URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [encoding/] [gob/] [encode.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package gobimport ("bytes""math""reflect""unsafe")const uint64Size = int(unsafe.Sizeof(uint64(0)))// encoderState is the global execution state of an instance of the encoder.// Field numbers are delta encoded and always increase. The field// number is initialized to -1 so 0 comes out as delta(1). A delta of// 0 terminates the structure.type encoderState struct {enc *Encoderb *bytes.BuffersendZero bool // encoding an array element or map key/value pair; send zero valuesfieldnum int // the last field number written.buf [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation.next *encoderState // for free list}func (enc *Encoder) newEncoderState(b *bytes.Buffer) *encoderState {e := enc.freeListif e == nil {e = new(encoderState)e.enc = enc} else {enc.freeList = e.next}e.sendZero = falsee.fieldnum = 0e.b = breturn e}func (enc *Encoder) freeEncoderState(e *encoderState) {e.next = enc.freeListenc.freeList = e}// Unsigned integers have a two-state encoding. If the number is less// than 128 (0 through 0x7F), its value is written directly.// Otherwise the value is written in big-endian byte order preceded// by the byte length, negated.// encodeUint writes an encoded unsigned integer to state.b.func (state *encoderState) encodeUint(x uint64) {if x <= 0x7F {err := state.b.WriteByte(uint8(x))if err != nil {error_(err)}return}i := uint64Sizefor x > 0 {state.buf[i] = uint8(x)x >>= 8i--}state.buf[i] = uint8(i - uint64Size) // = loop count, negated_, err := state.b.Write(state.buf[i : uint64Size+1])if err != nil {error_(err)}}// encodeInt writes an encoded signed integer to state.w.// The low bit of the encoding says whether to bit complement the (other bits of the)// uint to recover the int.func (state *encoderState) encodeInt(i int64) {var x uint64if i < 0 {x = uint64(^i<<1) | 1} else {x = uint64(i << 1)}state.encodeUint(uint64(x))}// encOp is the signature of an encoding operator for a given type.type encOp func(i *encInstr, state *encoderState, p unsafe.Pointer)// The 'instructions' of the encoding machinetype encInstr struct {op encOpfield int // field numberindir int // how many pointer indirections to reach the value in the structoffset uintptr // offset in the structure of the field to encode}// update emits a field number and updates the state to record its value for delta encoding.// If the instruction pointer is nil, it does nothingfunc (state *encoderState) update(instr *encInstr) {if instr != nil {state.encodeUint(uint64(instr.field - state.fieldnum))state.fieldnum = instr.field}}// Each encoder for a composite is responsible for handling any// indirections associated with the elements of the data structure.// If any pointer so reached is nil, no bytes are written. If the// data item is zero, no bytes are written. Single values - ints,// strings etc. - are indirected before calling their encoders.// Otherwise, the output (for a scalar) is the field number, as an// encoded integer, followed by the field data in its appropriate// format.// encIndirect dereferences p indir times and returns the result.func encIndirect(p unsafe.Pointer, indir int) unsafe.Pointer {for ; indir > 0; indir-- {p = *(*unsafe.Pointer)(p)if p == nil {return unsafe.Pointer(nil)}}return p}// encBool encodes the bool with address p as an unsigned 0 or 1.func encBool(i *encInstr, state *encoderState, p unsafe.Pointer) {b := *(*bool)(p)if b || state.sendZero {state.update(i)if b {state.encodeUint(1)} else {state.encodeUint(0)}}}// encInt encodes the int with address p.func encInt(i *encInstr, state *encoderState, p unsafe.Pointer) {v := int64(*(*int)(p))if v != 0 || state.sendZero {state.update(i)state.encodeInt(v)}}// encUint encodes the uint with address p.func encUint(i *encInstr, state *encoderState, p unsafe.Pointer) {v := uint64(*(*uint)(p))if v != 0 || state.sendZero {state.update(i)state.encodeUint(v)}}// encInt8 encodes the int8 with address p.func encInt8(i *encInstr, state *encoderState, p unsafe.Pointer) {v := int64(*(*int8)(p))if v != 0 || state.sendZero {state.update(i)state.encodeInt(v)}}// encUint8 encodes the uint8 with address p.func encUint8(i *encInstr, state *encoderState, p unsafe.Pointer) {v := uint64(*(*uint8)(p))if v != 0 || state.sendZero {state.update(i)state.encodeUint(v)}}// encInt16 encodes the int16 with address p.func encInt16(i *encInstr, state *encoderState, p unsafe.Pointer) {v := int64(*(*int16)(p))if v != 0 || state.sendZero {state.update(i)state.encodeInt(v)}}// encUint16 encodes the uint16 with address p.func encUint16(i *encInstr, state *encoderState, p unsafe.Pointer) {v := uint64(*(*uint16)(p))if v != 0 || state.sendZero {state.update(i)state.encodeUint(v)}}// encInt32 encodes the int32 with address p.func encInt32(i *encInstr, state *encoderState, p unsafe.Pointer) {v := int64(*(*int32)(p))if v != 0 || state.sendZero {state.update(i)state.encodeInt(v)}}// encUint encodes the uint32 with address p.func encUint32(i *encInstr, state *encoderState, p unsafe.Pointer) {v := uint64(*(*uint32)(p))if v != 0 || state.sendZero {state.update(i)state.encodeUint(v)}}// encInt64 encodes the int64 with address p.func encInt64(i *encInstr, state *encoderState, p unsafe.Pointer) {v := *(*int64)(p)if v != 0 || state.sendZero {state.update(i)state.encodeInt(v)}}// encInt64 encodes the uint64 with address p.func encUint64(i *encInstr, state *encoderState, p unsafe.Pointer) {v := *(*uint64)(p)if v != 0 || state.sendZero {state.update(i)state.encodeUint(v)}}// encUintptr encodes the uintptr with address p.func encUintptr(i *encInstr, state *encoderState, p unsafe.Pointer) {v := uint64(*(*uintptr)(p))if v != 0 || state.sendZero {state.update(i)state.encodeUint(v)}}// floatBits returns a uint64 holding the bits of a floating-point number.// Floating-point numbers are transmitted as uint64s holding the bits// of the underlying representation. They are sent byte-reversed, with// the exponent end coming out first, so integer floating point numbers// (for example) transmit more compactly. This routine does the// swizzling.func floatBits(f float64) uint64 {u := math.Float64bits(f)var v uint64for i := 0; i < 8; i++ {v <<= 8v |= u & 0xFFu >>= 8}return v}// encFloat32 encodes the float32 with address p.func encFloat32(i *encInstr, state *encoderState, p unsafe.Pointer) {f := *(*float32)(p)if f != 0 || state.sendZero {v := floatBits(float64(f))state.update(i)state.encodeUint(v)}}// encFloat64 encodes the float64 with address p.func encFloat64(i *encInstr, state *encoderState, p unsafe.Pointer) {f := *(*float64)(p)if f != 0 || state.sendZero {state.update(i)v := floatBits(f)state.encodeUint(v)}}// encComplex64 encodes the complex64 with address p.// Complex numbers are just a pair of floating-point numbers, real part first.func encComplex64(i *encInstr, state *encoderState, p unsafe.Pointer) {c := *(*complex64)(p)if c != 0+0i || state.sendZero {rpart := floatBits(float64(real(c)))ipart := floatBits(float64(imag(c)))state.update(i)state.encodeUint(rpart)state.encodeUint(ipart)}}// encComplex128 encodes the complex128 with address p.func encComplex128(i *encInstr, state *encoderState, p unsafe.Pointer) {c := *(*complex128)(p)if c != 0+0i || state.sendZero {rpart := floatBits(real(c))ipart := floatBits(imag(c))state.update(i)state.encodeUint(rpart)state.encodeUint(ipart)}}// encUint8Array encodes the byte slice whose header has address p.// Byte arrays are encoded as an unsigned count followed by the raw bytes.func encUint8Array(i *encInstr, state *encoderState, p unsafe.Pointer) {b := *(*[]byte)(p)if len(b) > 0 || state.sendZero {state.update(i)state.encodeUint(uint64(len(b)))state.b.Write(b)}}// encString encodes the string whose header has address p.