URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [crypto/] [aes/] [block.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.// This Go implementation is derived in part from the reference// ANSI C implementation, which carries the following notice://// rijndael-alg-fst.c//// @version 3.0 (December 2000)//// Optimised ANSI C code for the Rijndael cipher (now AES)//// @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>// @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>// @author Paulo Barreto <paulo.barreto@terra.com.br>//// This code is hereby placed in the public domain.//// THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS// OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE// OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.//// See FIPS 197 for specification, and see Daemen and Rijmen's Rijndael submission// for implementation details.// http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf// http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdfpackage aes// Encrypt one block from src into dst, using the expanded key xk.func encryptBlock(xk []uint32, dst, src []byte) {var s0, s1, s2, s3, t0, t1, t2, t3 uint32s0 = uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3])s1 = uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7])s2 = uint32(src[8])<<24 | uint32(src[9])<<16 | uint32(src[10])<<8 | uint32(src[11])s3 = uint32(src[12])<<24 | uint32(src[13])<<16 | uint32(src[14])<<8 | uint32(src[15])// First round just XORs input with key.s0 ^= xk[0]s1 ^= xk[1]s2 ^= xk[2]s3 ^= xk[3]// Middle rounds shuffle using tables.// Number of rounds is set by length of expanded key.nr := len(xk)/4 - 2 // - 2: one above, one more belowk := 4for r := 0; r < nr; r++ {t0 = xk[k+0] ^ te0[uint8(s0>>24)] ^ te1[uint8(s1>>16)] ^ te2[uint8(s2>>8)] ^ te3[uint8(s3)]t1 = xk[k+1] ^ te0[uint8(s1>>24)] ^ te1[uint8(s2>>16)] ^ te2[uint8(s3>>8)] ^ te3[uint8(s0)]t2 = xk[k+2] ^ te0[uint8(s2>>24)] ^ te1[uint8(s3>>16)] ^ te2[uint8(s0>>8)] ^ te3[uint8(s1)]t3 = xk[k+3] ^ te0[uint8(s3>>24)] ^ te1[uint8(s0>>16)] ^ te2[uint8(s1>>8)] ^ te3[uint8(s2)]k += 4s0, s1, s2, s3 = t0, t1, t2, t3}// Last round uses s-box directly and XORs to produce output.s0 = uint32(sbox0[t0>>24])<<24 | uint32(sbox0[t1>>16&0xff])<<16 | uint32(sbox0[t2>>8&0xff])<<8 | uint32(sbox0[t3&0xff])s1 = uint32(sbox0[t1>>24])<<24 | uint32(sbox0[t2>>16&0xff])<<16 | uint32(sbox0[t3>>8&0xff])<<8 | uint32(sbox0[t0&0xff])s2 = uint32(sbox0[t2>>24])<<24 | uint32(sbox0[t3>>16&0xff])<<16 | uint32(sbox0[t0>>8&0xff])<<8 | uint32(sbox0[t1&0xff])s3 = uint32(sbox0[t3>>24])<<24 | uint32(sbox0[t0>>16&0xff])<<16 | uint32(sbox0[t1>>8&0xff])<<8 | uint32(sbox0[t2&0xff])s0 ^= xk[k+0]s1 ^= xk[k+1]s2 ^= xk[k+2]s3 ^= xk[k+3]dst[0], dst[1], dst[2], dst[3] = byte(s0>>24), byte(s0>>16), byte(s0>>8), byte(s0)dst[4], dst[5], dst[6], dst[7] = byte(s1>>24), byte(s1>>16), byte(s1>>8), byte(s1)dst[8], dst[9], dst[10], dst[11] = byte(s2>>24), byte(s2>>16), byte(s2>>8), byte(s2)dst[12], dst[13], dst[14], dst[15] = byte(s3>>24), byte(s3>>16), byte(s3>>8), byte(s3)}// Decrypt one block from src into dst, using the expanded