URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [fmt/] [scan.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2010 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package fmtimport ("bytes""errors""io""math""os""reflect""strconv""strings""unicode""unicode/utf8")// runeUnreader is the interface to something that can unread runes.// If the object provided to Scan does not satisfy this interface,// a local buffer will be used to back up the input, but its contents// will be lost when Scan returns.type runeUnreader interface {UnreadRune() error}// ScanState represents the scanner state passed to custom scanners.// Scanners may do rune-at-a-time scanning or ask the ScanState// to discover the next space-delimited token.type ScanState interface {// ReadRune reads the next rune (Unicode code point) from the input.// If invoked during Scanln, Fscanln, or Sscanln, ReadRune() will// return EOF after returning the first '\n' or when reading beyond// the specified width.ReadRune() (r rune, size int, err error)// UnreadRune causes the next call to ReadRune to return the same rune.UnreadRune() error// SkipSpace skips space in the input. Newlines are treated as space// unless the scan operation is Scanln, Fscanln or Sscanln, in which case// a newline is treated as EOF.SkipSpace()// Token skips space in the input if skipSpace is true, then returns the// run of Unicode code points c satisfying f(c). If f is nil,// !unicode.IsSpace(c) is used; that is, the token will hold non-space// characters. Newlines are treated as space unless the scan operation// is Scanln, Fscanln or Sscanln, in which case a newline is treated as// EOF. The returned slice points to shared data that may be overwritten// by the next call to Token, a call to a Scan function using the ScanState// as input, or when the calling Scan method returns.Token(skipSpace bool, f func(rune) bool) (token []byte, err error)// Width returns the value of the width option and whether it has been set.// The unit is Unicode code points.Width() (wid int, ok bool)// Because ReadRune is implemented by the interface, Read should never be// called by the scanning routines and a valid implementation of// ScanState may choose always to return an error from Read.Read(buf []byte) (n int, err error)}// Scanner is implemented by any value that has a Scan method, which scans// the input for the representation of a value and stores the result in the// receiver, which must be a pointer to be useful. The Scan method is called// for any argument to Scan, Scanf, or Scanln that implements it.type Scanner interface {Scan(state ScanState, verb rune) error}// Scan scans text read from standard input, storing successive// space-separated values into successive arguments. Newlines count// as space. It returns the number of items successfully scanned.// If that is less than the number of arguments, err will report why.func Scan(a ...interface{}) (n int, err error) {return Fscan(os.Stdin, a...)}// Scanln is similar to Scan, but stops scanning at a newline and// after the final item there must be a newline or EOF.func Scanln(a ...interface{}) (n int, err error) {return Fscanln(os.Stdin, a...)}// Scanf scans text read from standard input, storing successive// space-separated values into successive arguments as determined by// the format. It returns the number of items successfully scanned.func Scanf(format string, a ...interface{}) (n int, err error) {return Fscanf(os.Stdin, format, a...)}// Sscan scans the argument string, storing successive space-separated// values into successive arguments. Newlines count as space. It// returns the number of items successfully scanned. If that is less// than the number of arguments, err will report why.func Sscan(str string, a ...interface{}) (n int, err error) {return Fscan(strings.NewReader(str), a...)}// Sscanln is similar to Sscan, but stops scanning at a newline and// after the final item there must be a newline or EOF.func Sscanln(str string, a ...interface{}) (n int, err error) {return Fscanln(strings.NewReader(str), a...)}// Sscanf scans the argument string, storing successive space-separated// values into successive arguments as determined by the format. It// returns the number of items successfully parsed.func Sscanf(str string, format string, a ...interface{}) (n int, err error) {return Fscanf(strings.NewReader(str), format, a...)