// Strings are encoded as an unsigned count followed by the raw bytes.func encString(i *encInstr, state *encoderState, p unsafe.Pointer) {s := *(*string)(p)if len(s) > 0 || state.sendZero {state.update(i)state.encodeUint(uint64(len(s)))state.b.WriteString(s)}}// encStructTerminator encodes the end of an encoded struct// as delta field number of 0.func encStructTerminator(i *encInstr, state *encoderState, p unsafe.Pointer) {state.encodeUint(0)}// Execution engine// encEngine an array of instructions indexed by field number of the encoding// data, typically a struct. It is executed top to bottom, walking the struct.type encEngine struct {instr []encInstr}const singletonField = 0// encodeSingle encodes a single top-level non-struct value.func (enc *Encoder) encodeSingle(b *bytes.Buffer, engine *encEngine, basep uintptr) {state := enc.newEncoderState(b)state.fieldnum = singletonField// There is no surrounding struct to frame the transmission, so we must// generate data even if the item is zero. To do this, set sendZero.state.sendZero = trueinstr := &engine.instr[singletonField]p := unsafe.Pointer(basep) // offset will be zeroif instr.indir > 0 {if p = encIndirect(p, instr.indir); p == nil {return}}instr.op(instr, state, p)enc.freeEncoderState(state)}// encodeStruct encodes a single struct value.func (enc *Encoder) encodeStruct(b *bytes.Buffer, engine *encEngine, basep uintptr) {state := enc.newEncoderState(b)state.fieldnum = -1for i := 0; i < len(engine.instr); i++ {instr := &engine.instr[i]p := unsafe.Pointer(basep + instr.offset)if instr.indir > 0 {if p = encIndirect(p, instr.indir); p == nil {continue}}instr.op(instr, state, p)}enc.freeEncoderState(state)}// encodeArray encodes the array whose 0th element is at p.func (enc *Encoder) encodeArray(b *bytes.Buffer, p uintptr, op encOp, elemWid uintptr, elemIndir int, length int) {state := enc.newEncoderState(b)state.fieldnum = -1state.sendZero = truestate.encodeUint(uint64(length))for i := 0; i < length; i++ {elemp := pup := unsafe.Pointer(elemp)if elemIndir > 0 {if up = encIndirect(up, elemIndir); up == nil {errorf("encodeArray: nil element")}elemp = uintptr(up)}op(nil, state, unsafe.Pointer(elemp))p += uintptr(elemWid)}enc.freeEncoderState(state)}// encodeReflectValue is a helper for maps. It encodes the value v.func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) {for i := 0; i < indir && v.IsValid(); i++ {v = reflect.Indirect(v)}if !v.IsValid() {errorf("encodeReflectValue: nil element")}op(nil, state, unsafe.Pointer(unsafeAddr(v)))}// encodeMap encodes a map as unsigned count followed by key:value pairs.// Because map internals are not exposed, we must use reflection rather than// addresses.func (enc *Encoder) encodeMap(b *bytes.Buffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) {state := enc.newEncoderState(b)state.fieldnum = -1state.sendZero = truekeys := mv.MapKeys()state.encodeUint(uint64(len(keys)))for _, key := range keys {encodeReflectValue(state, key, keyOp, keyIndir)encodeReflectValue(state, mv.MapIndex(key), elemOp, elemIndir)}enc.freeEncoderState(state)}// encodeInterface encodes the interface value iv.// To send an interface, we send a string identifying the concrete type, followed// by the type identifier (which might require defining that type right now), followed// by the concrete value. A nil value gets sent as the empty string for the name,// followed by no value.func (enc *Encoder) encodeInterface(b *bytes.Buffer, iv reflect.Value) {state := enc.newEncoderState(b)state.fieldnum = -1state.sendZero = trueif iv.IsNil() {state.encodeUint(0)return}ut := userType(iv.Elem().Type())name, ok := concreteTypeToName[ut.base]if !ok {errorf("type not registered for interface: %s", ut.base)}// Send the name.state.encodeUint(uint64(len(name)))_, err := state.b.WriteString(name)if err != nil {error_(err)}// Define the type id if necessary.enc.sendTypeDescriptor(enc.writer(), state, ut)// Send the type id.enc.sendTypeId(state, ut)// Encode