URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgfortran/] [intrinsics/] [unpack_generic.c] - Rev 790
Go to most recent revision | Compare with Previous | Blame | View Log
/* Generic implementation of the UNPACK intrinsic Copyright 2002, 2003, 2004, 2005, 2007, 2009, 2010 Free Software Foundation, Inc. Contributed by Paul Brook <paul@nowt.org> This file is part of the GNU Fortran 95 runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Ligbfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see <http://www.gnu.org/licenses/>. */ #include "libgfortran.h" #include <stdlib.h> #include <assert.h> #include <string.h> /* All the bounds checking for unpack in one function. If field is NULL, we don't check it, for the unpack0 functions. */ static void unpack_bounds (gfc_array_char *ret, const gfc_array_char *vector, const gfc_array_l1 *mask, const gfc_array_char *field) { index_type vec_size, mask_count; vec_size = size0 ((array_t *) vector); mask_count = count_0 (mask); if (vec_size < mask_count) runtime_error ("Incorrect size of return value in UNPACK" " intrinsic: should be at least %ld, is" " %ld", (long int) mask_count, (long int) vec_size); if (field != NULL) bounds_equal_extents ((array_t *) field, (array_t *) mask, "FIELD", "UNPACK"); if (ret->data != NULL) bounds_equal_extents ((array_t *) ret, (array_t *) mask, "return value", "UNPACK"); } static void unpack_internal (gfc_array_char *ret, const gfc_array_char *vector, const gfc_array_l1 *mask, const gfc_array_char *field, index_type size) { /* r.* indicates the return array. */ index_type rstride[GFC_MAX_DIMENSIONS]; index_type rstride0; index_type rs; char * restrict rptr; /* v.* indicates the vector array. */ index_type vstride0; char *vptr; /* f.* indicates the field array. */ index_type fstride[GFC_MAX_DIMENSIONS]; index_type fstride0; const char *fptr; /* m.* indicates the mask array. */ index_type mstride[GFC_MAX_DIMENSIONS]; index_type mstride0; const GFC_LOGICAL_1 *mptr; index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type n; index_type dim; int empty; int mask_kind; empty = 0; mptr = mask->data; /* Use the same loop for all logical types, by using GFC_LOGICAL_1 and using shifting to address size and endian issues. */ mask_kind = GFC_DESCRIPTOR_SIZE (mask); if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 #ifdef HAVE_GFC_LOGICAL_16 || mask_kind == 16 #endif ) { /* Don't convert a NULL pointer as we use test for NULL below. */ if (mptr) mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); } else runtime_error ("Funny sized logical array"); if (ret->data == NULL) { /* The front end has signalled that we need to populate the return array descriptor. */ dim = GFC_DESCRIPTOR_RANK (mask); rs = 1; for (n = 0; n < dim; n++) { count[n] = 0; GFC_DIMENSION_SET(ret->dim[n], 0, GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs); extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n); empty = empty || extent[n] <= 0; rstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(ret, n); fstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(field, n); mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n); rs *= extent[n]; } ret->offset = 0; ret->data = internal_malloc_size (rs * size); } else { dim = GFC_DESCRIPTOR_RANK (ret); for (n = 0; n < dim; n++) { count[n] = 0; extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n); empty = empty || extent[n] <= 0; rstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(ret, n); fstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(field, n); mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n); } } if (empty) return; vstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(vector,0); rstride0 = rstride[0]; fstride0 = fstride[0]; mstride0 = mstride[0]; rptr = ret->data; fptr = field->data; vptr = vector->data; while (rptr) { if (*mptr) { /* From vector. */ memcpy (rptr, vptr, size); vptr += vstride0; } else { /* From field. */ memcpy (rptr, fptr, size); } /* Advance to the next element. */ rptr += rstride0; fptr += fstride0; mptr += mstride0; count[0]++; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ rptr -= rstride[n] * extent[n]; fptr -= fstride[n] * extent[n]; mptr -= mstride[n] * extent[n]; n++; if (n >= dim) { /* Break out of the loop. */ rptr = NULL; break; } else { count[n]++; rptr += rstride[n]; fptr += fstride[n]; mptr += mstride[n]; } } } } extern void unpack1 (gfc_array_char *, const gfc_array_char *, const gfc_array_l1 *, const gfc_array_char *); export_proto(unpack1); void unpack1 (gfc_array_char *ret, const gfc_array_char *vector, const gfc_array_l1 *mask, const gfc_array_char *field) { index_type type_size; index_type size; if (unlikely(compile_options.bounds_check)) unpack_bounds (ret, vector, mask, field); type_size = GFC_DTYPE_TYPE_SIZE (vector); size = GFC_DESCRIPTOR_SIZE (vector); switch(type_size) { case GFC_DTYPE_LOGICAL_1: case GFC_DTYPE_INTEGER_1: case GFC_DTYPE_DERIVED_1: unpack1_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector, mask, (gfc_array_i1 *) field); return; case GFC_DTYPE_LOGICAL_2: case GFC_DTYPE_INTEGER_2: unpack1_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector, mask, (gfc_array_i2 *) field); return; case GFC_DTYPE_LOGICAL_4: case GFC_DTYPE_INTEGER_4: unpack1_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector, mask, (gfc_array_i4 *) field); return; case GFC_DTYPE_LOGICAL_8: case GFC_DTYPE_INTEGER_8: unpack1_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector, mask, (gfc_array_i8 *) field); return; #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_LOGICAL_16: case GFC_DTYPE_INTEGER_16: unpack1_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector, mask, (gfc_array_i16 *) field); return; #endif case GFC_DTYPE_REAL_4: unpack1_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector, mask, (gfc_array_r4 *) field); return; case GFC_DTYPE_REAL_8: unpack1_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) vector, mask, (gfc_array_r8 *) field); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # ifdef HAVE_GFC_REAL_10 case GFC_DTYPE_REAL_10: unpack1_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector, mask, (gfc_array_r10 *) field); return; # endif # ifdef HAVE_GFC_REAL_16 case GFC_DTYPE_REAL_16: unpack1_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector, mask, (gfc_array_r16 *) field); return; # endif #endif case GFC_DTYPE_COMPLEX_4: unpack1_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector, mask, (gfc_array_c4 *) field); return; case GFC_DTYPE_COMPLEX_8: unpack1_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector, mask, (gfc_array_c8 *) field); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # ifdef HAVE_GFC_COMPLEX_10 case GFC_DTYPE_COMPLEX_10: unpack1_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector, mask, (gfc_array_c10 *) field); return; # endif # ifdef HAVE_GFC_COMPLEX_16 case GFC_DTYPE_COMPLEX_16: unpack1_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector, mask, (gfc_array_c16 *) field); return; # endif #endif case GFC_DTYPE_DERIVED_2: if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(vector->data) || GFC_UNALIGNED_2(field->data)) break; else { unpack1_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector, mask, (gfc_array_i2 *) field); return; } case GFC_DTYPE_DERIVED_4: if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(vector->data) || GFC_UNALIGNED_4(field->data)) break; else { unpack1_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector, mask, (gfc_array_i4 *) field); return; } case GFC_DTYPE_DERIVED_8: if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(vector->data) || GFC_UNALIGNED_8(field->data)) break; else { unpack1_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector, mask, (gfc_array_i8 *) field); return; } #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_DERIVED_16: if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(vector->data) || GFC_UNALIGNED_16(field->data)) break; else { unpack1_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector, mask, (gfc_array_i16 *) field); return; } #endif } unpack_internal (ret, vector, mask, field, size); } extern void unpack1_char (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *, const gfc_array_l1 *, const gfc_array_char *, GFC_INTEGER_4, GFC_INTEGER_4); export_proto(unpack1_char); void unpack1_char (gfc_array_char *ret, GFC_INTEGER_4 ret_length __attribute__((unused)), const gfc_array_char *vector, const gfc_array_l1 *mask, const gfc_array_char *field, GFC_INTEGER_4 vector_length, GFC_INTEGER_4 field_length __attribute__((unused))) { if (unlikely(compile_options.bounds_check)) unpack_bounds (ret, vector, mask, field); unpack_internal (ret, vector, mask, field, vector_length); } extern void unpack1_char4 (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *, const gfc_array_l1 *, const gfc_array_char *, GFC_INTEGER_4, GFC_INTEGER_4); export_proto(unpack1_char4); void unpack1_char4 (gfc_array_char *ret, GFC_INTEGER_4 ret_length __attribute__((unused)), const gfc_array_char *vector, const gfc_array_l1 *mask, const gfc_array_char *field, GFC_INTEGER_4 vector_length, GFC_INTEGER_4 field_length __attribute__((unused))) { if (unlikely(compile_options.bounds_check)) unpack_bounds (ret, vector, mask, field); unpack_internal (ret, vector, mask, field, vector_length * sizeof (gfc_char4_t)); } extern void unpack0 (gfc_array_char *, const gfc_array_char *, const gfc_array_l1 *, char *); export_proto(unpack0); void unpack0 (gfc_array_char *ret, const gfc_array_char *vector, const gfc_array_l1 *mask, char *field) { gfc_array_char tmp; index_type type_size; if (unlikely(compile_options.bounds_check)) unpack_bounds (ret, vector, mask, NULL); type_size = GFC_DTYPE_TYPE_SIZE (vector); switch (type_size) { case GFC_DTYPE_LOGICAL_1: case GFC_DTYPE_INTEGER_1: case GFC_DTYPE_DERIVED_1: unpack0_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector, mask, (GFC_INTEGER_1 *) field); return; case GFC_DTYPE_LOGICAL_2: case GFC_DTYPE_INTEGER_2: unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector, mask, (GFC_INTEGER_2 *) field); return; case GFC_DTYPE_LOGICAL_4: case GFC_DTYPE_INTEGER_4: unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector, mask, (GFC_INTEGER_4 *) field); return; case GFC_DTYPE_LOGICAL_8: case GFC_DTYPE_INTEGER_8: unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector, mask, (GFC_INTEGER_8 *) field); return; #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_LOGICAL_16: case GFC_DTYPE_INTEGER_16: unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector, mask, (GFC_INTEGER_16 *) field); return; #endif case GFC_DTYPE_REAL_4: unpack0_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector, mask, (GFC_REAL_4 *) field); return; case GFC_DTYPE_REAL_8: unpack0_r8 ((gfc_array_r8 *) ret, (gfc_array_r8*) vector, mask, (GFC_REAL_8 *) field); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # ifdef HAVE_GFC_REAL_10 case GFC_DTYPE_REAL_10: unpack0_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector, mask, (GFC_REAL_10 *) field); return; # endif # ifdef HAVE_GFC_REAL_16 case GFC_DTYPE_REAL_16: unpack0_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector, mask, (GFC_REAL_16 *) field); return; # endif #endif case GFC_DTYPE_COMPLEX_4: unpack0_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector, mask, (GFC_COMPLEX_4 *) field); return; case GFC_DTYPE_COMPLEX_8: unpack0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector, mask, (GFC_COMPLEX_8 *) field); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # ifdef HAVE_GFC_COMPLEX_10 case GFC_DTYPE_COMPLEX_10: unpack0_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector, mask, (GFC_COMPLEX_10 *) field); return; # endif # ifdef HAVE_GFC_COMPLEX_16 case GFC_DTYPE_COMPLEX_16: unpack0_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector, mask, (GFC_COMPLEX_16 *) field); return; # endif #endif case GFC_DTYPE_DERIVED_2: if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(vector->data) || GFC_UNALIGNED_2(field)) break; else { unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector, mask, (GFC_INTEGER_2 *) field); return; } case GFC_DTYPE_DERIVED_4: if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(vector->data) || GFC_UNALIGNED_4(field)) break; else { unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector, mask, (GFC_INTEGER_4 *) field); return; } case GFC_DTYPE_DERIVED_8: if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(vector->data) || GFC_UNALIGNED_8(field)) break; else { unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector, mask, (GFC_INTEGER_8 *) field); return; } #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_DERIVED_16: if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(vector->data) || GFC_UNALIGNED_16(field)) break; else { unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector, mask, (GFC_INTEGER_16 *) field); return; } #endif } memset (&tmp, 0, sizeof (tmp)); tmp.dtype = 0; tmp.data = field; unpack_internal (ret, vector, mask, &tmp, GFC_DESCRIPTOR_SIZE (vector)); } extern void unpack0_char (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *, const gfc_array_l1 *, char *, GFC_INTEGER_4, GFC_INTEGER_4); export_proto(unpack0_char); void unpack0_char (gfc_array_char *ret, GFC_INTEGER_4 ret_length __attribute__((unused)), const gfc_array_char *vector, const gfc_array_l1 *mask, char *field, GFC_INTEGER_4 vector_length, GFC_INTEGER_4 field_length __attribute__((unused))) { gfc_array_char tmp; if (unlikely(compile_options.bounds_check)) unpack_bounds (ret, vector, mask, NULL); memset (&tmp, 0, sizeof (tmp)); tmp.dtype = 0; tmp.data = field; unpack_internal (ret, vector, mask, &tmp, vector_length); } extern void unpack0_char4 (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *, const gfc_array_l1 *, char *, GFC_INTEGER_4, GFC_INTEGER_4); export_proto(unpack0_char4); void unpack0_char4 (gfc_array_char *ret, GFC_INTEGER_4 ret_length __attribute__((unused)), const gfc_array_char *vector, const gfc_array_l1 *mask, char *field, GFC_INTEGER_4 vector_length, GFC_INTEGER_4 field_length __attribute__((unused))) { gfc_array_char tmp; if (unlikely(compile_options.bounds_check)) unpack_bounds (ret, vector, mask, NULL); memset (&tmp, 0, sizeof (tmp)); tmp.dtype = 0; tmp.data = field; unpack_internal (ret, vector, mask, &tmp, vector_length * sizeof (gfc_char4_t)); }
Go to most recent revision | Compare with Previous | Blame | View Log