}// Fscan scans text read from r, storing successive space-separated// values into successive arguments. Newlines count as space. It// returns the number of items successfully scanned. If that is less// than the number of arguments, err will report why.func Fscan(r io.Reader, a ...interface{}) (n int, err error) {s, old := newScanState(r, true, false)n, err = s.doScan(a)s.free(old)return}// Fscanln is similar to Fscan, but stops scanning at a newline and// after the final item there must be a newline or EOF.func Fscanln(r io.Reader, a ...interface{}) (n int, err error) {s, old := newScanState(r, false, true)n, err = s.doScan(a)s.free(old)return}// Fscanf scans text read from r, storing successive space-separated// values into successive arguments as determined by the format. It// returns the number of items successfully parsed.func Fscanf(r io.Reader, format string, a ...interface{}) (n int, err error) {s, old := newScanState(r, false, false)n, err = s.doScanf(format, a)s.free(old)return}// scanError represents an error generated by the scanning software.// It's used as a unique signature to identify such errors when recovering.type scanError struct {err error}const eof = -1// ss is the internal implementation of ScanState.type ss struct {rr io.RuneReader // where to read inputbuf bytes.Buffer // token accumulatorpeekRune rune // one-rune lookaheadprevRune rune // last rune returned by ReadRunecount int // runes consumed so far.atEOF bool // already read EOFssave}// ssave holds the parts of ss that need to be// saved and restored on recursive scans.type ssave struct {validSave bool // is or was a part of an actual ss.nlIsEnd bool // whether newline terminates scannlIsSpace bool // whether newline counts as white spacefieldLimit int // max value of ss.count for this field; fieldLimit <= limitlimit int // max value of ss.count.maxWid int // width of this field.}// The Read method is only in ScanState so that ScanState// satisfies io.Reader. It will never be called when used as// intended, so there is no need to make it actually work.func (s *ss) Read(buf []byte) (n int, err error) {return 0, errors.New("ScanState's Read should not be called. Use ReadRune")}func (s *ss) ReadRune() (r rune, size int, err error) {if s.peekRune >= 0 {s.count++r = s.peekRunesize = utf8.RuneLen(r)s.prevRune = rs.peekRune = -1return}if s.atEOF || s.nlIsEnd && s.prevRune == '\n' || s.count >= s.fieldLimit {err = io.EOFreturn}r, size, err = s.rr.ReadRune()if err == nil {s.count++s.prevRune = r} else if err == io.EOF {s.atEOF = true}return}func (s *ss) Width() (wid int, ok bool) {if s.maxWid == hugeWid {return 0, false}return s.maxWid, true}// The public method returns an error; this private one panics.// If getRune reaches EOF, the return value is EOF (-1).func (s *ss) getRune() (r rune) {r, _, err := s.ReadRune()if err != nil {if err == io.EOF {return eof}s.error(err)}return}// mustReadRune turns io.EOF into a panic(io.ErrUnexpectedEOF).// It is called in cases such as string scanning where an EOF is a// syntax error.func (s *ss) mustReadRune() (r rune) {r = s.getRune()if r == eof {s.error(io.ErrUnexpectedEOF)}return}func (s *ss) UnreadRune() error {if u, ok := s.rr.(runeUnreader); ok {u.UnreadRune()} else {s.peekRune = s.prevRune}s.prevRune = -1s.count--return nil}func (s *ss) error(err error) {panic(scanError{err})}func (s *ss) errorString(err string) {panic(scanError{errors.New(err)})}func (s *ss) Token(skipSpace bool, f func(rune) bool) (tok []byte, err error) {defer func() {if e := recover(); e != nil {if se, ok := e.