URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [compress/] [flate/] [deflate.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package flateimport ("io""math")const (NoCompression = 0BestSpeed = 1fastCompression = 3BestCompression = 9DefaultCompression = -1logWindowSize = 15windowSize = 1 << logWindowSizewindowMask = windowSize - 1logMaxOffsetSize = 15 // Standard DEFLATEminMatchLength = 3 // The smallest match that the compressor looks formaxMatchLength = 258 // The longest match for the compressorminOffsetSize = 1 // The shortest offset that makes any sence// The maximum number of tokens we put into a single flat block, just too// stop things from getting too large.maxFlateBlockTokens = 1 << 14maxStoreBlockSize = 65535hashBits = 17hashSize = 1 << hashBitshashMask = (1 << hashBits) - 1hashShift = (hashBits + minMatchLength - 1) / minMatchLengthskipNever = math.MaxInt32)type compressionLevel struct {good, lazy, nice, chain, fastSkipHashing int}var levels = []compressionLevel{{}, // 0// For levels 1-3 we don't bother trying with lazy matches{3, 0, 8, 4, 4},{3, 0, 16, 8, 5},{3, 0, 32, 32, 6},// Levels 4-9 use increasingly more lazy matching// and increasingly stringent conditions for "good enough".{4, 4, 16, 16, skipNever},{8, 16, 32, 32, skipNever},{8, 16, 128, 128, skipNever},{8, 32, 128, 256, skipNever},{32, 128, 258, 1024, skipNever},{32, 258, 258, 4096, skipNever},}type compressor struct {compressionLevelw *huffmanBitWriter// compression algorithmfill func(*compressor, []byte) int // copy data to windowstep func(*compressor) // process windowsync bool // requesting flush// Input hash chains// hashHead[hashValue] contains the largest inputIndex with the specified hash value// If hashHead[hashValue] is within the current window, then// hashPrev[hashHead[hashValue] & windowMask] contains the previous index// with the same hash value.chainHead inthashHead []inthashPrev []inthashOffset int// input window: unprocessed data is window[index:windowEnd]index intwindow []bytewindowEnd intblockStart int // window index where current tokens startbyteAvailable bool // if true, still need to process window[index-1].// queued output tokenstokens []token// deflate statelength intoffset inthash intmaxInsertIndex interr error}func (d *compressor) fillDeflate(b []byte) int {if d.index >= 2*windowSize-(minMatchLength+maxMatchLength) {// shift the window by windowSizecopy(d.window, d.window[windowSize:2*windowSize])d.index -= windowSized.windowEnd -= windowSizeif d.blockStart >= windowSize {d.blockStart -= windowSize} else {d.blockStart = math.MaxInt32}d.hashOffset += windowSize}n := copy(d.window[d.windowEnd:], b)d.windowEnd += nreturn n}func (d *compressor) writeBlock(tokens []token, index int, eof bool) error {if index > 0 || eof {var window []byteif d.blockStart <= index {window = d.window[d.blockStart:index]}d.blockStart = indexd.w.writeBlock(tokens, eof, window)return d.w.err}return nil}// Try to find a match starting at index whose length is greater than prevSize.// We only look at chainCount possibilities before giving up.func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) {minMatchLook := maxMatchLengthif lookahead < minMatchLook {minMatchLook = lookahead}win := d.window[0 : pos+minMatchLook]// We quit when we get a match that's at least nice longnice := len(win) - posif d.nice < nice {nice = d.nice}// If we've got a match that's good enough, only look in 1/4 the chain.tries := d.chainlength = prevLengthif length >= d.good {tries >>= 2}w0 := win[pos]w1 := win[pos+1]wEnd := win[pos+length]minIndex := pos - windowSizefor i := prevHead; tries > 0; tries-- {if w0 == win[i] && w1 == win[i+1] && wEnd == win[i+length] {// The hash function ensures that if win[i] and win[i+1] match, win[i+2] matchesn := 3for pos+n < len(win) && win[i+n] == win[pos+n] {n++}if n > length && (n > 3 || pos-i <= 4096) {length = noffset = pos - iok = trueif n >= nice {// The match is good enough that we don't try to find a better one.break}wEnd = win[pos+n]}}if i == minIndex {// hashPrev[i & windowMask] has already been overwritten, so stop now.break}if i = d.hashPrev[i&windowMask] - d.hashOffset; i < minIndex || i < 0 {break}}return}func (d *compressor) writeStoredBlock(buf []byte) error {if d.w.writeStoredHeader(len(buf), false); d.w.err != nil {return d.w.err}d.w.writeBytes(buf)return d.w.err}func (d *compressor) initDeflate() {d.hashHead = make([]int, hashSize)d.hashPrev = make([]int, windowSize)d.window = make([]byte, 2*windowSize)d.hashOffset = 1d.tokens = make([]token, 0, maxFlateBlockTokens+1)d.length = minMatchLength - 1d.offset = 0d.byteAvailable = falsed.index = 0d.hash = 0d.chainHead = -1}func (d *compressor) deflate() {if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {return}d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)if d.index < d.maxInsertIndex {d.hash = int(d.window[d.index])<<hashShift + int(d.window[d.index+1])}Loop:for {if d.index > d.windowEnd {panic("index > windowEnd")}lookahead := d.windowEnd - d.indexif lookahead < minMatchLength+maxMatchLength {if !d.sync {break Loop}if d.index > d.windowEnd {panic("index > windowEnd")}if lookahead == 0 {// Flush current output block if any.if d.byteAvailable {// There is still one pending token that needs to be flushedd.tokens = append(d.tokens, literalToken(uint32(d.window[d.index-1])))d.byteAvailable = false}if len(d.tokens) > 0 {if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {return}d.tokens = d.tokens[:0]}break Loop}}if d.index < d.maxInsertIndex {// Update the hashd.hash = (d.hash<<hashShift + int(d.window[d.index+2])) & hashMaskd.chainHead = d.hashHead[d.hash]d.hashPrev[d.index&windowMask] = d.chainHeadd.hashHead[d.hash] = d.index + d.hashOffset}prevLength := d.lengthprevOffset := d.offsetd.length = minMatchLength - 1d.offset = 0minIndex := d.index - windowSizeif minIndex < 0 {minIndex = 0}if d.chainHead-d.hashOffset >= minIndex &&(d.fastSkipHashing != skipNever && lookahead > minMatchLength-1 ||d.fastSkipHashing == skipNever && lookahead > prevLength && prevLength < d.lazy) {if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {d.length = newLengthd.offset = newOffset}}if d.fastSkipHashing != skipNever && d.length >= minMatchLength ||d.fastSkipHashing == skipNever && prevLength >= minMatchLength && d.length <= prevLength {// There was a match at the previous step, and the current match is// not better. Output the previous match.if d.fastSkipHashing != skipNever {d.tokens = append(d.tokens, matchToken(uint32(d.length-minMatchLength), uint32(d.offset-minOffsetSize)))} else {d.tokens = append(d.tokens, matchToken(uint32(prevLength-minMatchLength), uint32(prevOffset-minOffsetSize)))}// Insert in the hash table all strings up to the end of the match.// index and index-1 are already inserted. If there is not enough// lookahead, the last two strings are not inserted into the hash// table.if d.length <= d.fastSkipHashing {var newIndex intif d.fastSkipHashing != skipNever {newIndex = d.index + d.length} else {newIndex = d.index + prevLength - 1}for d.index++; d.index < newIndex; d.index++ {if d.index < d.maxInsertIndex {d.hash = (d.hash<<hashShift + int(d.window[d.index+2])) & hashMask// Get previous value with the same hash.