = DECL_UID (p->from); return 1; } /* Dump the actual pairs to the .tm_clone_table section. */ static void dump_tm_clone_pairs (VEC(tm_alias_pair,heap) *tm_alias_pairs) { unsigned i; tm_alias_pair *p; bool switched = false; FOR_EACH_VEC_ELT (tm_alias_pair, tm_alias_pairs, i, p) { tree src = p->from; tree dst = p->to; struct cgraph_node *src_n = cgraph_get_node (src); struct cgraph_node *dst_n = cgraph_get_node (dst); /* The function ipa_tm_create_version() marks the clone as needed if the original function was needed. But we also mark the clone as needed if we ever called the clone indirectly through TM_GETTMCLONE. If neither of these are true, we didn't generate a clone, and we didn't call it indirectly... no sense keeping it in the clone table. */ if (!dst_n || !dst_n->needed) continue; /* This covers the case where we have optimized the original function away, and only access the transactional clone. */ if (!src_n || !src_n->needed) continue; if (!switched) { switch_to_section (targetm.asm_out.tm_clone_table_section ()); assemble_align (POINTER_SIZE); switched = true; } assemble_integer (XEXP (DECL_RTL (src), 0), POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1); assemble_integer (XEXP (DECL_RTL (dst), 0), POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1); } } /* Provide a default for the tm_clone_table section. */ section * default_clone_table_section (void) { return get_named_section (NULL, ".tm_clone_table", 3); } /* Helper comparison function for qsorting by the DECL_UID stored in alias_pair->emitted_diags. */ static int tm_alias_pair_cmp (const void *x, const void *y) { const tm_alias_pair *p1 = (const tm_alias_pair *) x; const tm_alias_pair *p2 = (const tm_alias_pair *) y; if (p1->uid < p2->uid) return -1; if (p1->uid > p2->uid) return 1; return 0; } void finish_tm_clone_pairs (void) { VEC(tm_alias_pair,heap) *tm_alias_pairs = NULL; if (tm_clone_hash == NULL) return; /* We need a determenistic order for the .tm_clone_table, otherwise we will get bootstrap comparison failures, so dump the hash table to a vector, sort it, and dump the vector. */ /* Dump the hashtable to a vector. */ htab_traverse_noresize (tm_clone_hash, dump_tm_clone_to_vec, (void *) &tm_alias_pairs); /* Sort it. */ VEC_qsort (tm_alias_pair, tm_alias_pairs, tm_alias_pair_cmp); /* Dump it. */ dump_tm_clone_pairs (tm_alias_pairs); htab_delete (tm_clone_hash); tm_clone_hash = NULL; VEC_free (tm_alias_pair, heap, tm_alias_pairs); } /* Emit an assembler directive to set symbol for DECL visibility to the visibility type VIS, which must not be VISIBILITY_DEFAULT. */ void default_assemble_visibility (tree decl ATTRIBUTE_UNUSED, int vis ATTRIBUTE_UNUSED) { #ifdef HAVE_GAS_HIDDEN static const char * const visibility_types[] = { NULL, "protected", "hidden", "internal" }; const char *name, *type; name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); type = visibility_types[vis]; fprintf (asm_out_file, "\t.%s\t", type); assemble_name (asm_out_file, name); fprintf (asm_out_file, "\n"); #else warning (OPT_Wattributes, "visibility attribute not supported " "in this configuration; ignored"); #endif } /* A helper function to call assemble_visibility when needed for a decl. */ int maybe_assemble_visibility (tree decl) { enum symbol_visibility vis = DECL_VISIBILITY (decl); if (vis != VISIBILITY_DEFAULT) { targetm.asm_out.assemble_visibility (decl, vis); return 1; } else return 0; } /* Returns 1 if the target configuration supports defining public symbols so that one of them will be chosen at link time instead of generating a multiply-defined symbol error, whether through the use of weak symbols or a target-specific mechanism for having duplicates discarded. */ int supports_one_only (void) { if (SUPPORTS_ONE_ONLY) return 1; return TARGET_SUPPORTS_WEAK; } /* Set up DECL as a public symbol that can be defined in multiple translation units without generating a linker error. */ void make_decl_one_only (tree decl, tree comdat_group) { gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == FUNCTION_DECL); TREE_PUBLIC (decl) = 1; if (SUPPORTS_ONE_ONLY) { #ifdef MAKE_DECL_ONE_ONLY MAKE_DECL_ONE_ONLY (decl); #endif DECL_COMDAT_GROUP (decl) = comdat_group; } else if (TREE_CODE (decl) == VAR_DECL && (DECL_INITIAL (decl) == 0 || DECL_INITIAL (decl) == error_mark_node)) DECL_COMMON (decl) = 1; else { gcc_assert (TARGET_SUPPORTS_WEAK); DECL_WEAK (decl) = 1; } } void init_varasm_once (void) { section_htab = htab_create_ggc (31, section_entry_hash, section_entry_eq, NULL); object_block_htab = htab_create_ggc (31, object_block_entry_hash, object_block_entry_eq, NULL); const_desc_htab = htab_create_ggc (1009, const_desc_hash, const_desc_eq, NULL); const_alias_set = new_alias_set (); shared_constant_pool = create_constant_pool (); #ifdef TEXT_SECTION_ASM_OP text_section = get_unnamed_section (SECTION_CODE, output_section_asm_op, TEXT_SECTION_ASM_OP); #endif #ifdef DATA_SECTION_ASM_OP data_section = get_unnamed_section (SECTION_WRITE, output_section_asm_op, DATA_SECTION_ASM_OP); #endif #ifdef SDATA_SECTION_ASM_OP sdata_section = get_unnamed_section (SECTION_WRITE, output_section_asm_op, SDATA_SECTION_ASM_OP); #endif #ifdef READONLY_DATA_SECTION_ASM_OP readonly_data_section = get_unnamed_section (0, output_section_asm_op, READONLY_DATA_SECTION_ASM_OP); #endif #ifdef CTORS_SECTION_ASM_OP ctors_section = get_unnamed_section (0, output_section_asm_op, CTORS_SECTION_ASM_OP); #endif #ifdef DTORS_SECTION_ASM_OP dtors_section = get_unnamed_section (0, output_section_asm_op, DTORS_SECTION_ASM_OP); #endif #ifdef BSS_SECTION_ASM_OP bss_section = get_unnamed_section (SECTION_WRITE | SECTION_BSS, output_section_asm_op, BSS_SECTION_ASM_OP); #endif #ifdef SBSS_SECTION_ASM_OP sbss_section = get_unnamed_section (SECTION_WRITE | SECTION_BSS, output_section_asm_op, SBSS_SECTION_ASM_OP); #endif tls_comm_section = get_noswitch_section (SECTION_WRITE | SECTION_BSS | SECTION_COMMON, emit_tls_common); lcomm_section = get_noswitch_section (SECTION_WRITE | SECTION_BSS | SECTION_COMMON, emit_local); comm_section = get_noswitch_section (SECTION_WRITE | SECTION_BSS | SECTION_COMMON, emit_common); #if defined ASM_OUTPUT_ALIGNED_BSS bss_noswitch_section = get_noswitch_section (SECTION_WRITE | SECTION_BSS, emit_bss); #endif targetm.asm_out.init_sections (); if (readonly_data_section == NULL) readonly_data_section = text_section; } enum tls_model decl_default_tls_model (const_tree decl) { enum tls_model kind; bool is_local; is_local = targetm.binds_local_p (decl); if (!flag_shlib) { if (is_local) kind = TLS_MODEL_LOCAL_EXEC; else kind = TLS_MODEL_INITIAL_EXEC; } /* Local dynamic is inefficient when we're not combining the parts of the address. */ else if (optimize && is_local) kind = TLS_MODEL_LOCAL_DYNAMIC; else kind = TLS_MODEL_GLOBAL_DYNAMIC; if (kind < flag_tls_default) kind = flag_tls_default; return kind; } /* Select a set of attributes for section NAME based on the properties of DECL and whether or not RELOC indicates that DECL's initializer might contain runtime relocations. We make the section read-only and executable for a function decl, read-only for a const data decl, and writable for a non-const data decl. */ unsigned int default_section_type_flags (tree decl, const char *name, int reloc) { unsigned int flags; if (decl && TREE_CODE (decl) == FUNCTION_DECL) flags = SECTION_CODE; else if (decl) { enum section_category category = categorize_decl_for_section (decl, reloc); if (decl_readonly_section_1 (category)) flags = 0; else if (category == SECCAT_DATA_REL_RO || category == SECCAT_DATA_REL_RO_LOCAL) flags = SECTION_WRITE | SECTION_RELRO; else flags = SECTION_WRITE; } else { flags = SECTION_WRITE; if (strcmp (name, ".data.rel.ro") == 0 || strcmp (name, ".data.rel.ro.local") == 0) flags |= SECTION_RELRO; } if (decl && DECL_ONE_ONLY (decl)) flags |= SECTION_LINKONCE; if (decl && TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL_P (decl)) flags |= SECTION_TLS | SECTION_WRITE; if (strcmp (name, ".bss") == 0 || strncmp (name, ".bss.", 5) == 0 || strncmp (name, ".gnu.linkonce.b.", 16) == 0 || strcmp (name, ".sbss") == 0 || strncmp (name, ".sbss.", 6) == 0 || strncmp (name, ".gnu.linkonce.sb.", 17) == 0) flags |= SECTION_BSS; if (strcmp (name, ".tdata") == 0 || strncmp (name, ".tdata.", 7) == 0 || strncmp (name, ".gnu.linkonce.td.", 17) == 0) flags |= SECTION_TLS; if (strcmp (name, ".tbss") == 0 || strncmp (name, ".tbss.", 6) == 0 || strncmp (name, ".gnu.linkonce.tb.", 17) == 0) flags |= SECTION_TLS | SECTION_BSS; /* These three sections have special ELF types. They are neither SHT_PROGBITS nor SHT_NOBITS, so when changing sections we don't want to print a section type (@progbits or @nobits). If someone is silly enough to emit code or TLS variables to one of these sections, then don't handle them specially. */ if (!(flags & (SECTION_CODE | SECTION_BSS | SECTION_TLS)) && (strcmp (name, ".init_array") == 0 || strcmp (name, ".fini_array") == 0 || strcmp (name, ".preinit_array") == 0)) flags |= SECTION_NOTYPE; return flags; } /* Return true if the target supports some form of global BSS, either through bss_noswitch_section, or by selecting a BSS section in TARGET_ASM_SELECT_SECTION. */ bool have_global_bss_p (void) { return bss_noswitch_section || targetm.have_switchable_bss_sections; } /* Output assembly to switch to section NAME with attribute FLAGS. Four variants for common object file formats. */ void default_no_named_section (const char *name ATTRIBUTE_UNUSED, unsigned int flags ATTRIBUTE_UNUSED, tree decl ATTRIBUTE_UNUSED) { /* Some object formats don't support named sections at all. The front-end should already have flagged this as an error. */ gcc_unreachable (); } #ifndef TLS_SECTION_ASM_FLAG #define TLS_SECTION_ASM_FLAG 'T' #endif void default_elf_asm_named_section (const char *name, unsigned int flags, tree decl ATTRIBUTE_UNUSED) { char flagchars[10], *f = flagchars; /* If we have already declared this section, we can use an abbreviated form to switch back to it -- unless this section is part of a COMDAT groups, in which case GAS requires the full declaration every time. */ if (!(HAVE_COMDAT_GROUP && (flags & SECTION_LINKONCE)) && (flags & SECTION_DECLARED)) { fprintf (asm_out_file, "\t.section\t%s\n", name); return; } if (!(flags & SECTION_DEBUG)) *f++ = 'a'; if (flags & SECTION_EXCLUDE) *f++ = 'e'; if (flags & SECTION_WRITE) *f++ = 'w'; if (flags & SECTION_CODE) *f++ = 'x'; if (flags & SECTION_SMALL) *f++ = 's'; if (flags & SECTION_MERGE) *f++ = 'M'; if (flags & SECTION_STRINGS) *f++ = 'S'; if (flags & SECTION_TLS) *f++ = TLS_SECTION_ASM_FLAG; if (HAVE_COMDAT_GROUP && (flags & SECTION_LINKONCE)) *f++ = 'G'; *f = '\0'; fprintf (asm_out_file, "\t.section\t%s,\"%s\"", name, flagchars); if (!