(scanError); ok {err = se.err} else {panic(e)}}}()if f == nil {f = notSpace}s.buf.Reset()tok = s.token(skipSpace, f)return}// notSpace is the default scanning function used in Token.func notSpace(r rune) bool {return !unicode.IsSpace(r)}// skipSpace provides Scan() methods the ability to skip space and newline characters// in keeping with the current scanning mode set by format strings and Scan()/Scanln().func (s *ss) SkipSpace() {s.skipSpace(false)}// readRune is a structure to enable reading UTF-8 encoded code points// from an io.Reader. It is used if the Reader given to the scanner does// not already implement io.RuneReader.type readRune struct {reader io.Readerbuf [utf8.UTFMax]byte // used only inside ReadRunepending int // number of bytes in pendBuf; only >0 for bad UTF-8pendBuf [utf8.UTFMax]byte // bytes left over}// readByte returns the next byte from the input, which may be// left over from a previous read if the UTF-8 was ill-formed.func (r *readRune) readByte() (b byte, err error) {if r.pending > 0 {b = r.pendBuf[0]copy(r.pendBuf[0:], r.pendBuf[1:])r.pending--return}_, err = r.reader.Read(r.pendBuf[0:1])return r.pendBuf[0], err}// unread saves the bytes for the next read.func (r *readRune) unread(buf []byte) {copy(r.pendBuf[r.pending:], buf)r.pending += len(buf)}// ReadRune returns the next UTF-8 encoded code point from the// io.Reader inside r.func (r *readRune) ReadRune() (rr rune, size int, err error) {r.buf[0], err = r.readByte()if err != nil {return 0, 0, err}if r.buf[0] < utf8.RuneSelf { // fast check for common ASCII caserr = rune(r.buf[0])return}var n intfor n = 1; !utf8.FullRune(r.buf[0:n]); n++ {r.buf[n], err = r.readByte()if err != nil {if err == io.EOF {err = nilbreak}return}}rr, size = utf8.DecodeRune(r.buf[0:n])if size < n { // an errorr.unread(r.buf[size:n])}return}var ssFree = newCache(func() interface{} { return new(ss) })// Allocate a new ss struct or grab a cached one.func newScanState(r io.Reader, nlIsSpace, nlIsEnd bool) (s *ss, old ssave) {// If the reader is a *ss, then we've got a recursive// call to Scan, so re-use the scan state.s, ok := r.(*ss)if ok {old = s.ssaves.limit = s.fieldLimits.nlIsEnd = nlIsEnd || s.nlIsEnds.nlIsSpace = nlIsSpacereturn}s = ssFree.get().(*ss)if rr, ok := r.(io.RuneReader); ok {s.rr = rr} else {s.rr = &readRune{reader: r}}s.nlIsSpace = nlIsSpaces.nlIsEnd = nlIsEnds.prevRune = -1s.peekRune = -1s.atEOF = falses.limit = hugeWids.fieldLimit = hugeWids.maxWid = hugeWids.validSave = trues.count = 0return}// Save used ss structs in ssFree; avoid an allocation per invocation.func (s *ss) free(old ssave) {// If it was used recursively, just restore the old state.if old.validSave {s.ssave = oldreturn}// Don't hold on to ss structs with large buffers.if cap(s.buf.Bytes()) > 1024 {return}s.buf.Reset()s.rr = nilssFree.put(s)}// skipSpace skips spaces and maybe newlines.func (s *ss) skipSpace(stopAtNewline bool) {for {r := s.getRune()if r == eof {return}if r == '\n' {if stopAtNewline {break}if s.nlIsSpace {continue}s.errorString("unexpected newline")return}if !unicode.IsSpace(r) {s.UnreadRune()break}}}// token returns the next space-delimited string from the input. It// skips white space. For Scanln, it stops at newlines. For Scan,// newlines are treated as spaces.func (s *ss) token(skipSpace bool, f func(rune) bool) []byte {if skipSpace {s.skipSpace(false)}// read until white space or newlinefor {r := s.getRune()if r == eof {break}if !f(r) {s.UnreadRune()break}s.buf.WriteRune(r)}return s.buf.Bytes()}// typeError indicates that the type of the operand did not match the formatfunc (s *ss) typeError(field interface{}, expected string) {s.errorString("expected field of type pointer to " + expected + "; found " + reflect.TypeOf(field).String())}var complexError = errors.New("syntax error scanning complex number")var boolError = errors.New("syntax error scanning boolean")// consume reads the next rune in the input and reports whether it is in the ok string.// If accept is true, it puts the character into the input token.func (s *ss) consume(ok string, accept bool) bool {r := s.getRune()if r == eof {return false}if strings.IndexRune(ok, r) >= 0 {if accept {s.buf.WriteRune(r)}return true}if r != eof && accept {s.UnreadRune()}return false}// peek reports whether the next character is in the ok string, without consuming it.func (s *ss) peek(ok string) bool {r := s.getRune()if r != eof {s.UnreadRune()}return strings.IndexRune(ok, r) >= 0}func (s *ss) notEOF() {// Guarantee there is data to be read.if r := s.getRune(); r == eof {panic(io.EOF)}s.UnreadRune()}// accept checks the next rune in the input. If it's a byte (sic) in the string, it puts it in the// buffer and returns true. Otherwise it return false.func (s *ss) accept(ok string) bool {return s.consume(ok, true)}// okVerb verifies that the verb is present in the list, setting s.err appropriately