URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [compress/] [flate/] [inflate.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.// Package flate implements the DEFLATE compressed data format, described in// RFC 1951. The gzip and zlib packages implement access to DEFLATE-based file// formats.package flateimport ("bufio""io""strconv")const (maxCodeLen = 16 // max length of Huffman codemaxHist = 32768 // max history requiredmaxLit = 286maxDist = 32numCodes = 19 // number of codes in Huffman meta-code)// A CorruptInputError reports the presence of corrupt input at a given offset.type CorruptInputError int64func (e CorruptInputError) Error() string {return "flate: corrupt input before offset " + strconv.FormatInt(int64(e), 10)}// An InternalError reports an error in the flate code itself.type InternalError stringfunc (e InternalError) Error() string { return "flate: internal error: " + string(e) }// A ReadError reports an error encountered while reading input.type ReadError struct {Offset int64 // byte offset where error occurredErr error // error returned by underlying Read}func (e *ReadError) Error() string {return "flate: read error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()}// A WriteError reports an error encountered while writing output.type WriteError struct {Offset int64 // byte offset where error occurredErr error // error returned by underlying Write}func (e *WriteError) Error() string {return "flate: write error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()}// Huffman decoder is based on// J. Brian Connell, ``A Huffman-Shannon-Fano Code,''// Proceedings of the IEEE, 61(7) (July 1973), pp 1046-1047.type huffmanDecoder struct {// min, max code lengthmin, max int// limit[i] = largest code word of length i// Given code v of length n,// need more bits if v > limit[n].limit [maxCodeLen + 1]int// base[i] = smallest code word of length i - seq numberbase [maxCodeLen + 1]int// codes[seq number] = output code.// Given code v of length n, value is// codes[v - base[n]].codes []int}// Initialize Huffman decoding tables from array of code lengths.func (h *huffmanDecoder) init(bits []int) bool {// Count number of codes of each length,// compute min and max length.var count [maxCodeLen + 1]intvar min, max intfor _, n := range bits {if n == 0 {continue}if min == 0 || n < min {min = n}if n > max {max = n}count[n]++}if max == 0 {return false}h.min = minh.max = max// For each code range, compute// nextcode (first code of that length),// limit (last code of that length), and// base (offset from first code to sequence number).code := 0seq := 0var nextcode [maxCodeLen]intfor i := min; i <= max; i++ {n := count[i]nextcode[i] = codeh.base[i] = code - seqcode += nseq += nh.limit[i] = code - 1code <<= 1}// Make array mapping sequence numbers to codes.if len(h.codes) < len(bits) {h.codes = make([]int, len(bits))}for i, n := range bits {if n == 0 {continue}code := nextcode[n]nextcode[n]++seq := code - h.base[n]h.codes[seq] = i}return true}// Hard-coded Huffman tables for DEFLATE algorithm.