// Our chain should point to the previous value.d.hashPrev[d.index&windowMask] = d.hashHead[d.hash]// Set the head of the hash chain to us.d.hashHead[d.hash] = d.index + d.hashOffset}}if d.fastSkipHashing == skipNever {d.byteAvailable = falsed.length = minMatchLength - 1}} else {// For matches this long, we don't bother inserting each individual// item into the table.d.index += d.lengthif d.index < d.maxInsertIndex {d.hash = (int(d.window[d.index])<<hashShift + int(d.window[d.index+1]))}}if len(d.tokens) == maxFlateBlockTokens {// The block includes the current characterif d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {return}d.tokens = d.tokens[:0]}} else {if d.fastSkipHashing != skipNever || d.byteAvailable {i := d.index - 1if d.fastSkipHashing != skipNever {i = d.index}d.tokens = append(d.tokens, literalToken(uint32(d.window[i])))if len(d.tokens) == maxFlateBlockTokens {if d.err = d.writeBlock(d.tokens, i+1, false); d.err != nil {return}d.tokens = d.tokens[:0]}}d.index++if d.fastSkipHashing == skipNever {d.byteAvailable = true}}}}func (d *compressor) fillStore(b []byte) int {n := copy(d.window[d.windowEnd:], b)d.windowEnd += nreturn n}func (d *compressor) store() {if d.windowEnd > 0 {d.err = d.writeStoredBlock(d.window[:d.windowEnd])}d.windowEnd = 0}func (d *compressor) write(b []byte) (n int, err error) {n = len(b)b = b[d.fill(d, b):]for len(b) > 0 {d.step(d)b = b[d.fill(d, b):]}return n, d.err}func (d *compressor) syncFlush() error {d.sync = trued.step(d)if d.err == nil {d.w.writeStoredHeader(0, false)d.w.flush()d.err = d.w.err}d.sync = falsereturn d.err}func (d *compressor) init(w io.Writer, level int) (err error) {d.w = newHuffmanBitWriter(w)switch {case level == NoCompression:d.window = make([]byte, maxStoreBlockSize)d.fill = (*compressor).fillStored.step = (*compressor).storecase level == DefaultCompression:level = 6fallthroughcase 1 <= level && level <= 9:d.compressionLevel = levels[level]d.initDeflate()d.fill = (*compressor).fillDeflated.step = (*compressor).deflatedefault:return WrongValueError{"level", 0, 9, int32(level)}}return nil}func (d *compressor) close() error {d.sync = trued.step(d)if d.err != nil {return d.err}if d.w.writeStoredHeader(0, true); d.w.err != nil {return d.w.err}d.w.flush()return d.w.err}// NewWriter returns a new Writer compressing// data at the given level. Following zlib, levels// range from 1 (BestSpeed) to 9 (BestCompression);// higher levels typically run slower but compress more.// Level 0 (NoCompression) does not attempt any// compression; it only adds the necessary DEFLATE framing.func NewWriter(w io.Writer, level int) *Writer {const logWindowSize = logMaxOffsetSizevar dw Writerdw.d.init(w, level)return &dw}// NewWriterDict is like NewWriter but initializes the new// Writer with a preset dictionary. The returned Writer behaves// as if the dictionary had been written to it without producing// any compressed output. The compressed data written to w// can only be decompressed by a Reader initialized with the// same dictionary.func NewWriterDict(w io.Writer, level int, dict []byte) *Writer {dw := &dictWriter{w, false}zw := NewWriter(dw, level)zw.Write(dict)zw.Flush()dw.enabled = truereturn zw}type dictWriter struct {w io.Writerenabled bool}func (w *dictWriter) Write(b []byte) (n int, err error) {if w.enabled {return w.w.Write(b)}return len(b), nil}// A Writer takes data written to it and writes the compressed// form of that data to an underlying writer (see NewWriter).type Writer struct {d compressor}// Write writes data to w, which will eventually write the// compressed form of data to its underlying writer.func (w *Writer) Write(data []byte) (n int, err error) {return w.d.write(data)}// Flush flushes any pending compressed data to the underlying writer.// It is useful mainly in compressed network protocols, to ensure that// a remote reader has enough data to reconstruct a packet.// Flush does not return until the data has been written.// If the underlying writer returns an error, Flush returns that error.//// In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.func (w *Writer) Flush() error {// For more about flushing:// http://www.bolet.org/~pornin/deflate-flush.htmlreturn w.d.syncFlush()}// Close flushes and closes the writer.func (w *Writer) Close() error {return w.d.close()}