if not.func (s *ss) okVerb(verb rune, okVerbs, typ string) bool {for _, v := range okVerbs {if v == verb {return true}}s.errorString("bad verb %" + string(verb) + " for " + typ)return false}// scanBool returns the value of the boolean represented by the next token.func (s *ss) scanBool(verb rune) bool {s.skipSpace(false)s.notEOF()if !s.okVerb(verb, "tv", "boolean") {return false}// Syntax-checking a boolean is annoying. We're not fastidious about case.switch s.getRune() {case '0':return falsecase '1':return truecase 't', 'T':if s.accept("rR") && (!s.accept("uU") || !s.accept("eE")) {s.error(boolError)}return truecase 'f', 'F':if s.accept("aL") && (!s.accept("lL") || !s.accept("sS") || !s.accept("eE")) {s.error(boolError)}return false}return false}// Numerical elementsconst (binaryDigits = "01"octalDigits = "01234567"decimalDigits = "0123456789"hexadecimalDigits = "0123456789aAbBcCdDeEfF"sign = "+-"period = "."exponent = "eEp")// getBase returns the numeric base represented by the verb and its digit string.func (s *ss) getBase(verb rune) (base int, digits string) {s.okVerb(verb, "bdoUxXv", "integer") // sets s.errbase = 10digits = decimalDigitsswitch verb {case 'b':base = 2digits = binaryDigitscase 'o':base = 8digits = octalDigitscase 'x', 'X', 'U':base = 16digits = hexadecimalDigits}return}// scanNumber returns the numerical string with specified digits starting here.func (s *ss) scanNumber(digits string, haveDigits bool) string {if !haveDigits {s.notEOF()if !s.accept(digits) {s.errorString("expected integer")}}for s.accept(digits) {}return s.buf.String()}// scanRune returns the next rune value in the input.func (s *ss) scanRune(bitSize int) int64 {s.notEOF()r := int64(s.getRune())n := uint(bitSize)x := (r << (64 - n)) >> (64 - n)if x != r {s.errorString("overflow on character value " + string(r))}return r}// scanBasePrefix reports whether the integer begins with a 0 or 0x,// and returns the base, digit string, and whether a zero was found.// It is called only if the verb is %v.func (s *ss) scanBasePrefix() (base int, digits string, found bool) {if !s.peek("0") {return 10, decimalDigits, false}s.accept("0")found = true // We've put a digit into the token buffer.// Special cases for '0' && '0x'base, digits = 8, octalDigitsif s.peek("xX") {s.consume("xX", false)base, digits = 16, hexadecimalDigits}return}// scanInt returns the value of the integer represented by the next// token, checking for overflow. Any error is stored in s.err.func (s *ss) scanInt(verb rune, bitSize int) int64 {if verb == 'c' {return s.scanRune(bitSize)}s.skipSpace(false)s.notEOF()base, digits := s.getBase(verb)haveDigits := falseif verb == 'U' {if !s.consume("U", false) || !s.consume("+", false) {s.errorString("bad unicode format ")}} else {s.accept(sign) // If there's a sign, it will be left in the token buffer.if verb == 'v' {base, digits, haveDigits = s.scanBasePrefix()}}tok := s.scanNumber(digits, haveDigits)i, err := strconv.ParseInt(tok, base, 64)if err != nil {s.error(err)}n := uint(bitSize)x := (i << (64 - n)) >> (64 - n)if x != i {s.errorString("integer overflow on token " + tok)}return i}// scanUint returns the value of the unsigned integer represented// by the next token, checking for overflow. Any error is stored in s.err.func (s *ss) scanUint(verb rune, bitSize int) uint64 {if verb == 'c' {return uint64(s.scanRune(bitSize))}s.skipSpace(false)s.notEOF()base, digits := s.getBase(verb)haveDigits := falseif verb == 'U' {if !s.consume("U", false) || !s.consume("+", false) {s.errorString("bad unicode format ")}} else if verb == 'v' {base, digits, haveDigits = s.scanBasePrefix()}tok := s.scanNumber(digits, haveDigits)i, err := strconv.ParseUint(tok, base, 64)if err != nil {s.error(err)}n := uint(bitSize)x := (i << (64 - n)) >> (64 - n)if x != i {s.errorString("unsigned integer overflow on token " + tok)}return i}// floatToken returns the floating-point number starting here, no longer than swid// if the width is specified. It's not rigorous about syntax because it doesn't check that// we have at least some digits, but Atof will do that.func (s *ss) floatToken() string {s.buf.Reset()// NaN?if s.accept("nN") && s.accept("aA") && s.accept("nN") {return s.buf.String()}// leading sign?s.accept(sign)// Inf?if s.accept("iI") && s.accept("nN") && s.accept("fF") {return s.buf.String()}// digits?for s.accept(decimalDigits) {}// decimal point?if s.accept(period) {// fraction?for s.accept(decimalDigits) {}}// exponent?if s.accept(exponent) {// leading sign?s.accept(sign)// digits?for s.accept(decimalDigits) {}}return s.buf.String()}// complexTokens returns the real and imaginary parts of the complex number starting here.