the value into a new buffer. Any nested type definitions// should be written to b, before the encoded value.enc.pushWriter(b)data := new(bytes.Buffer)data.Write(spaceForLength)enc.encode(data, iv.Elem(), ut)if enc.err != nil {error_(enc.err)}enc.popWriter()enc.writeMessage(b, data)if enc.err != nil {error_(err)}enc.freeEncoderState(state)}// isZero returns whether the value is the zero of its type.func isZero(val reflect.Value) bool {switch val.Kind() {case reflect.Array:for i := 0; i < val.Len(); i++ {if !isZero(val.Index(i)) {return false}}return truecase reflect.Map, reflect.Slice, reflect.String:return val.Len() == 0case reflect.Bool:return !val.Bool()case reflect.Complex64, reflect.Complex128:return val.Complex() == 0case reflect.Chan, reflect.Func, reflect.Ptr:return val.IsNil()case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:return val.Int() == 0case reflect.Float32, reflect.Float64:return val.Float() == 0case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:return val.Uint() == 0case reflect.Struct:for i := 0; i < val.NumField(); i++ {if !isZero(val.Field(i)) {return false}}return true}panic("unknown type in isZero " + val.Type().String())}// encGobEncoder encodes a value that implements the GobEncoder interface.// The data is sent as a byte array.func (enc *Encoder) encodeGobEncoder(b *bytes.Buffer, v reflect.Value) {// TODO: should we catch panics from the called method?// We know it's a GobEncoder, so just call the method directly.data, err := v.Interface().(GobEncoder).GobEncode()if err != nil {error_(err)}state := enc.newEncoderState(b)state.fieldnum = -1state.encodeUint(uint64(len(data)))state.b.Write(data)enc.freeEncoderState(state)}var encOpTable = [...]encOp{reflect.Bool: encBool,reflect.Int: encInt,reflect.Int8: encInt8,reflect.Int16: encInt16,reflect.Int32: encInt32,reflect.Int64: encInt64,reflect.Uint: encUint,reflect.Uint8: encUint8,reflect.Uint16: encUint16,reflect.Uint32: encUint32,reflect.Uint64: encUint64,reflect.Uintptr: encUintptr,reflect.Float32: encFloat32,reflect.Float64: encFloat64,reflect.Complex64: encComplex64,reflect.Complex128: encComplex128,reflect.String: encString,}// encOpFor returns (a pointer to) the encoding op for the base type under rt and// the indirection count to reach it.func (enc *Encoder) encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp) (*encOp, int) {ut := userType(rt)// If the type implements GobEncoder, we handle it without further processing.if ut.isGobEncoder {return enc.gobEncodeOpFor(ut)}// If this type is already in progress, it's a recursive type (e.g. map[string]*T).// Return the pointer to the op we're already building.if opPtr := inProgress[rt]; opPtr != nil {return opPtr, ut.indir}typ := ut.baseindir := ut.indirk := typ.Kind()var op encOpif int(k) < len(encOpTable) {op = encOpTable[k]}if op == nil {inProgress[rt] = &op// Special casesswitch t := typ; t.Kind() {case reflect.Slice:if t.Elem().Kind() == reflect.Uint8 {op = encUint8Arraybreak}// Slices have a header; we decode it to find the underlying array.elemOp, indir := enc.encOpFor(t.Elem(), inProgress)op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {slice := (*reflect.SliceHeader)(p)if !state.sendZero && slice.Len == 0 {return}state.update(i)state.enc.encodeArray(state.b, slice.Data, *elemOp, t.Elem().Size(), indir, int(slice.Len))}case reflect.Array:// True arrays have size in the type.elemOp, indir := enc.encOpFor(t.Elem(), inProgress)op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {state.update(i)state.enc.encodeArray(state.b, uintptr(p), *elemOp, t.Elem().Size(), indir, t.Len())}case reflect.Map:keyOp, keyIndir := enc.encOpFor(t.Key(), inProgress)elemOp, elemIndir := enc.encOpFor(t.Elem(), inProgress)op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {// Maps cannot be accessed by moving addresses around the way// that slices etc. can. We must recover a full reflection value for// the