(flags & SECTION_NOTYPE)) { const char *type; const char *format; if (flags & SECTION_BSS) type = "nobits"; else type = "progbits"; format = ",@%s"; /* On platforms that use "@" as the assembly comment character, use "%" instead. */ if (strcmp (ASM_COMMENT_START, "@") == 0) format = ",%%%s"; fprintf (asm_out_file, format, type); if (flags & SECTION_ENTSIZE) fprintf (asm_out_file, ",%d", flags & SECTION_ENTSIZE); if (HAVE_COMDAT_GROUP && (flags & SECTION_LINKONCE)) { if (TREE_CODE (decl) == IDENTIFIER_NODE) fprintf (asm_out_file, ",%s,comdat", IDENTIFIER_POINTER (decl)); else fprintf (asm_out_file, ",%s,comdat", IDENTIFIER_POINTER (DECL_COMDAT_GROUP (decl))); } } putc ('\n', asm_out_file); } void default_coff_asm_named_section (const char *name, unsigned int flags, tree decl ATTRIBUTE_UNUSED) { char flagchars[8], *f = flagchars; if (flags & SECTION_WRITE) *f++ = 'w'; if (flags & SECTION_CODE) *f++ = 'x'; *f = '\0'; fprintf (asm_out_file, "\t.section\t%s,\"%s\"\n", name, flagchars); } void default_pe_asm_named_section (const char *name, unsigned int flags, tree decl) { default_coff_asm_named_section (name, flags, decl); if (flags & SECTION_LINKONCE) { /* Functions may have been compiled at various levels of optimization so we can't use `same_size' here. Instead, have the linker pick one. */ fprintf (asm_out_file, "\t.linkonce %s\n", (flags & SECTION_CODE ? "discard" : "same_size")); } } /* The lame default section selector. */ section * default_select_section (tree decl, int reloc, unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED) { if (DECL_P (decl)) { if (decl_readonly_section (decl, reloc)) return readonly_data_section; } else if (TREE_CODE (decl) == CONSTRUCTOR) { if (! ((flag_pic && reloc) || !TREE_READONLY (decl) || TREE_SIDE_EFFECTS (decl) || !TREE_CONSTANT (decl))) return readonly_data_section; } else if (TREE_CODE (decl) == STRING_CST) return readonly_data_section; else if (! (flag_pic && reloc)) return readonly_data_section; return data_section; } enum section_category categorize_decl_for_section (const_tree decl, int reloc) { enum section_category ret; if (TREE_CODE (decl) == FUNCTION_DECL) return SECCAT_TEXT; else if (TREE_CODE (decl) == STRING_CST) { if (flag_mudflap) /* or !flag_merge_constants */ return SECCAT_RODATA; else return SECCAT_RODATA_MERGE_STR; } else if (TREE_CODE (decl) == VAR_DECL) { if (bss_initializer_p (decl)) ret = SECCAT_BSS; else if (! TREE_READONLY (decl) || TREE_SIDE_EFFECTS (decl) || ! TREE_CONSTANT (DECL_INITIAL (decl))) { /* Here the reloc_rw_mask is not testing whether the section should be read-only or not, but whether the dynamic link will have to do something. If so, we wish to segregate the data in order to minimize cache misses inside the dynamic linker. */ if (reloc & targetm.asm_out.reloc_rw_mask ()) ret = reloc == 1 ? SECCAT_DATA_REL_LOCAL : SECCAT_DATA_REL; else ret = SECCAT_DATA; } else if (reloc & targetm.asm_out.reloc_rw_mask ()) ret = reloc == 1 ? SECCAT_DATA_REL_RO_LOCAL : SECCAT_DATA_REL_RO; else if (reloc || flag_merge_constants < 2) /* C and C++ don't allow different variables to share the same location. -fmerge-all-constants allows even that (at the expense of not conforming). */ ret = SECCAT_RODATA; else if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST) ret = SECCAT_RODATA_MERGE_STR_INIT; else ret = SECCAT_RODATA_MERGE_CONST; } else if (TREE_CODE (decl) == CONSTRUCTOR) { if ((reloc & targetm.asm_out.reloc_rw_mask ()) || TREE_SIDE_EFFECTS (decl) || ! TREE_CONSTANT (decl)) ret = SECCAT_DATA; else ret = SECCAT_RODATA; } else ret = SECCAT_RODATA; /* There are no read-only thread-local sections. */ if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL_P (decl)) { /* Note that this would be *just* SECCAT_BSS, except that there's no concept of a read-only thread-local-data section. */ if (ret == SECCAT_BSS || (flag_zero_initialized_in_bss && initializer_zerop (DECL_INITIAL (decl)))) ret = SECCAT_TBSS; else ret = SECCAT_TDATA; } /* If the target uses small data sections, select it. */ else if (targetm.in_small_data_p (decl)) { if (ret == SECCAT_BSS) ret = SECCAT_SBSS; else if (targetm.have_srodata_section && ret == SECCAT_RODATA) ret = SECCAT_SRODATA; else ret = SECCAT_SDATA; } return ret; } static bool decl_readonly_section_1 (enum section_category category) { switch (category) { case SECCAT_RODATA: case SECCAT_RODATA_MERGE_STR: case SECCAT_RODATA_MERGE_STR_INIT: case SECCAT_RODATA_MERGE_CONST: case SECCAT_SRODATA: return true; default: return false; } } bool decl_readonly_section (const_tree decl, int reloc) { return decl_readonly_section_1 (categorize_decl_for_section (decl, reloc)); } /* Select a section based on the above categorization. */ section * default_elf_select_section (tree decl, int reloc, unsigned HOST_WIDE_INT align) { const char *sname; switch (categorize_decl_for_section (decl, reloc)) { case SECCAT_TEXT: /* We're not supposed to be called on FUNCTION_DECLs. */ gcc_unreachable (); case SECCAT_RODATA: return readonly_data_section; case SECCAT_RODATA_MERGE_STR: return mergeable_string_section (decl, align, 0); case SECCAT_RODATA_MERGE_STR_INIT: return mergeable_string_section (DECL_INITIAL (decl), align, 0); case SECCAT_RODATA_MERGE_CONST: return mergeable_constant_section (DECL_MODE (decl), align, 0); case SECCAT_SRODATA: sname = ".sdata2"; break; case SECCAT_DATA: return data_section; case SECCAT_DATA_REL: sname = ".data.rel"; break; case SECCAT_DATA_REL_LOCAL: sname = ".data.rel.local"; break; case SECCAT_DATA_REL_RO: sname = ".data.rel.ro"; break; case SECCAT_DATA_REL_RO_LOCAL: sname = ".data.rel.ro.local"; break; case SECCAT_SDATA: sname = ".sdata"; break; case SECCAT_TDATA: sname = ".tdata"; break; case SECCAT_BSS: if (bss_section) return bss_section; sname = ".bss"; break; case SECCAT_SBSS: sname = ".sbss"; break; case SECCAT_TBSS: sname = ".tbss"; break; default: gcc_unreachable (); } if (!DECL_P (decl)) decl = NULL_TREE; return get_named_section (decl, sname, reloc); } /* Construct a unique section name based on the decl name and the categorization performed above. */ void default_unique_section (tree decl, int reloc) { /* We only need to use .gnu.linkonce if we don't have COMDAT groups. */ bool one_only = DECL_ONE_ONLY (decl) && !HAVE_COMDAT_GROUP; const char *prefix, *name, *linkonce; char *string; switch (categorize_decl_for_section (decl, reloc)) { case SECCAT_TEXT: prefix = one_only ? ".t" : ".text"; break; case SECCAT_RODATA: case SECCAT_RODATA_MERGE_STR: case SECCAT_RODATA_MERGE_STR_INIT: case SECCAT_RODATA_MERGE_CONST: prefix = one_only ? ".r" : ".rodata"; break; case SECCAT_SRODATA: prefix = one_only ? ".s2" : ".sdata2"; break; case SECCAT_DATA: prefix = one_only ? ".d" : ".data"; break; case SECCAT_DATA_REL: prefix = one_only ? ".d.rel" : ".data.rel"; break; case SECCAT_DATA_REL_LOCAL: prefix = one_only ? ".d.rel.local" : ".data.rel.local"; break; case SECCAT_DATA_REL_RO: prefix = one_only ? ".d.rel.ro" : ".data.rel.ro"; break; case SECCAT_DATA_REL_RO_LOCAL: prefix = one_only ? ".d.rel.ro.local" : ".data.rel.ro.local"; break; case SECCAT_SDATA: prefix = one_only ? ".s" : ".sdata"; break; case SECCAT_BSS: prefix = one_only ? ".b" : ".bss"; break; case SECCAT_SBSS: prefix = one_only ? ".sb" : ".sbss"; break; case SECCAT_TDATA: prefix = one_only ? ".td" : ".tdata"; break; case SECCAT_TBSS: prefix = one_only ? ".tb" : ".tbss"; break; default: gcc_unreachable (); } name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); name = targetm.strip_name_encoding (name); /* If we're using one_only, then there needs to be a .gnu.linkonce prefix to the section name. */ linkonce = one_only ? ".gnu.linkonce" : ""; string = ACONCAT ((linkonce, prefix, ".", name, NULL)); DECL_SECTION_NAME (decl) = build_string (strlen (string), string); } /* Like compute_reloc_for_constant, except for an RTX. The return value is a mask for which bit 1 indicates a global relocation, and bit 0 indicates a local relocation. */ static int compute_reloc_for_rtx_1 (rtx *xp, void *data) { int *preloc = (int *) data; rtx x = *xp; switch (GET_CODE (x)) { case SYMBOL_REF: *preloc |= SYMBOL_REF_LOCAL_P (x) ? 1 : 2; break; case LABEL_REF: *preloc |= 1; break; default: break; } return 0; } static int compute_reloc_for_rtx (rtx x) { int reloc; switch (GET_CODE (x)) { case CONST: case SYMBOL_REF: case LABEL_REF: reloc = 0; for_each_rtx (&x, compute_reloc_for_rtx_1, &reloc); return reloc; default: return 0; } } section * default_select_rtx_section (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x, unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED) { if (compute_reloc_for_rtx (x) & targetm.asm_out.reloc_rw_mask ()) return data_section; else return readonly_data_section; } section * default_elf_select_rtx_section (enum machine_mode mode, rtx x, unsigned HOST_WIDE_INT align) { int reloc = compute_reloc_for_rtx (x); /* ??? Handle small data here somehow. */ if (reloc & targetm.asm_out.reloc_rw_mask ()) { if (reloc == 1) return get_named_section (NULL, ".data.rel.ro.local", 1); else return get_named_section (NULL, ".data.rel.ro", 3); } return mergeable_constant_section (mode, align, 0); } /* Set the generally applicable flags on the SYMBOL_REF for EXP. */ void default_encode_section_info (tree decl, rtx rtl, int first ATTRIBUTE_UNUSED) { rtx symbol; int flags; /* Careful not to prod global register variables. */ if (!MEM_P (rtl)) return; symbol = XEXP (rtl, 0); if (GET_CODE (symbol) != SYMBOL_REF) return; flags = SYMBOL_REF_FLAGS (symbol) & SYMBOL_FLAG_HAS_BLOCK_INFO; if (TREE_CODE (decl) == FUNCTION_DECL) flags |= SYMBOL_FLAG_FUNCTION; if (targetm.binds_local_p (decl)) flags |= SYMBOL_FLAG_LOCAL; if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL_P (decl)) flags |= DECL_TLS_MODEL (decl) << SYMBOL_FLAG_TLS_SHIFT; else if (targetm.in_small_data_p (decl)) flags |= SYMBOL_FLAG_SMALL; /* ??? Why is DECL_EXTERNAL ever set for non-PUBLIC names? Without being PUBLIC, the thing *must* be defined in this translation unit. Prevent this buglet from being propagated into rtl code as well. */ if (DECL_P (decl) && DECL_EXTERNAL (decl) && TREE_PUBLIC (decl)) flags |= SYMBOL_FLAG_EXTERNAL; SYMBOL_REF_FLAGS (symbol) = flags; } /* By default, we do nothing for encode_section_info, so we need not do anything but discard the '*' marker. */ const char * default_strip_name_encoding (const char *str) { return str + (*str == '*'); } #ifdef ASM_OUTPUT_DEF /* The default implementation of TARGET_ASM_OUTPUT_ANCHOR. Define the anchor relative to ".", the current section position. */ void default_asm_output_anchor (rtx symbol) { char buffer[100]; sprintf (buffer, "*. + " HOST_WIDE_INT_PRINT_DEC, SYMBOL_REF_BLOCK_OFFSET (symbol)); ASM_OUTPUT_DEF (asm_out_file, XSTR (symbol, 0), buffer); } #endif /* The default implementation of TARGET_USE_ANCHORS_FOR_SYMBOL_P. */ bool default_use_anchors_for_symbol_p (const_rtx symbol) { section *sect; tree decl; /* Don't use anchors for mergeable sections. The linker might move the objects around. */ sect = SYMBOL_REF_BLOCK (symbol)->sect; if (sect->common.flags & SECTION_MERGE) return false; /* Don't use anchors for small data sections. The small data register acts as an anchor for such sections. */ if (sect->common.flags & SECTION_SMALL) return false; decl = SYMBOL_REF_DECL (symbol); if (decl && DECL_P (decl)) { /* Don't use section anchors for decls that might be defined by other modules. */ if (!targetm.binds_local_p (decl)) return false; /* Don't use section anchors for decls that will be placed in a small data section. */ /* ??? Ideally, this check would be redundant with the SECTION_SMALL one above. The problem is that we only use SECTION_SMALL for sections that should be marked as small in the section directive. */ if (targetm.in_small_data_p (decl)) return false; } return true; } /* Return true when RESOLUTION indicate that symbol will be bound to the definition provided by current .o