// The number might be parenthesized and has the format (N+Ni) where N is a floating-point// number and there are no spaces within.func (s *ss) complexTokens() (real, imag string) {// TODO: accept N and Ni independently?parens := s.accept("(")real = s.floatToken()s.buf.Reset()// Must now have a sign.if !s.accept("+-") {s.error(complexError)}// Sign is now in bufferimagSign := s.buf.String()imag = s.floatToken()if !s.accept("i") {s.error(complexError)}if parens && !s.accept(")") {s.error(complexError)}return real, imagSign + imag}// convertFloat converts the string to a float64value.func (s *ss) convertFloat(str string, n int) float64 {if p := strings.Index(str, "p"); p >= 0 {// Atof doesn't handle power-of-2 exponents,// but they're easy to evaluate.f, err := strconv.ParseFloat(str[:p], n)if err != nil {// Put full string into error.if e, ok := err.(*strconv.NumError); ok {e.Num = str}s.error(err)}n, err := strconv.Atoi(str[p+1:])if err != nil {// Put full string into error.if e, ok := err.(*strconv.NumError); ok {e.Num = str}s.error(err)}return math.Ldexp(f, n)}f, err := strconv.ParseFloat(str, n)if err != nil {s.error(err)}return f}// convertComplex converts the next token to a complex128 value.// The atof argument is a type-specific reader for the underlying type.// If we're reading complex64, atof will parse float32s and convert them// to float64's to avoid reproducing this code for each complex type.func (s *ss) scanComplex(verb rune, n int) complex128 {if !s.okVerb(verb, floatVerbs, "complex") {return 0}s.skipSpace(false)s.notEOF()sreal, simag := s.complexTokens()real := s.convertFloat(sreal, n/2)imag := s.convertFloat(simag, n/2)return complex(real, imag)}// convertString returns the string represented by the next input characters.// The format of the input is determined by the verb.func (s *ss) convertString(verb rune) (str string) {if !s.okVerb(verb, "svqx", "string") {return ""}s.skipSpace(false)s.notEOF()switch verb {case 'q':str = s.quotedString()case 'x':str = s.hexString()default:str = string(s.token(true, notSpace)) // %s and %v just return the next word}return}// quotedString returns the double- or back-quoted string represented by the next input characters.func (s *ss) quotedString() string {s.notEOF()quote := s.getRune()switch quote {case '`':// Back-quoted: Anything goes until EOF or back quote.for {r := s.mustReadRune()if r == quote {break}s.buf.WriteRune(r)}return s.buf.String()case '"':// Double-quoted: Include the quotes and let strconv.Unquote do the backslash escapes.s.buf.WriteRune(quote)for {r := s.mustReadRune()s.buf.WriteRune(r)if r == '\\' {// In a legal backslash escape, no matter how long, only the character// immediately after the escape can itself be a backslash or quote.// Thus we only need to protect the first character after the backslash.r := s.mustReadRune()s.buf.WriteRune(r)} else if r == '"' {break}}result, err := strconv.Unquote(s.buf.String())if err != nil {s.error(err)}return resultdefault:s.errorString("expected quoted string")}return ""}// hexDigit returns the value of the hexadecimal digitfunc (s *ss) hexDigit(d rune) int {digit := int(d)switch digit {case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':return digit - '0'case 'a', 'b', 'c', 'd', 'e', 'f':return 10 + digit - 'a'case 'A', 'B', 'C', 'D', 'E', 'F':return 10 + digit - 'A'}s.errorString("Scan: illegal hex digit")return 0}// hexByte returns the next hex-encoded (two-character) byte from the input.