URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [bytes/] [bytes.go] - Rev 751
Go to most recent revision | Compare with Previous | Blame | View Log
// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.// Package bytes implements functions for the manipulation of byte slices.// It is analogous to the facilities of the strings package.package bytesimport ("unicode""unicode/utf8")// Compare returns an integer comparing the two byte arrays lexicographically.// The result will be 0 if a==b, -1 if a < b, and +1 if a > bfunc Compare(a, b []byte) int {m := len(a)if m > len(b) {m = len(b)}for i, ac := range a[0:m] {bc := b[i]switch {case ac > bc:return 1case ac < bc:return -1}}switch {case len(a) < len(b):return -1case len(a) > len(b):return 1}return 0}// Equal returns a boolean reporting whether a == b.func Equal(a, b []byte) boolfunc equalPortable(a, b []byte) bool {if len(a) != len(b) {return false}for i, c := range a {if c != b[i] {return false}}return true}// explode splits s into an array of UTF-8 sequences, one per Unicode character (still arrays of bytes),// up to a maximum of n byte arrays. Invalid UTF-8 sequences are chopped into individual bytes.func explode(s []byte, n int) [][]byte {if n <= 0 {n = len(s)}a := make([][]byte, n)var size intna := 0for len(s) > 0 {if na+1 >= n {a[na] = sna++break}_, size = utf8.DecodeRune(s)a[na] = s[0:size]s = s[size:]na++}return a[0:na]}// Count counts the number of non-overlapping instances of sep in s.func Count(s, sep []byte) int {n := len(sep)if n == 0 {return utf8.RuneCount(s) + 1}if n > len(s) {return 0}count := 0c := sep[0]i := 0t := s[:len(s)-n+1]for i < len(t) {if t[i] != c {o := IndexByte(t[i:], c)if o < 0 {break}i += o}if n == 1 || Equal(s[i:i+n], sep) {count++i += ncontinue}i++}return count}// Contains returns whether subslice is within b.func Contains(b, subslice []byte) bool {return Index(b, subslice) != -1}// Index returns the index of the first instance of sep in s, or -1 if sep is not present in s.func Index(s, sep []byte) int {n := len(sep)if n == 0 {return 0}if n > len(s) {return -1}c := sep[0]if n == 1 {return IndexByte(s, c)}i := 0t := s[:len(s)-n+1]for i < len(t) {if t[i] != c {o := IndexByte(t[i:], c)if o < 0 {break}i += o}if Equal(s[i:i+n], sep) {return i}i++}return -1}func indexBytePortable(s []byte, c byte) int {for i, b := range s {if b == c {return i}}return -1}// LastIndex returns the index of the last instance of sep in s, or -1 if sep is not present in s.func LastIndex(s, sep []byte) int {n := len(sep)if n == 0 {return len(s)}c := sep[0]for i := len(s) - n; i >= 0; i-- {if s[i] == c && (n == 1 || Equal(s[i:i+n], sep)) {return i}}return -1}// IndexRune interprets s as a sequence of UTF-8-encoded Unicode code points.// It returns the byte index of the first occurrence in s of the given rune.// It returns -1 if rune is not present in s.func IndexRune(s []byte, r rune) int {for i := 0; i < len(s); {r1, size := utf8.DecodeRune(s[i:])if r == r1 {return i}i += size}return -1}// IndexAny interprets s as a sequence of UTF-8-encoded Unicode code points.// It returns the byte index of the first occurrence in s of any of the Unicode// code points in chars. It returns -1 if chars is empty or if there is no code// point in common.func IndexAny(s []byte, chars string) int {if len(chars) > 0 {var r runevar width intfor i := 0; i < len(s); i += width {r = rune(s[i])if r < utf8.RuneSelf {width = 1} else {r, width = utf8.DecodeRune(s[i:])}for _, ch := range chars {if r == ch {return i}}}}return -1}// LastIndexAny interprets s as a sequence of UTF-8-encoded Unicode code// points. It returns the byte index of the last occurrence in s of any of// the Unicode code points in chars. It returns -1 if chars is empty or if// there is no code point in common.func LastIndexAny(s []byte, chars string) int {if len(chars) > 0 {for i := len(s); i > 0; {r, size := utf8.DecodeLastRune(s[0:i])i -= sizefor _, ch := range chars {if r == ch {return i}}}}return -1}// Generic split: splits after each instance of sep,// including sepSave bytes of sep in the subarrays.func genSplit(s, sep []byte, sepSave, n int) [][]byte {if n == 0 {return nil}if len(sep) == 0 {return explode(s, n)}if n < 0 {n = Count(s, sep) + 1}c := sep[0]start := 0a := make([][]byte, n)na := 0for i := 0; i+len(sep) <= len(s) && na+1 < n; i++ {if s[i] == c && (len(sep) == 1 || Equal(s[i:i+len(sep)], sep)) {a[na] = s[start : i+sepSave]na++start = i + len(sep)i += len(sep) - 1}}a[na] = s[start:]return a[0 : na+1]}// SplitN slices s into subslices separated by sep and returns a slice of// the subslices between those separators.