// See RFC 1951, section 3.2.6.var fixedHuffmanDecoder = huffmanDecoder{7, 9,[maxCodeLen + 1]int{7: 23, 199, 511},[maxCodeLen + 1]int{7: 0, 24, 224},[]int{// length 7: 256-279256, 257, 258, 259, 260, 261, 262,263, 264, 265, 266, 267, 268, 269,270, 271, 272, 273, 274, 275, 276,277, 278, 279,// length 8: 0-1430, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21,22, 23, 24, 25, 26, 27, 28, 29, 30, 31,32, 33, 34, 35, 36, 37, 38, 39, 40, 41,42, 43, 44, 45, 46, 47, 48, 49, 50, 51,52, 53, 54, 55, 56, 57, 58, 59, 60, 61,62, 63, 64, 65, 66, 67, 68, 69, 70, 71,72, 73, 74, 75, 76, 77, 78, 79, 80, 81,82, 83, 84, 85, 86, 87, 88, 89, 90, 91,92, 93, 94, 95, 96, 97, 98, 99, 100,101, 102, 103, 104, 105, 106, 107, 108,109, 110, 111, 112, 113, 114, 115, 116,117, 118, 119, 120, 121, 122, 123, 124,125, 126, 127, 128, 129, 130, 131, 132,133, 134, 135, 136, 137, 138, 139, 140,141, 142, 143,// length 8: 280-287280, 281, 282, 283, 284, 285, 286, 287,// length 9: 144-255144, 145, 146, 147, 148, 149, 150, 151,152, 153, 154, 155, 156, 157, 158, 159,160, 161, 162, 163, 164, 165, 166, 167,168, 169, 170, 171, 172, 173, 174, 175,176, 177, 178, 179, 180, 181, 182, 183,184, 185, 186, 187, 188, 189, 190, 191,192, 193, 194, 195, 196, 197, 198, 199,200, 201, 202, 203, 204, 205, 206, 207,208, 209, 210, 211, 212, 213, 214, 215,216, 217, 218, 219, 220, 221, 222, 223,224, 225, 226, 227, 228, 229, 230, 231,232, 233, 234, 235, 236, 237, 238, 239,240, 241, 242, 243, 244, 245, 246, 247,248, 249, 250, 251, 252, 253, 254, 255,},}// The actual read interface needed by NewReader.// If the passed in io.Reader does not also have ReadByte,// the NewReader will introduce its own buffering.type Reader interface {io.ReaderReadByte() (c byte, err error)}// Decompress state.type decompressor struct {// Input source.r Readerroffset int64woffset int64// Input bits, in top of b.b uint32nb uint// Huffman decoders for literal/length, distance.h1, h2 huffmanDecoder// Length arrays used to define Huffman codes.bits [maxLit + maxDist]intcodebits [numCodes]int// Output history, buffer.hist [maxHist]bytehp int // current output position in bufferhw int // have written hist[0:hw] alreadyhfull bool // buffer has filled at least once// Temporary buffer (avoids repeated allocation).buf [4]byte// Next step in the decompression,// and decompression state.step func(*decompressor)final boolerr errortoRead []bytehl, hd *huffmanDecodercopyLen intcopyDist int}func (f *decompressor) nextBlock() {if f.final {if f.hw != f.hp {f.flush((*decompressor).nextBlock)return}f.err = io.EOFreturn}for f.nb < 1+2 {if f.err = f.moreBits(); f.err != nil {return}}f.final = f.b&1 == 1f.b >>= 1typ := f.b & 3f.b >>= 2f.nb -= 1 + 2switch typ {case 0:f.dataBlock()case 1:// compressed, fixed Huffman tablesf.hl = &fixedHuffmanDecoderf.hd = nilf.huffmanBlock()case 2:// compressed, dynamic Huffman tablesif f.err = f.readHuffman(); f.err != nil {break}f.hl = &f.h1f.hd = &f.h2f.huffmanBlock()default:// 3 is reserved.f.err = CorruptInputError(f.roffset)}}func (f *decompressor) Read(b []byte) (int, error) {for {if len(f.toRead) > 0 {n := copy(b, f.toRead)f.toRead = f.toRead[n:]return n, nil}if f.err != nil {return 0, f.err}f.step(f)}panic("unreachable")}func (f *decompressor) Close() error {if f.err == io.EOF {return nil}return f.err}// RFC 1951 section 3.2.7.