file. */ static bool resolution_to_local_definition_p (enum ld_plugin_symbol_resolution resolution) { return (resolution == LDPR_PREVAILING_DEF || resolution == LDPR_PREVAILING_DEF_IRONLY_EXP || resolution == LDPR_PREVAILING_DEF_IRONLY); } /* Return true when RESOLUTION indicate that symbol will be bound locally within current executable or DSO. */ static bool resolution_local_p (enum ld_plugin_symbol_resolution resolution) { return (resolution == LDPR_PREVAILING_DEF || resolution == LDPR_PREVAILING_DEF_IRONLY || resolution == LDPR_PREVAILING_DEF_IRONLY_EXP || resolution == LDPR_PREEMPTED_REG || resolution == LDPR_PREEMPTED_IR || resolution == LDPR_RESOLVED_IR || resolution == LDPR_RESOLVED_EXEC); } /* Assume ELF-ish defaults, since that's pretty much the most liberal wrt cross-module name binding. */ bool default_binds_local_p (const_tree exp) { return default_binds_local_p_1 (exp, flag_shlib); } bool default_binds_local_p_1 (const_tree exp, int shlib) { bool local_p; bool resolved_locally = false; bool resolved_to_local_def = false; /* With resolution file in hands, take look into resolutions. We can't just return true for resolved_locally symbols, because dynamic linking might overwrite symbols in shared libraries. */ if (TREE_CODE (exp) == VAR_DECL && TREE_PUBLIC (exp) && (TREE_STATIC (exp) || DECL_EXTERNAL (exp))) { struct varpool_node *vnode = varpool_get_node (exp); if (vnode && resolution_local_p (vnode->resolution)) resolved_locally = true; if (vnode && resolution_to_local_definition_p (vnode->resolution)) resolved_to_local_def = true; } else if (TREE_CODE (exp) == FUNCTION_DECL && TREE_PUBLIC (exp)) { struct cgraph_node *node = cgraph_get_node (exp); if (node && resolution_local_p (node->resolution)) resolved_locally = true; if (node && resolution_to_local_definition_p (node->resolution)) resolved_to_local_def = true; } /* A non-decl is an entry in the constant pool. */ if (!DECL_P (exp)) local_p = true; /* Weakrefs may not bind locally, even though the weakref itself is always static and therefore local. Similarly, the resolver for ifunc functions might resolve to a non-local function. FIXME: We can resolve the weakref case more curefuly by looking at the weakref alias. */ else if (lookup_attribute ("weakref", DECL_ATTRIBUTES (exp)) || (TREE_CODE (exp) == FUNCTION_DECL && lookup_attribute ("ifunc", DECL_ATTRIBUTES (exp)))) local_p = false; /* Static variables are always local. */ else if (! TREE_PUBLIC (exp)) local_p = true; /* A variable is local if the user has said explicitly that it will be. */ else if ((DECL_VISIBILITY_SPECIFIED (exp) || resolved_to_local_def) && DECL_VISIBILITY (exp) != VISIBILITY_DEFAULT) local_p = true; /* Variables defined outside this object might not be local. */ else if (DECL_EXTERNAL (exp) && !resolved_locally) local_p = false; /* If defined in this object and visibility is not default, must be local. */ else if (DECL_VISIBILITY (exp) != VISIBILITY_DEFAULT) local_p = true; /* Default visibility weak data can be overridden by a strong symbol in another module and so are not local. */ else if (DECL_WEAK (exp) && !resolved_locally) local_p = false; /* If PIC, then assume that any global name can be overridden by symbols resolved from other modules. */ else if (shlib) local_p = false; /* Uninitialized COMMON variable may be unified with symbols resolved from other modules. */ else if (DECL_COMMON (exp) && !resolved_locally && (DECL_INITIAL (exp) == NULL || DECL_INITIAL (exp) == error_mark_node)) local_p = false; /* Otherwise we're left with initialized (or non-common) global data which is of necessity defined locally. */ else local_p = true; return local_p; } /* Return true when references to DECL must bind to current definition in final executable. The condition is usually equivalent to whether the function binds to the current module (shared library or executable), that is to binds_local_p. We use this fact to avoid need for another target hook and implement the logic using binds_local_p and just special cases where decl_binds_to_current_def_p is stronger than binds_local_p. In particular the weak definitions (that can be overwritten at linktime by other definition from different object file) and when resolution info is available we simply use the knowledge passed to us by linker plugin. */ bool decl_binds_to_current_def_p (tree decl) { gcc_assert (DECL_P (decl)); if (!TREE_PUBLIC (decl)) return true; if (!targetm.binds_local_p (decl)) return false; /* When resolution is available, just use it. */ if (TREE_CODE (decl) == VAR_DECL && (TREE_STATIC (decl) || DECL_EXTERNAL (decl))) { struct varpool_node *vnode = varpool_get_node (decl); if (vnode && vnode->resolution != LDPR_UNKNOWN) return resolution_to_local_definition_p (vnode->resolution); } else if (TREE_CODE (decl) == FUNCTION_DECL) { struct cgraph_node *node = cgraph_get_node (decl); if (node && node->resolution != LDPR_UNKNOWN) return resolution_to_local_definition_p (node->resolution); } /* Otherwise we have to assume the worst for DECL_WEAK (hidden weaks binds locally but still can be overwritten). This rely on fact that binds_local_p behave as decl_replaceable_p for all other declaration types. */ return !DECL_WEAK (decl); } /* A replaceable function or variable is one which may be replaced at link-time with an entirely different definition, provided that the replacement has the same type. For example, functions declared with __attribute__((weak)) on most systems are replaceable. COMDAT functions are not replaceable, since all definitions of the function must be equivalent. It is important that COMDAT functions not be treated as replaceable so that use of C++ template instantiations is not penalized. */ bool decl_replaceable_p (tree decl) { gcc_assert (DECL_P (decl)); if (!TREE_PUBLIC (decl) || DECL_COMDAT (decl)) return false; return !decl_binds_to_current_def_p (decl); } /* Default function to output code that will globalize a label. A target must define GLOBAL_ASM_OP or provide its own function to globalize a label. */ #ifdef GLOBAL_ASM_OP void default_globalize_label (FILE * stream, const char *name) { fputs (GLOBAL_ASM_OP, stream); assemble_name (stream, name); putc ('\n', stream); } #endif /* GLOBAL_ASM_OP */ /* Default function to output code that will globalize a declaration. */ void default_globalize_decl_name (FILE * stream, tree decl) { const char *name = XSTR (XEXP (DECL_RTL (decl), 0), 0); targetm.asm_out.globalize_label (stream, name); } /* Default function to output a label for unwind information. The default is to do nothing. A target that needs nonlocal labels for unwind information must provide its own function to do this. */ void default_emit_unwind_label (FILE * stream ATTRIBUTE_UNUSED, tree decl ATTRIBUTE_UNUSED, int for_eh ATTRIBUTE_UNUSED, int empty ATTRIBUTE_UNUSED) { } /* Default function to output a label to divide up the exception table. The default is to do nothing. A target that needs/wants to divide up the table must provide it's own function to do this. */ void default_emit_except_table_label (FILE * stream ATTRIBUTE_UNUSED) { } /* This is how to output an internal numbered label where PREFIX is the class of label and LABELNO is the number within the class. */ void default_generate_internal_label (char *buf, const char *prefix, unsigned long labelno) { ASM_GENERATE_INTERNAL_LABEL (buf, prefix, labelno); } /* This is how to output an internal numbered label where PREFIX is the class of label and LABELNO is the number within the class. */ void default_internal_label (FILE *stream, const char *prefix, unsigned long labelno) { char *const buf = (char *) alloca (40 + strlen (prefix)); ASM_GENERATE_INTERNAL_LABEL (buf, prefix, labelno); ASM_OUTPUT_INTERNAL_LABEL (stream, buf); } /* The default implementation of ASM_DECLARE_CONSTANT_NAME. */ void default_asm_declare_constant_name (FILE *file, const char *name, const_tree exp ATTRIBUTE_UNUSED, HOST_WIDE_INT size ATTRIBUTE_UNUSED) { assemble_label (file, name); } /* This is the default behavior at the beginning of a file. It's controlled by two other target-hook toggles. */ void default_file_start (void) { if (targetm.asm_file_start_app_off && !(flag_verbose_asm || flag_debug_asm || flag_dump_rtl_in_asm)) fputs (ASM_APP_OFF, asm_out_file); if (targetm.asm_file_start_file_directive) output_file_directive (asm_out_file, main_input_filename); } /* This is a generic routine suitable for use as TARGET_ASM_FILE_END which emits a special section directive used to indicate whether or not this object file needs an executable stack. This is primarily a GNU extension to ELF but could be used on other targets. */ int trampolines_created; void file_end_indicate_exec_stack (void) { unsigned int flags = SECTION_DEBUG; if (trampolines_created) flags |= SECTION_CODE; switch_to_section (get_section (".note.GNU-stack", flags, NULL)); } /* Emit a special section directive to indicate that this object file was compiled with -fsplit-stack. This is used to let the linker detect calls between split-stack code and non-split-stack code, so that it can modify the split-stack code to allocate a sufficiently large stack. We emit another special section if there are any functions in this file which have the no_split_stack attribute, to prevent the linker from warning about being unable to convert the functions if they call non-split-stack code. */ void file_end_indicate_split_stack (void) { if (flag_split_stack) { switch_to_section (get_section (".note.GNU-split-stack", SECTION_DEBUG, NULL)); if (saw_no_split_stack) switch_to_section (get_section (".note.GNU-no-split-stack", SECTION_DEBUG, NULL)); } } /* Output DIRECTIVE (a C string) followed by a newline. This is used as a get_unnamed_section callback. */ void output_section_asm_op (const void *directive) { fprintf (asm_out_file, "%s\n", (const char *) directive); } /* Emit assembly code to switch to section NEW_SECTION. Do nothing if the current section is NEW_SECTION. */ void switch_to_section (section *new_section) { if (in_section == new_section) return; if (new_section->common.flags & SECTION_FORGET) in_section = NULL; else in_section = new_section; switch (SECTION_STYLE (new_section)) { case SECTION_NAMED: targetm.asm_out.named_section (new_section->named.name, new_section->named.common.flags, new_section->named.decl); break; case SECTION_UNNAMED: new_section->unnamed.callback (new_section->unnamed.data); break; case SECTION_NOSWITCH: gcc_unreachable (); break; } new_section->common.flags |= SECTION_DECLARED; } /* If block symbol SYMBOL has not yet been assigned an offset, place it at the end of its block. */ void place_block_symbol (rtx symbol) { unsigned HOST_WIDE_INT size, mask, offset; struct constant_descriptor_rtx *desc; unsigned int alignment; struct object_block *block; tree decl; gcc_assert (SYMBOL_REF_BLOCK (symbol)); if (SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0) return; /* Work out the symbol's size and alignment. */ if (CONSTANT_POOL_ADDRESS_P (symbol)) { desc = SYMBOL_REF_CONSTANT (symbol); alignment = desc->align; size = GET_MODE_SIZE (desc->mode); } else if (TREE_CONSTANT_POOL_ADDRESS_P (symbol)) { decl = SYMBOL_REF_DECL (symbol); alignment = DECL_ALIGN (decl); size = get_constant_size (DECL_INITIAL (decl)); } else { decl = SYMBOL_REF_DECL (symbol); alignment = DECL_ALIGN (decl); size = tree_low_cst (DECL_SIZE_UNIT (decl), 1); } /* Calculate the object's offset from the start of the block. */ block = SYMBOL_REF_BLOCK (symbol); mask = alignment / BITS_PER_UNIT - 1; offset = (block->size + mask) & ~mask; SYMBOL_REF_BLOCK_OFFSET (symbol) = offset; /* Record the block's new alignment and size. */ block->alignment = MAX (block->alignment, alignment); block->size = offset + size; VEC_safe_push (rtx, gc, block->objects, symbol); } /* Return the anchor that should be used to address byte offset OFFSET from the first object in BLOCK. MODEL is the TLS model used to access it. */ rtx get_section_anchor (struct object_block *block, HOST_WIDE_INT offset, enum tls_model model) { char label[100]; unsigned int begin, middle, end; unsigned HOST_WIDE_INT min_offset, max_offset, range, bias, delta; rtx anchor; /* Work out the anchor's offset. Use an offset of 0 for the first anchor so that we don't pessimize the case where we take the address of a variable at the beginning of the block. This is particularly useful when a block has only one variable assigned to it. We try to place anchors RANGE bytes apart, so there can then be anchors at +/-RANGE, +/-2 * RANGE, and so on, up to the limits of a ptr_mode offset. With some target settings, the lowest such anchor might be out of range for the lowest ptr_mode offset; likewise the highest anchor for the highest offset. Use anchors at the extreme ends of the ptr_mode range in such cases. All arithmetic uses unsigned integers in order to avoid signed overflow. */ max_offset = (unsigned HOST_WIDE_INT) targetm.max_anchor_offset; min_offset = (unsigned HOST_WIDE_INT) targetm.min_anchor_offset; range = max_offset - min_offset + 1; if (range == 0) offset = 0; else { bias = 1 << (GET_MODE_BITSIZE (ptr_mode) - 1); if (offset < 0) { delta = -(unsigned HOST_WIDE_INT) offset + max_offset; delta -= delta % range; if (delta > bias) delta = bias; offset = (HOST_WIDE_INT) (-delta); } else { delta = (unsigned HOST_WIDE_INT) offset - min_offset; delta -= delta % range; if (delta > bias - 1) delta = bias - 1; offset = (HOST_WIDE_INT) delta; } } /* Do a binary search to see if there's already an anchor we can use. Set BEGIN to the new anchor's index if not. */ begin = 0; end = VEC_length (rtx, block->anchors); while (begin != end) { middle = (end + begin) / 2; anchor = VEC_index (rtx, block->anchors, middle); if (SYMBOL_REF_BLOCK_OFFSET (anchor) > offset) end = middle; else if (SYMBOL_REF_BLOCK_OFFSET (anchor) < offset) begin = middle + 1; else if (SYMBOL_REF_TLS_MODEL (anchor) > model) end = middle; else if (SYMBOL_REF_TLS_MODEL (anchor) < model) begin = middle + 1; else return anchor; } /* Create a new anchor with a unique label. */ ASM_GENERATE_INTERNAL_LABEL (label, "LANCHOR", anchor_labelno++); anchor = create_block_symbol (ggc_strdup (label), block, offset); SYMBOL_REF_FLAGS (anchor) |= SYMBOL_FLAG_LOCAL | SYMBOL_FLAG_ANCHOR; SYMBOL_REF_FLAGS (anchor) |= model << SYMBOL_FLAG_TLS_SHIFT; /* Insert it at index BEGIN. */ VEC_safe_insert (rtx, gc, block->anchors, begin, anchor); return anchor; } /* Output the objects in BLOCK. */ static void output_object_block (struct object_block *block) { struct constant_descriptor_rtx *desc; unsigned int i; HOST_WIDE_INT offset; tree decl; rtx symbol; if (block->objects == NULL) return; /* Switch to the section and make sure that the first byte is suitably aligned. */ switch_to_section (block->sect); assemble_align (block->alignment); /* Define the values of all anchors relative to the current section position. */ FOR_EACH_VEC_ELT (rtx, block->anchors, i, symbol) targetm.asm_out.output_anchor (symbol); /* Output the objects themselves. */ offset = 0; FOR_EACH_VEC_ELT (rtx, block->objects, i, symbol) { /* Move to the object's offset, padding with zeros if necessary. */ assemble_zeros (SYMBOL_REF_BLOCK_OFFSET (symbol) - offset); offset = SYMBOL_REF_BLOCK_OFFSET (symbol); if (CONSTANT_POOL_ADDRESS_P (symbol)) { desc = SYMBOL_REF_CONSTANT (symbol); output_constant_pool_1 (desc, 1); offset += GET_MODE_SIZE (desc->mode); } else if (TREE_CONSTANT_POOL_ADDRESS_P (symbol)) { decl = SYMBOL_REF_DECL (symbol); assemble_constant_contents (DECL_INITIAL (decl), XSTR (symbol, 0), DECL_ALIGN (decl)); offset += get_constant_size (DECL_INITIAL (decl)); } else { decl = SYMBOL_REF_DECL (symbol); assemble_variable_contents (decl, XSTR (symbol, 0), false); offset += tree_low_cst (DECL_SIZE_UNIT (decl), 1); } } } /* A htab_traverse callback used to call output_object_block for each member of object_block_htab. */ static int output_object_block_htab (void **slot, void *data ATTRIBUTE_UNUSED) { output_object_block ((struct object_block *) (*slot)); return 1; } /* Output the definitions of all object_blocks. */ void output_object_blocks (void) { htab_traverse (object_block_htab, output_object_block_htab, NULL); } /* This function provides a possible implementation of the TARGET_ASM_RECORD_GCC_SWITCHES target hook for ELF targets. When triggered by -frecord-gcc-switches it creates a new mergeable, string section in the assembler output file called TARGET_ASM_RECORD_GCC_SWITCHES_SECTION which contains the switches in ASCII format. FIXME: This code does not correctly handle double quote characters that appear inside strings, (it strips them rather than preserving them). FIXME: ASM_OUTPUT_ASCII, as defined in config/elfos.h will not emit NUL characters - instead it treats them as sub-string separators. Since we want to emit NUL strings terminators into the object file we have to use ASM_OUTPUT_SKIP. */ int elf_record_gcc_switches (print_switch_type type, const char * name) { switch (type) { case SWITCH_TYPE_PASSED: ASM_OUTPUT_ASCII (asm_out_file, name, strlen (name)); ASM_OUTPUT_SKIP (asm_out_file, (unsigned HOST_WIDE_INT) 1); break; case SWITCH_TYPE_DESCRIPTIVE: if (name == NULL) { /* Distinguish between invocations where name is NULL. */ static bool started = false; if (!started) { section * sec; sec = get_section (targetm.asm_out.record_gcc_switches_section, SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | (SECTION_ENTSIZE & 1), NULL); switch_to_section (sec); started = true; } } default: break; } /* The return value is currently ignored by the caller, but must be 0. For -fverbose-asm the return value would be the number of characters emitted into the assembler file. */ return 0; } /* Emit text to declare externally defined symbols. It is needed to properly support non-default visibility. */ void default_elf_asm_output_external (FILE *file ATTRIBUTE_UNUSED, tree decl, const char *name ATTRIBUTE_UNUSED) { /* We output the name if and only if TREE_SYMBOL_REFERENCED is set in order to avoid putting out names that are never really used. */ if (TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)) && targetm.binds_local_p (decl)) maybe_assemble_visibility (decl); } /* The default hook for TARGET_ASM_OUTPUT_SOURCE_FILENAME. */ void default_asm_output_source_filename (FILE *file, const char *name) { #ifdef ASM_OUTPUT_SOURCE_FILENAME ASM_OUTPUT_SOURCE_FILENAME (file, name); #else fprintf (file, "\t.file\t"); output_quoted_string (file, name); putc ('\n', file); #endif } /* Output a file name in the form wanted by System V. */ void output_file_directive (FILE *asm_file, const char *input_name) { int len; const char *na; if (input_name == NULL) input_name = "<stdin>"; else input_name = remap_debug_filename (input_name); len = strlen (input_name); na = input_name + len; /* NA gets INPUT_NAME sans directory names. */ while (na > input_name) { if (IS_DIR_SEPARATOR (na[-1])) break; na--; } targetm.asm_out.output_source_filename (asm_file, na); } /* Create a DEBUG_EXPR_DECL / DEBUG_EXPR pair from RTL expression EXP. */ rtx make_debug_expr_from_rtl (const_rtx exp) { tree ddecl = make_node (DEBUG_EXPR_DECL), type; enum machine_mode mode = GET_MODE (exp); rtx dval; DECL_ARTIFICIAL (ddecl) = 1; if (REG_P (exp) && REG_EXPR (exp)) type = TREE_TYPE (REG_EXPR (exp)); else if (MEM_P (exp) && MEM_EXPR (exp)) type = TREE_TYPE (MEM_EXPR (exp)); else type = NULL_TREE; if (type && TYPE_MODE (type) == mode) TREE_TYPE (ddecl) = type; else TREE_TYPE (ddecl) = lang_hooks.types.type_for_mode (mode, 1); DECL_MODE (ddecl) = mode; dval = gen_rtx_DEBUG_EXPR (mode); DEBUG_EXPR_TREE_DECL (dval) = ddecl; SET_DECL_RTL (ddecl, dval); return dval; } #ifdef ELF_ASCII_ESCAPES /* Default ASM_OUTPUT_LIMITED_STRING for ELF targets. */ void default_elf_asm_output_limited_string (FILE *f, const char *s) { int escape; unsigned char c; fputs (STRING_ASM_OP, f); putc ('"', f); while (*s != '\0') { c = *s; escape = ELF_ASCII_ESCAPES[c]; switch (escape) { case 0: putc (c, f); break; case 1: /* TODO: Print in hex with fast function, important for -flto. */ fprintf (f, "\\%03o", c); break; default: putc ('\\', f); putc (escape, f); break; } s++; } putc ('\"', f); putc ('\n', f); } /* Default ASM_OUTPUT_ASCII for ELF targets. */ void default_elf_asm_output_ascii (FILE *f, const char *s, unsigned int len) { const char *limit = s + len; const char *last_null = NULL; unsigned bytes_in_chunk = 0; unsigned char c; int escape; for (; s < limit; s++) { const char *p; if (bytes_in_chunk >= 60) { putc ('\"', f); putc ('\n', f); bytes_in_chunk = 0; } if (s > last_null) { for (p = s; p < limit && *p != '\0'; p++) continue; last_null = p; } else p = last_null; if (p < limit && (p - s) <= (long) ELF_STRING_LIMIT) { if (bytes_in_chunk > 0) { putc ('\"', f); putc ('\n', f); bytes_in_chunk = 0; } default_elf_asm_output_limited_string (f, s); s = p; } else { if (bytes_in_chunk == 0) fputs (ASCII_DATA_ASM_OP "\"", f); c = *s; escape = ELF_ASCII_ESCAPES[c]; switch (escape) { case 0: putc (c, f); bytes_in_chunk++; break; case 1: /* TODO: Print in hex with fast function, important for -flto. */ fprintf (f, "\\%03o", c); bytes_in_chunk += 4; break; default: putc ('\\', f); putc (escape, f); bytes_in_chunk += 2; break; } } } if (bytes_in_chunk > 0) { putc ('\"', f); putc ('\n', f); } } #endif static GTY(()) section *elf_init_array_section; static GTY(()) section *elf_fini_array_section; static section * get_elf_initfini_array_priority_section (int priority, bool constructor_p) { section *sec; if (priority != DEFAULT_INIT_PRIORITY) { char buf[18]; sprintf (buf, "%s.%.5u", constructor_p ? ".init_array" : ".fini_array", priority); sec = get_section (buf, SECTION_WRITE | SECTION_NOTYPE, NULL_TREE); } else { if (constructor_p) { if (elf_init_array_section == NULL) elf_init_array_section = get_section (".init_array", SECTION_WRITE | SECTION_NOTYPE, NULL_TREE); sec = elf_init_array_section; } else { if (elf_fini_array_section == NULL) elf_fini_array_section = get_section (".fini_array", SECTION_WRITE | SECTION_NOTYPE, NULL_TREE); sec = elf_fini_array_section; } } return sec; } /* Use .init_array section for constructors. */ void default_elf_init_array_asm_out_constructor (rtx symbol, int priority) { section *sec = get_elf_initfini_array_priority_section (priority, true); assemble_addr_to_section (symbol, sec); } /* Use .fini_array section for destructors. */ void default_elf_fini_array_asm_out_destructor (rtx symbol, int priority) { section *sec = get_elf_initfini_array_priority_section (priority, false); assemble_addr_to_section (symbol, sec); } #include "gt-varasm.h"
Go to most recent revision | Compare with Previous | Blame | View Log