// If sep is empty, SplitN splits after each UTF-8 sequence.// The count determines the number of subslices to return:// n > 0: at most n subslices; the last subslice will be the unsplit remainder.// n == 0: the result is nil (zero subslices)// n < 0: all subslicesfunc SplitN(s, sep []byte, n int) [][]byte { return genSplit(s, sep, 0, n) }// SplitAfterN slices s into subslices after each instance of sep and// returns a slice of those subslices.// If sep is empty, SplitAfterN splits after each UTF-8 sequence.// The count determines the number of subslices to return:// n > 0: at most n subslices; the last subslice will be the unsplit remainder.// n == 0: the result is nil (zero subslices)// n < 0: all subslicesfunc SplitAfterN(s, sep []byte, n int) [][]byte {return genSplit(s, sep, len(sep), n)}// Split slices s into all subslices separated by sep and returns a slice of// the subslices between those separators.// If sep is empty, Split splits after each UTF-8 sequence.// It is equivalent to SplitN with a count of -1.func Split(s, sep []byte) [][]byte { return genSplit(s, sep, 0, -1) }// SplitAfter slices s into all subslices after each instance of sep and// returns a slice of those subslices.// If sep is empty, SplitAfter splits after each UTF-8 sequence.// It is equivalent to SplitAfterN with a count of -1.func SplitAfter(s, sep []byte) [][]byte {return genSplit(s, sep, len(sep), -1)}// Fields splits the array s around each instance of one or more consecutive white space// characters, returning a slice of subarrays of s or an empty list if s contains only white space.func Fields(s []byte) [][]byte {return FieldsFunc(s, unicode.IsSpace)}// FieldsFunc interprets s as a sequence of UTF-8-encoded Unicode code points.// It splits the array s at each run of code points c satisfying f(c) and// returns a slice of subarrays of s. If no code points in s satisfy f(c), an// empty slice is returned.func FieldsFunc(s []byte, f func(rune) bool) [][]byte {n := 0inField := falsefor i := 0; i < len(s); {r, size := utf8.DecodeRune(s[i:])wasInField := inFieldinField = !f(r)if inField && !wasInField {n++}i += size}a := make([][]byte, n)na := 0fieldStart := -1for i := 0; i <= len(s) && na < n; {r, size := utf8.DecodeRune(s[i:])if fieldStart < 0 && size > 0 && !f(r) {fieldStart = ii += sizecontinue}if fieldStart >= 0 && (size == 0 || f(r)) {a[na] = s[fieldStart:i]na++fieldStart = -1}if size == 0 {break}i += size}return a[0:na]}// Join concatenates the elements of a to create a single byte array. The separator// sep is placed between elements in the resulting array.func Join(a [][]byte, sep []byte) []byte {if len(a) == 0 {return []byte{}}if len(a) == 1 {return a[0]}n := len(sep) * (len(a) - 1)for i := 0; i < len(a); i++ {n += len(a[i])}b := make([]byte, n)bp := copy(b, a[0])for _, s := range a[1:] {bp += copy(b[bp:], sep)bp += copy(b[bp:], s)}return b}// HasPrefix tests whether the byte array s begins with prefix.func HasPrefix(s, prefix []byte) bool {return len(s) >= len(prefix) && Equal(s[0:len(prefix)], prefix)}// HasSuffix tests whether the byte array s ends with suffix.func HasSuffix(s, suffix []byte) bool {return len(s) >= len(suffix) && Equal(s[len(s)-len(suffix):], suffix)}// Map returns a copy of the byte array s with all its characters modified// according to the mapping function. If mapping returns a negative value, the character is// dropped from the string with no replacement. The characters in s and the// output are interpreted as UTF-8-encoded Unicode code points.func Map(mapping func(r rune) rune, s []byte) []byte {// In the worst case, the array can grow when