OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [compress/] [bzip2/] [bzip2.go] - Rev 791

Go to most recent revision | Compare with Previous | Blame | View Log

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package bzip2 implements bzip2 decompression.
package bzip2

import "io"

// There's no RFC for bzip2. I used the Wikipedia page for reference and a lot
// of guessing: http://en.wikipedia.org/wiki/Bzip2
// The source code to pyflate was useful for debugging:
// http://www.paul.sladen.org/projects/pyflate

// A StructuralError is returned when the bzip2 data is found to be
// syntactically invalid.
type StructuralError string

func (s StructuralError) Error() string {
        return "bzip2 data invalid: " + string(s)
}

// A reader decompresses bzip2 compressed data.
type reader struct {
        br        bitReader
        setupDone bool // true if we have parsed the bzip2 header.
        blockSize int  // blockSize in bytes, i.e. 900 * 1024.
        eof       bool
        buf       []byte    // stores Burrows-Wheeler transformed data.
        c         [256]uint // the `C' array for the inverse BWT.
        tt        []uint32  // mirrors the `tt' array in the bzip2 source and contains the P array in the upper 24 bits.
        tPos      uint32    // Index of the next output byte in tt.

        preRLE      []uint32 // contains the RLE data still to be processed.
        preRLEUsed  int      // number of entries of preRLE used.
        lastByte    int      // the last byte value seen.
        byteRepeats uint     // the number of repeats of lastByte seen.
        repeats     uint     // the number of copies of lastByte to output.
}

// NewReader returns an io.Reader which decompresses bzip2 data from r.
func NewReader(r io.Reader) io.Reader {
        bz2 := new(reader)
        bz2.br = newBitReader(r)
        return bz2
}

const bzip2FileMagic = 0x425a // "BZ"
const bzip2BlockMagic = 0x314159265359
const bzip2FinalMagic = 0x177245385090

// setup parses the bzip2 header.
func (bz2 *reader) setup() error {
        br := &bz2.br

        magic := br.ReadBits(16)
        if magic != bzip2FileMagic {
                return StructuralError("bad magic value")
        }

        t := br.ReadBits(8)
        if t != 'h' {
                return StructuralError("non-Huffman entropy encoding")
        }

        level := br.ReadBits(8)
        if level < '1' || level > '9' {
                return StructuralError("invalid compression level")
        }

        bz2.blockSize = 100 * 1024 * (int(level) - '0')
        bz2.tt = make([]uint32, bz2.blockSize)
        return nil
}

func (bz2 *reader) Read(buf []byte) (n int, err error) {
        if bz2.eof {
                return 0, io.EOF
        }

        if !bz2.setupDone {
                err = bz2.setup()
                brErr := bz2.br.Err()
                if brErr != nil {
                        err = brErr
                }
                if err != nil {
                        return 0, err
                }
                bz2.setupDone = true
        }

        n, err = bz2.read(buf)
        brErr := bz2.br.Err()
        if brErr != nil {
                err = brErr
        }
        return
}

func (bz2 *reader) read(buf []byte) (n int, err error) {
        // bzip2 is a block based compressor, except that it has a run-length
        // preprocessing step. The block based nature means that we can
        // preallocate fixed-size buffers and reuse them. However, the RLE
        // preprocessing would require allocating huge buffers to store the
        // maximum expansion. Thus we process blocks all at once, except for
        // the RLE which we decompress as required.

        for (bz2.repeats > 0 || bz2.preRLEUsed < len(bz2.preRLE)) && n < len(buf) {
                // We have RLE data pending.