// Compression with dynamic Huffman codesvar codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}func (f *decompressor) readHuffman() error {// HLIT[5], HDIST[5], HCLEN[4].for f.nb < 5+5+4 {if err := f.moreBits(); err != nil {return err}}nlit := int(f.b&0x1F) + 257f.b >>= 5ndist := int(f.b&0x1F) + 1f.b >>= 5nclen := int(f.b&0xF) + 4f.b >>= 4f.nb -= 5 + 5 + 4// (HCLEN+4)*3 bits: code lengths in the magic codeOrder order.for i := 0; i < nclen; i++ {for f.nb < 3 {if err := f.moreBits(); err != nil {return err}}f.codebits[codeOrder[i]] = int(f.b & 0x7)f.b >>= 3f.nb -= 3}for i := nclen; i < len(codeOrder); i++ {f.codebits[codeOrder[i]] = 0}if !f.h1.init(f.codebits[0:]) {return CorruptInputError(f.roffset)}// HLIT + 257 code lengths, HDIST + 1 code lengths,// using the code length Huffman code.for i, n := 0, nlit+ndist; i < n; {x, err := f.huffSym(&f.h1)if err != nil {return err}if x < 16 {// Actual length.f.bits[i] = xi++continue}// Repeat previous length or zero.var rep intvar nb uintvar b intswitch x {default:return InternalError("unexpected length code")case 16:rep = 3nb = 2if i == 0 {return CorruptInputError(f.roffset)}b = f.bits[i-1]case 17:rep = 3nb = 3b = 0case 18:rep = 11nb = 7b = 0}for f.nb < nb {if err := f.moreBits(); err != nil {return err}}rep += int(f.b & uint32(1<<nb-1))f.b >>= nbf.nb -= nbif i+rep > n {return CorruptInputError(f.roffset)}for j := 0; j < rep; j++ {f.bits[i] = bi++}}if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {return CorruptInputError(f.roffset)}return nil}// Decode a single Huffman block from f.// hl and hd are the Huffman states for the lit/length values// and the distance values, respectively. If hd == nil, using the// fixed distance encoding associated with fixed Huffman blocks.func (f *decompressor) huffmanBlock() {for {v, err := f.huffSym(f.hl)if err != nil {f.err = errreturn}var n uint // number of bits extravar length intswitch {case v < 256:f.hist[f.hp] = byte(v)f.hp++if f.hp == len(f.hist) {// After the flush, continue this loop.f.flush((*decompressor).huffmanBlock)return}continuecase v == 256:// Done with huffman block; read next block.f.step = (*decompressor).nextBlockreturn// otherwise, reference to older datacase v < 265:length = v - (257 - 3)n = 0case v < 269:length = v*2 - (265*2 - 11)n = 1case v < 273:length = v*4 - (269*4 - 19)n = 2case v < 277:length = v*8 - (273*8 - 35)n = 3case v < 281:length = v*16 - (277*16 - 67)n = 4case v < 285:length = v*32 - (281*32 - 131)n = 5default:length = 258n = 0}if n > 0 {for f.nb < n {if err = f.moreBits(); err != nil {f.err = errreturn}}length += int(f.b & uint32(1<<n-1))f.b >>= nf.nb -= n}var dist intif f.hd == nil {for f.nb < 5 {if err = f.moreBits(); err != nil {f.err = errreturn}}dist = int(reverseByte[(f.b&0x1F)<<3])f.b >>= 5f.nb -= 5} else {if dist, err = f.huffSym(f.hd); err != nil {f.err = errreturn}}switch {case dist < 4:dist++case dist >= 30:f.err = CorruptInputError(f.roffset)returndefault:nb := uint(dist-2) >> 1// have 1 bit in bottom of dist, need nb more.extra := (dist & 1) << nbfor f.nb < nb {if err = f.moreBits(); err != nil {f.err = errreturn}}extra |= int(f.b & uint32(1<<nb-1))f.b >>= nbf.nb -= nbdist = 1<<(nb+1) + 1 + extra}// Copy history[-dist:-dist+length] into output.if dist > len(f.hist) {f.err = InternalError("bad history distance")return}// No check on length; encoding can be prescient.if !f.hfull && dist > f.hp {f.err = CorruptInputError(f.roffset)return}p := f.hp - distif p < 0 {p += len(f.hist)}for i := 0; i < length; i++ {f.hist[f.hp] = f.hist[p]f.hp++p++if f.hp == len(f.hist) {// After flush continue copying out of history.f.copyLen = length - (i + 1)f.copyDist = distf.flush((*decompressor).copyHuff)return}if p == len(f.hist) {p = 0}}}panic("unreached")}func (f *decompressor) copyHuff() {length := f.copyLendist := f.copyDistp := f.hp - distif p < 0 {p += len(f.hist)}for i := 0; i < length; i++ {f.hist[f.hp] = f.hist[p]f.hp++p++if f.hp == len(f.hist) {f.copyLen = length - (i + 1)f.flush((*decompressor).copyHuff)return}if p == len(f.hist) {p = 0}}// Continue processing Huffman block.f.huffmanBlock()}// Copy a single uncompressed data block from input to output.func (f *decompressor) dataBlock() {// Uncompressed.