mapped, making// things unpleasant. But it's so rare we barge in assuming it's// fine. It could also shrink but that falls out naturally.maxbytes := len(s) // length of bnbytes := 0 // number of bytes encoded in bb := make([]byte, maxbytes)for i := 0; i < len(s); {wid := 1r := rune(s[i])if r >= utf8.RuneSelf {r, wid = utf8.DecodeRune(s[i:])}r = mapping(r)if r >= 0 {if nbytes+utf8.RuneLen(r) > maxbytes {// Grow the buffer.maxbytes = maxbytes*2 + utf8.UTFMaxnb := make([]byte, maxbytes)copy(nb, b[0:nbytes])b = nb}nbytes += utf8.EncodeRune(b[nbytes:maxbytes], r)}i += wid}return b[0:nbytes]}// Repeat returns a new byte slice consisting of count copies of b.func Repeat(b []byte, count int) []byte {nb := make([]byte, len(b)*count)bp := 0for i := 0; i < count; i++ {for j := 0; j < len(b); j++ {nb[bp] = b[j]bp++}}return nb}// ToUpper returns a copy of the byte array s with all Unicode letters mapped to their upper case.func ToUpper(s []byte) []byte { return Map(unicode.ToUpper, s) }// ToUpper returns a copy of the byte array s with all Unicode letters mapped to their lower case.func ToLower(s []byte) []byte { return Map(unicode.ToLower, s) }// ToTitle returns a copy of the byte array s with all Unicode letters mapped to their title case.func ToTitle(s []byte) []byte { return Map(unicode.ToTitle, s) }// ToUpperSpecial returns a copy of the byte array s with all Unicode letters mapped to their// upper case, giving priority to the special casing rules.func ToUpperSpecial(_case unicode.SpecialCase, s []byte) []byte {return Map(func(r rune) rune { return _case.ToUpper(r) }, s)}// ToLowerSpecial returns a copy of the byte array s with all Unicode letters mapped to their// lower case, giving priority to the special casing rules.func ToLowerSpecial(_case unicode.SpecialCase, s []byte) []byte {return Map(func(r rune) rune { return _case.ToLower(r) }, s)}// ToTitleSpecial returns a copy of the byte array s with all Unicode letters mapped to their// title case, giving priority to the special casing rules.func ToTitleSpecial(_case unicode.SpecialCase, s []byte) []byte {return Map(func(r rune) rune { return _case.ToTitle(r) }, s)}// isSeparator reports whether the rune could mark a word boundary.// TODO: update when package unicode captures more of the properties.func isSeparator(r rune) bool {// ASCII alphanumerics and underscore are not separatorsif r <= 0x7F {switch {case '0' <= r && r <= '9':return falsecase 'a' <= r && r <= 'z':return falsecase 'A' <= r && r <= 'Z':return falsecase r == '_':return false}return true}// Letters and digits are not separatorsif unicode.IsLetter(r) || unicode.IsDigit(r) {return false}// Otherwise, all we can do for now is treat spaces as separators.return unicode.IsSpace(r)}// BUG(r): The rule Title uses for word boundaries does not handle Unicode punctuation properly.// Title returns a copy of s with all Unicode letters that begin words// mapped to their title case.func Title(s []byte) []byte {// Use a closure here to remember state.// Hackish but effective. Depends on Map scanning in order and calling// the closure once per rune.prev := ' 'return Map(func(r rune) rune {if isSeparator(prev) {prev = rreturn unicode.ToTitle(r)}prev = rreturn r},s)}// TrimLeftFunc returns a subslice of s by slicing off all leading UTF-8-encoded// Unicode code points c that satisfy f(c).func TrimLeftFunc(s []byte, f func(r rune) bool) []byte {i := indexFunc(s, f, false)if i == -1 {return nil}return s[i:]}// TrimRightFunc returns a subslice of s by slicing off all trailing UTF-8// encoded Unicode code points c that satisfy f(c).func TrimRightFunc(s []byte, f func(r rune) bool) []byte {i := lastIndexFunc(s, f, false)if i >= 0 && s[i] >= utf8.RuneSelf {_, wid := utf8.DecodeRune(s[i:])i += wid} else {i++}return s[0:i]}// TrimFunc returns a subslice of s by slicing off all leading and trailing// UTF-8-encoded Unicode code points c that satisfy f(c).func TrimFunc(s []byte, f func(r rune) bool) []byte {return TrimRightFunc(TrimLeftFunc(s, f), f)}// IndexFunc interprets s as a sequence of UTF-8-encoded Unicode code points.