URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgfortran/] [generated/] [in_unpack_r16.c] - Rev 821
Go to most recent revision | Compare with Previous | Blame | View Log
/* Helper function for repacking arrays. Copyright 2003, 2006, 2007, 2009 Free Software Foundation, Inc. Contributed by Paul Brook <paul@nowt.org> This file is part of the GNU Fortran 95 runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see <http://www.gnu.org/licenses/>. */ #include "libgfortran.h" #include <stdlib.h> #include <assert.h> #include <string.h> #if defined (HAVE_GFC_REAL_16) void internal_unpack_r16 (gfc_array_r16 * d, const GFC_REAL_16 * src) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type stride[GFC_MAX_DIMENSIONS]; index_type stride0; index_type dim; index_type dsize; GFC_REAL_16 * restrict dest; int n; dest = d->data; if (src == dest || !src) return; dim = GFC_DESCRIPTOR_RANK (d); dsize = 1; for (n = 0; n < dim; n++) { count[n] = 0; stride[n] = GFC_DESCRIPTOR_STRIDE(d,n); extent[n] = GFC_DESCRIPTOR_EXTENT(d,n); if (extent[n] <= 0) return; if (dsize == stride[n]) dsize *= extent[n]; else dsize = 0; } if (dsize != 0) { memcpy (dest, src, dsize * sizeof (GFC_REAL_16)); return; } stride0 = stride[0]; while (dest) { /* Copy the data. */ *dest = *(src++); /* Advance to the next element. */ dest += stride0; count[0]++; /* Advance to the next source element. */ n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ dest -= stride[n] * extent[n]; n++; if (n == dim) { dest = NULL; break; } else { count[n]++; dest += stride[n]; } } } } #endif
Go to most recent revision | Compare with Previous | Blame | View Log