// Discard current half-byte.f.nb = 0f.b = 0// Length then ones-complement of length.nr, err := io.ReadFull(f.r, f.buf[0:4])f.roffset += int64(nr)if err != nil {f.err = &ReadError{f.roffset, err}return}n := int(f.buf[0]) | int(f.buf[1])<<8nn := int(f.buf[2]) | int(f.buf[3])<<8if uint16(nn) != uint16(^n) {f.err = CorruptInputError(f.roffset)return}if n == 0 {// 0-length block means syncf.flush((*decompressor).nextBlock)return}f.copyLen = nf.copyData()}func (f *decompressor) copyData() {// Read f.dataLen bytes into history,// pausing for reads as history fills.n := f.copyLenfor n > 0 {m := len(f.hist) - f.hpif m > n {m = n}m, err := io.ReadFull(f.r, f.hist[f.hp:f.hp+m])f.roffset += int64(m)if err != nil {f.err = &ReadError{f.roffset, err}return}n -= mf.hp += mif f.hp == len(f.hist) {f.copyLen = nf.flush((*decompressor).copyData)return}}f.step = (*decompressor).nextBlock}func (f *decompressor) setDict(dict []byte) {if len(dict) > len(f.hist) {// Will only remember the tail.dict = dict[len(dict)-len(f.hist):]}f.hp = copy(f.hist[:], dict)if f.hp == len(f.hist) {f.hp = 0f.hfull = true}f.hw = f.hp}func (f *decompressor) moreBits() error {c, err := f.r.ReadByte()if err != nil {if err == io.EOF {err = io.ErrUnexpectedEOF}return err}f.roffset++f.b |= uint32(c) << f.nbf.nb += 8return nil}// Read the next Huffman-encoded symbol from f according to h.func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {for n := uint(h.min); n <= uint(h.max); n++ {lim := h.limit[n]if lim == -1 {continue}for f.nb < n {if err := f.moreBits(); err != nil {return 0, err}}v := int(f.b & uint32(1<<n-1))v <<= 16 - nv = int(reverseByte[v>>8]) | int(reverseByte[v&0xFF])<<8 // reverse bitsif v <= lim {f.b >>= nf.nb -= nreturn h.codes[v-h.base[n]], nil}}return 0, CorruptInputError(f.roffset)}// Flush any buffered output to the underlying writer.func (f *decompressor) flush(step func(*decompressor)) {f.toRead = f.hist[f.hw:f.hp]f.woffset += int64(f.hp - f.hw)f.hw = f.hpif f.hp == len(f.hist) {f.hp = 0f.hw = 0f.hfull = true}f.step = step}func makeReader(r io.Reader) Reader {if rr, ok := r.(Reader); ok {return rr}return bufio.NewReader(r)}// NewReader returns a new ReadCloser that can be used// to read the uncompressed version of r. It is the caller's// responsibility to call Close on the ReadCloser when// finished reading.func NewReader(r io.Reader) io.ReadCloser {var f decompressorf.r = makeReader(r)f.step = (*decompressor).nextBlockreturn &f}// NewReaderDict is like NewReader but initializes the reader// with a preset dictionary. The returned Reader behaves as if// the uncompressed data stream started with the given dictionary,// which has already been read. NewReaderDict is typically used// to read data compressed by NewWriterDict.func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {var f decompressorf.setDict(dict)f.r = makeReader(r)f.step = (*decompressor).nextBlockreturn &f}