                // The run-length encoding works like this:
                // Any sequence of four equal bytes is followed by a length
                // byte which contains the number of repeats of that byte to
                // include. (The number of repeats can be zero.) Because we are
                // decompressing on-demand our state is kept in the reader
                // object.

                if bz2.repeats > 0 {
                        buf[n] = byte(bz2.lastByte)
                        n++
                        bz2.repeats--
                        if bz2.repeats == 0 {
                                bz2.lastByte = -1
                        }
                        continue
                }

                bz2.tPos = bz2.preRLE[bz2.tPos]
                b := byte(bz2.tPos)
                bz2.tPos >>= 8
                bz2.preRLEUsed++

                if bz2.byteRepeats == 3 {
                        bz2.repeats = uint(b)
                        bz2.byteRepeats = 0
                        continue
                }

                if bz2.lastByte == int(b) {
                        bz2.byteRepeats++
                } else {
                        bz2.byteRepeats = 0
                }
                bz2.lastByte = int(b)

                buf[n] = b
                n++
        }

        if n > 0 {
                return
        }

        // No RLE data is pending so we need to read a block.

        br := &bz2.br
        magic := br.ReadBits64(48)
        if magic == bzip2FinalMagic {
                br.ReadBits64(32) // ignored CRC
                bz2.eof = true
                return 0, io.EOF
        } else if magic != bzip2BlockMagic {
                return 0, StructuralError("bad magic value found")
        }

        err = bz2.readBlock()
        if err != nil {
                return 0, err
        }

        return bz2.read(buf)
}

// readBlock reads a bzip2 block. The magic number should already have been consumed.
func (bz2 *reader) readBlock() (err error) {
        br := &bz2.br
        br.ReadBits64(32) // skip checksum. TODO: check it if we can figure out what it is.
        randomized := br.ReadBits(1)
        if randomized != 0 {
                return StructuralError("deprecated randomized files")
        }
        origPtr := uint(br.ReadBits(24))

        // If not every byte value is used in the block (i.e., it's text) then
        // the symbol set is reduced. The symbols used are stored as a
        // two-level, 16x16 bitmap.
        symbolRangeUsedBitmap := br.ReadBits(16)
        symbolPresent := make([]bool, 256)
        numSymbols := 0
        for symRange := uint(0); symRange < 16; symRange++ {
                if symbolRangeUsedBitmap&(1<<(15-symRange)) != 0 {
                        bits := br.ReadBits(16)
                        for symbol := uint(0); symbol < 16; symbol++ {
                                if bits&(1<<(15-symbol)) != 0 {
                                        symbolPresent[16*symRange+symbol] = true
                                        numSymbols++
                                }
                        }
                }
        }

        // A block uses between two and six different Huffman trees.
        numHuffmanTrees := br.ReadBits(3)
        if numHuffmanTrees < 2 || numHuffmanTrees > 6 {
                return StructuralError("invalid number of Huffman trees")
        }

        // The Huffman tree can switch every 50 symbols so there's a list of
        // tree indexes telling us which tree to use for each 50 symbol block.
        numSelectors := br.ReadBits(15)
        treeIndexes := make([]uint8, numSelectors)

        // The tree indexes are move-to-front transformed and stored as unary
        // numbers.
        mtfTreeDecoder := newMTFDecoderWithRange(numHuffmanTrees)
        for i := range treeIndexes {
                c := 0
                for {
                        inc := br.ReadBits(1)
                        if inc == 0 {
                                break
                        }
                        c++
                }
                if c >= numHuffmanTrees {
                        return StructuralError("tree index too large")
                }
                treeIndexes[i] = uint8(mtfTreeDecoder.Decode(c))
        }

        // The list of symbols for the move-to-front transform is taken from
        // the previously decoded symbol bitmap.
        symbols := make([]byte, numSymbols)
        nextSymbol := 0
        for i := 0; i < 256; i++ {
                if symbolPresent[i] {
                        symbols[nextSymbol] = byte(i)
                        nextSymbol++
                }
        }
        mtf := newMTFDecoder(symbols)

        numSymbols += 2 // to account for RUNA and RUNB symbols
        huffmanTrees := make([]huffmanTree, numHuffmanTrees)