iteration.v := reflect.ValueOf(unsafe.Unreflect(t, unsafe.Pointer(p)))mv := reflect.Indirect(v)// We send zero-length (but non-nil) maps because the// receiver might want to use the map. (Maps don't use append.)if !state.sendZero && mv.IsNil() {return}state.update(i)state.enc.encodeMap(state.b, mv, *keyOp, *elemOp, keyIndir, elemIndir)}case reflect.Struct:// Generate a closure that calls out to the engine for the nested type.enc.getEncEngine(userType(typ))info := mustGetTypeInfo(typ)op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {state.update(i)// indirect through info to delay evaluation for recursive structsstate.enc.encodeStruct(state.b, info.encoder, uintptr(p))}case reflect.Interface:op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {// Interfaces transmit the name and contents of the concrete// value they contain.v := reflect.ValueOf(unsafe.Unreflect(t, unsafe.Pointer(p)))iv := reflect.Indirect(v)if !state.sendZero && (!iv.IsValid() || iv.IsNil()) {return}state.update(i)state.enc.encodeInterface(state.b, iv)}}}if op == nil {errorf("can't happen: encode type %s", rt)}return &op, indir}// gobEncodeOpFor returns the op for a type that is known to implement// GobEncoder.func (enc *Encoder) gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) {rt := ut.userif ut.encIndir == -1 {rt = reflect.PtrTo(rt)} else if ut.encIndir > 0 {for i := int8(0); i < ut.encIndir; i++ {rt = rt.Elem()}}var op encOpop = func(i *encInstr, state *encoderState, p unsafe.Pointer) {var v reflect.Valueif ut.encIndir == -1 {// Need to climb up one level to turn value into pointer.v = reflect.ValueOf(unsafe.Unreflect(rt, unsafe.Pointer(&p)))} else {v = reflect.ValueOf(unsafe.Unreflect(rt, p))}if !state.sendZero && isZero(v) {return}state.update(i)state.enc.encodeGobEncoder(state.b, v)}return &op, int(ut.encIndir) // encIndir: op will get called with p == address of receiver.}// compileEnc returns the engine to compile the type.func (enc *Encoder) compileEnc(ut *userTypeInfo) *encEngine {srt := ut.baseengine := new(encEngine)seen := make(map[reflect.Type]*encOp)rt := ut.baseif ut.isGobEncoder {rt = ut.user}if !ut.isGobEncoder &&srt.Kind() == reflect.Struct {for fieldNum, wireFieldNum := 0, 0; fieldNum < srt.NumField(); fieldNum++ {f := srt.Field(fieldNum)if !isExported(f.Name) {continue}op, indir := enc.encOpFor(f.Type, seen)engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, indir, uintptr(f.Offset)})wireFieldNum++}if srt.NumField() > 0 && len(engine.instr) == 0 {errorf("type %s has no exported fields", rt)}engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, 0, 0})} else {engine.instr = make([]encInstr, 1)op, indir := enc.encOpFor(rt, seen)engine.instr[0] = encInstr{*op, singletonField, indir, 0} // offset is zero}return engine}// getEncEngine returns the engine to compile the type.// typeLock must be held (or we're in initialization and guaranteed single-threaded).func (enc *Encoder) getEncEngine(ut *userTypeInfo) *encEngine {info, err1 := getTypeInfo(ut)if err1 != nil {error_(err1)}if info.encoder == nil {// mark this engine as underway before compiling to handle recursive types.info.encoder = new(encEngine)info.encoder = enc.compileEnc(ut)}return info.encoder}// lockAndGetEncEngine is a function that locks and compiles.// This lets us hold the lock only while compiling, not when encoding.func (enc *Encoder) lockAndGetEncEngine(ut *userTypeInfo) *encEngine {typeLock.Lock()defer typeLock.Unlock()return enc.getEncEngine(ut)}func (enc *Encoder) encode(b *bytes.Buffer, value reflect.Value, ut *userTypeInfo) {defer catchError(&enc.err)engine := enc.lockAndGetEncEngine(ut)indir := ut.indirif ut.isGobEncoder {indir = int(ut.encIndir)}for i := 0; i < indir; i++ {value = reflect.Indirect(value)}if !ut.isGobEncoder && value.Type().Kind() == reflect.Struct {enc.encodeStruct(b, engine, unsafeAddr(value))} else {enc.encodeSingle(b, engine, unsafeAddr(value))}}