key xk.func decryptBlock(xk []uint32, dst, src []byte) {var s0, s1, s2, s3, t0, t1, t2, t3 uint32s0 = uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3])s1 = uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7])s2 = uint32(src[8])<<24 | uint32(src[9])<<16 | uint32(src[10])<<8 | uint32(src[11])s3 = uint32(src[12])<<24 | uint32(src[13])<<16 | uint32(src[14])<<8 | uint32(src[15])// First round just XORs input with key.s0 ^= xk[0]s1 ^= xk[1]s2 ^= xk[2]s3 ^= xk[3]// Middle rounds shuffle using tables.// Number of rounds is set by length of expanded key.nr := len(xk)/4 - 2 // - 2: one above, one more belowk := 4for r := 0; r < nr; r++ {t0 = xk[k+0] ^ td0[uint8(s0>>24)] ^ td1[uint8(s3>>16)] ^ td2[uint8(s2>>8)] ^ td3[uint8(s1)]t1 = xk[k+1] ^ td0[uint8(s1>>24)] ^ td1[uint8(s0>>16)] ^ td2[uint8(s3>>8)] ^ td3[uint8(s2)]t2 = xk[k+2] ^ td0[uint8(s2>>24)] ^ td1[uint8(s1>>16)] ^ td2[uint8(s0>>8)] ^ td3[uint8(s3)]t3 = xk[k+3] ^ td0[uint8(s3>>24)] ^ td1[uint8(s2>>16)] ^ td2[uint8(s1>>8)] ^ td3[uint8(s0)]k += 4s0, s1, s2, s3 = t0, t1, t2, t3}// Last round uses s-box directly and XORs to produce output.s0 = uint32(sbox1[t0>>24])<<24 | uint32(sbox1[t3>>16&0xff])<<16 | uint32(sbox1[t2>>8&0xff])<<8 | uint32(sbox1[t1&0xff])s1 = uint32(sbox1[t1>>24])<<24 | uint32(sbox1[t0>>16&0xff])<<16 | uint32(sbox1[t3>>8&0xff])<<8 | uint32(sbox1[t2&0xff])s2 = uint32(sbox1[t2>>24])<<24 | uint32(sbox1[t1>>16&0xff])<<16 | uint32(sbox1[t0>>8&0xff])<<8 | uint32(sbox1[t3&0xff])s3 = uint32(sbox1[t3>>24])<<24 | uint32(sbox1[t2>>16&0xff])<<16 | uint32(sbox1[t1>>8&0xff])<<8 | uint32(sbox1[t0&0xff])s0 ^= xk[k+0]s1 ^= xk[k+1]s2 ^= xk[k+2]s3 ^= xk[k+3]dst[0], dst[1], dst[2], dst[3] = byte(s0>>24), byte(s0>>16), byte(s0>>8), byte(s0)dst[4], dst[5], dst[6], dst[7] = byte(s1>>24), byte(s1>>16), byte(s1>>8), byte(s1)dst[8], dst[9], dst[10], dst[11] = byte(s2>>24), byte(s2>>16), byte(s2>>8), byte(s2)dst[12], dst[13], dst[14], dst[15] = byte(s3>>24), byte(s3>>16), byte(s3>>8), byte(s3)}// Apply sbox0 to each byte in w.func subw(w uint32) uint32 {return uint32(sbox0[w>>24])<<24 |uint32(sbox0[w>>16&0xff])<<16 |uint32(sbox0[w>>8&0xff])<<8 |uint32(sbox0[w&0xff])}// Rotatefunc rotw(w uint32) uint32 { return w<<8 | w>>24 }// Key expansion algorithm. See FIPS-197, Figure 11.// Their rcon[i] is our powx[i-1] << 24.func expandKey(key []byte, enc, dec []uint32) {// Encryption key setup.var i intnk := len(key) / 4for i = 0; i < nk; i++ {enc[i] = uint32(key[4*i])<<24 | uint32(key[4*i+1])<<16 | uint32(key[4*i+2])<<8 | uint32(key[4*i+3])}for ; i < len(enc); i++ {t := enc[i-1]if i%nk == 0 {t = subw(rotw(t)) ^ (uint32(powx[i/nk-1]) << 24)} else if nk > 6 && i%nk == 4 {t = subw(t)}enc[i] = enc[i-nk] ^ t}// Derive decryption key from encryption key.// Reverse the 4-word round key sets from enc to produce dec.// All sets but the first and last get the MixColumn transform applied.if dec == nil {return}n := len(enc)for i := 0; i < n; i += 4 {ei := n - i - 4for j := 0; j < 4; j++ {x := enc[ei+j]if i > 0 && i+4 < n {x = td0[sbox0[x>>24]] ^ td1[sbox0[x>>16&0xff]] ^ td2[sbox0[x>>8&0xff]] ^ td3[sbox0[x&0xff]]}dec[i+j] = x}}}