        // Now we decode the arrays of code-lengths for each tree.
        lengths := make([]uint8, numSymbols)
        for i := 0; i < numHuffmanTrees; i++ {
                // The code lengths are delta encoded from a 5-bit base value.
                length := br.ReadBits(5)
                for j := 0; j < numSymbols; j++ {
                        for {
                                if !br.ReadBit() {
                                        break
                                }
                                if br.ReadBit() {
                                        length--
                                } else {
                                        length++
                                }
                        }
                        if length < 0 || length > 20 {
                                return StructuralError("Huffman length out of range")
                        }
                        lengths[j] = uint8(length)
                }
                huffmanTrees[i], err = newHuffmanTree(lengths)
                if err != nil {
                        return err
                }
        }

        selectorIndex := 1 // the next tree index to use
        currentHuffmanTree := huffmanTrees[treeIndexes[0]]
        bufIndex := 0 // indexes bz2.buf, the output buffer.
        // The output of the move-to-front transform is run-length encoded and
        // we merge the decoding into the Huffman parsing loop. These two
        // variables accumulate the repeat count. See the Wikipedia page for
        // details.
        repeat := 0
        repeat_power := 0

        // The `C' array (used by the inverse BWT) needs to be zero initialized.
        for i := range bz2.c {
                bz2.c[i] = 0
        }

        decoded := 0 // counts the number of symbols decoded by the current tree.
        for {
                if decoded == 50 {
                        currentHuffmanTree = huffmanTrees[treeIndexes[selectorIndex]]
                        selectorIndex++
                        decoded = 0
                }

                v := currentHuffmanTree.Decode(br)
                decoded++

                if v < 2 {
                        // This is either the RUNA or RUNB symbol.
                        if repeat == 0 {
                                repeat_power = 1
                        }
                        repeat += repeat_power << v
                        repeat_power <<= 1

                        // This limit of 2 million comes from the bzip2 source
                        // code. It prevents repeat from overflowing.
                        if repeat > 2*1024*1024 {
                                return StructuralError("repeat count too large")
                        }
                        continue
                }

                if repeat > 0 {
                        // We have decoded a complete run-length so we need to
                        // replicate the last output symbol.
                        for i := 0; i < repeat; i++ {
                                b := byte(mtf.First())
                                bz2.tt[bufIndex] = uint32(b)
                                bz2.c[b]++
                                bufIndex++
                        }
                        repeat = 0
                }

                if int(v) == numSymbols-1 {
                        // This is the EOF symbol. Because it's always at the
                        // end of the move-to-front list, and never gets moved
                        // to the front, it has this unique value.
                        break
                }

                // Since two metasymbols (RUNA and RUNB) have values 0 and 1,
                // one would expect |v-2| to be passed to the MTF decoder.
                // However, the front of the MTF list is never referenced as 0,
                // it's always referenced with a run-length of 1. Thus 0
                // doesn't need to be encoded and we have |v-1| in the next
                // line.
                b := byte(mtf.Decode(int(v - 1)))
                bz2.tt[bufIndex] = uint32(b)
                bz2.c[b]++
                bufIndex++
        }

        if origPtr >= uint(bufIndex) {
                return StructuralError("origPtr out of bounds")
        }

        // We have completed the entropy decoding. Now we can perform the
        // inverse BWT and setup the RLE buffer.
        bz2.preRLE = bz2.tt[:bufIndex]
        bz2.preRLEUsed = 0
        bz2.tPos = inverseBWT(bz2.preRLE, origPtr, bz2.c[:])
        bz2.lastByte = -1
        bz2.byteRepeats = 0
        bz2.repeats = 0

        return nil
}

// inverseBWT implements the inverse Burrows-Wheeler transform as described in
// http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf, section 4.2.
// In that document, origPtr is called `I' and c is the `C' array after the
// first pass over the data. It's an argument here because we merge the first
// pass with the Huffman decoding.
//
// This also implements the `single array' method from the bzip2 source code
// which leaves the output, still shuffled, in the bottom 8 bits of tt with the
// index of the next byte in the top 24-bits. The index of the first byte is
// returned.
func inverseBWT(tt []uint32, origPtr uint, c []uint) uint32 {
        sum := uint(0)
        for i := 0; i < 256; i++ {
                sum += c[i]
                c[i] = sum - c[i]
        }

        for i := range tt {
                b := tt[i] & 0xff
                tt[c[b]] |= uint32(i) << 8
                c[b]++
        }

        return tt[origPtr] >> 8
}

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.