// It returns the byte index in s of the first Unicode// code point satisfying f(c), or -1 if none do.func IndexFunc(s []byte, f func(r rune) bool) int {return indexFunc(s, f, true)}// LastIndexFunc interprets s as a sequence of UTF-8-encoded Unicode code points.// It returns the byte index in s of the last Unicode// code point satisfying f(c), or -1 if none do.func LastIndexFunc(s []byte, f func(r rune) bool) int {return lastIndexFunc(s, f, true)}// indexFunc is the same as IndexFunc except that if// truth==false, the sense of the predicate function is// inverted.func indexFunc(s []byte, f func(r rune) bool, truth bool) int {start := 0for start < len(s) {wid := 1r := rune(s[start])if r >= utf8.RuneSelf {r, wid = utf8.DecodeRune(s[start:])}if f(r) == truth {return start}start += wid}return -1}// lastIndexFunc is the same as LastIndexFunc except that if// truth==false, the sense of the predicate function is// inverted.func lastIndexFunc(s []byte, f func(r rune) bool, truth bool) int {for i := len(s); i > 0; {r, size := utf8.DecodeLastRune(s[0:i])i -= sizeif f(r) == truth {return i}}return -1}func makeCutsetFunc(cutset string) func(r rune) bool {return func(r rune) bool {for _, c := range cutset {if c == r {return true}}return false}}// Trim returns a subslice of s by slicing off all leading and// trailing UTF-8-encoded Unicode code points contained in cutset.func Trim(s []byte, cutset string) []byte {return TrimFunc(s, makeCutsetFunc(cutset))}// TrimLeft returns a subslice of s by slicing off all leading// UTF-8-encoded Unicode code points contained in cutset.func TrimLeft(s []byte, cutset string) []byte {return TrimLeftFunc(s, makeCutsetFunc(cutset))}// TrimRight returns a subslice of s by slicing off all trailing// UTF-8-encoded Unicode code points that are contained in cutset.func TrimRight(s []byte, cutset string) []byte {return TrimRightFunc(s, makeCutsetFunc(cutset))}// TrimSpace returns a subslice of s by slicing off all leading and// trailing white space, as defined by Unicode.func TrimSpace(s []byte) []byte {return TrimFunc(s, unicode.IsSpace)}// Runes returns a slice of runes (Unicode code points) equivalent to s.func Runes(s []byte) []rune {t := make([]rune, utf8.RuneCount(s))i := 0for len(s) > 0 {r, l := utf8.DecodeRune(s)t[i] = ri++s = s[l:]}return t}// Replace returns a copy of the slice s with the first n// non-overlapping instances of old replaced by new.// If n < 0, there is no limit on the number of replacements.func Replace(s, old, new []byte, n int) []byte {m := 0if n != 0 {// Compute number of replacements.m = Count(s, old)}if m == 0 {// Nothing to do. Just copy.t := make([]byte, len(s))copy(t, s)return t}if n < 0 || m < n {n = m}// Apply replacements to buffer.t := make([]byte, len(s)+n*(len(new)-len(old)))w := 0start := 0for i := 0; i < n; i++ {j := startif len(old) == 0 {if i > 0 {_, wid := utf8.DecodeRune(s[start:])j += wid}} else {j += Index(s[start:], old)}w += copy(t[w:], s[start:j])w += copy(t[w:], new)start = j + len(old)}w += copy(t[w:], s[start:])return t[0:w]}// EqualFold reports whether s and t, interpreted as UTF-8 strings,// are equal under Unicode case-folding.func EqualFold(s, t []byte) bool {for len(s) != 0 && len(t) != 0 {// Extract first rune from each.var sr, tr runeif s[0] < utf8.RuneSelf {sr, s = rune(s[0]), s[1:]} else {r, size := utf8.DecodeRune(s)sr, s = r, s[size:]}if t[0] < utf8.RuneSelf {tr, t = rune(t[0]), t[1:]} else {r, size := utf8.DecodeRune(t)tr, t = r, t[size:]}// If they match, keep going; if not, return false.// Easy case.if tr == sr {continue}// Make sr < tr to simplify what follows.if tr < sr {tr, sr = sr, tr}// Fast check for ASCII.if tr < utf8.RuneSelf && 'A' <= sr && sr <= 'Z' {// ASCII, and sr is upper case. tr must be lower case.if tr == sr+'a'-'A' {continue}return false}// General case. SimpleFold(x) returns the next equivalent rune > x// or wraps around to smaller values.r := unicode.SimpleFold(sr)for r != sr && r < tr {r = unicode.SimpleFold(r)}if r == tr {continue}return false}// One string is empty. Are both?return len(s) == len(t)}
Go to most recent revision | Compare with Previous | Blame | View Log