// There must be either two hexadecimal digits or a space character in the input.func (s *ss) hexByte() (b byte, ok bool) {rune1 := s.getRune()if rune1 == eof {return}if unicode.IsSpace(rune1) {s.UnreadRune()return}rune2 := s.mustReadRune()return byte(s.hexDigit(rune1)<<4 | s.hexDigit(rune2)), true}// hexString returns the space-delimited hexpair-encoded string.func (s *ss) hexString() string {s.notEOF()for {b, ok := s.hexByte()if !ok {break}s.buf.WriteByte(b)}if s.buf.Len() == 0 {s.errorString("Scan: no hex data for %x string")return ""}return s.buf.String()}const floatVerbs = "beEfFgGv"const hugeWid = 1 << 30// scanOne scans a single value, deriving the scanner from the type of the argument.func (s *ss) scanOne(verb rune, field interface{}) {s.buf.Reset()var err error// If the parameter has its own Scan method, use that.if v, ok := field.(Scanner); ok {err = v.Scan(s, verb)if err != nil {if err == io.EOF {err = io.ErrUnexpectedEOF}s.error(err)}return}switch v := field.(type) {case *bool:*v = s.scanBool(verb)case *complex64:*v = complex64(s.scanComplex(verb, 64))case *complex128:*v = s.scanComplex(verb, 128)case *int:*v = int(s.scanInt(verb, intBits))case *int8:*v = int8(s.scanInt(verb, 8))case *int16:*v = int16(s.scanInt(verb, 16))case *int32:*v = int32(s.scanInt(verb, 32))case *int64:*v = s.scanInt(verb, 64)case *uint:*v = uint(s.scanUint(verb, intBits))case *uint8:*v = uint8(s.scanUint(verb, 8))case *uint16:*v = uint16(s.scanUint(verb, 16))case *uint32:*v = uint32(s.scanUint(verb, 32))case *uint64:*v = s.scanUint(verb, 64)case *uintptr:*v = uintptr(s.scanUint(verb, uintptrBits))// Floats are tricky because you want to scan in the precision of the result, not// scan in high precision and convert, in order to preserve the correct error condition.case *float32:if s.okVerb(verb, floatVerbs, "float32") {s.skipSpace(false)s.notEOF()*v = float32(s.convertFloat(s.floatToken(), 32))}case *float64:if s.okVerb(verb, floatVerbs, "float64") {s.skipSpace(false)s.notEOF()*v = s.convertFloat(s.floatToken(), 64)}case *string:*v = s.convertString(verb)case *[]byte:// We scan to string and convert so we get a copy of the data.// If we scanned to bytes, the slice would point at the buffer.*v = []byte(s.convertString(verb))default:val := reflect.ValueOf(v)ptr := valif ptr.Kind() != reflect.Ptr {s.errorString("Scan: type not a pointer: " + val.Type().String())return}switch v := ptr.Elem(); v.Kind() {case reflect.Bool:v.SetBool(s.scanBool(verb))case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:v.SetInt(s.scanInt(verb, v.Type().Bits()))case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:v.SetUint(s.scanUint(verb, v.Type().Bits()))case reflect.String:v.SetString(s.convertString(verb))case reflect.Slice:// For now, can only handle (renamed) []byte.typ := v.Type()if typ.Elem().Kind() != reflect.Uint8 {s.errorString("Scan: can't handle type: " + val.Type().String())}str := s.convertString(verb)v.Set(reflect.MakeSlice(typ, len(str), len(str)))for i := 0; i < len(str); i++ {v.Index(i).SetUint(uint64(str[i]))}case reflect.Float32, reflect.Float64:s.skipSpace(false)s.notEOF()v.SetFloat(s.convertFloat(s.floatToken(), v.Type().Bits()))case reflect.Complex64, reflect.Complex128:v.SetComplex(s.scanComplex(verb, v.Type().Bits()))default:s.errorString("Scan: can't handle type: " + val.Type().String())}}}// errorHandler turns local panics into error returns.func errorHandler(errp *error) {if e := recover(); e != nil {if se, ok := e.(scanError); ok { // catch local error*errp = se.err} else if eof, ok := e.(error); ok && eof == io.EOF { // out of input*errp = eof} else {panic(e)}}}// doScan does the real work for scanning without a format string.func (s *ss) doScan(a []interface{}) (numProcessed int, err error) {defer errorHandler(&err)for _, field := range a {s.scanOne('v', field)numProcessed++}// Check for newline if required.if !s.nlIsSpace {for {r := s.getRune()if r == '\n' || r == eof {break}if !unicode.IsSpace(r) {s.errorString("Scan: expected newline")break}}}return}// advance determines whether the next characters in the input match// those of the format. It returns the number of bytes (sic) consumed// in the format. Newlines included, all runs of space characters in// either input or format behave as a single space. This routine also// handles the %% case. If the return value is zero, either format// starts with a % (with no following %) or the input is empty.// If it is negative, the input did not match the string.func (s *ss) advance(format string) (i int) {for i < len(format) {fmtc, w := utf8.DecodeRuneInString(format[i:])if fmtc == '%' {// %% acts like a real percentnextc, _ := utf8.DecodeRuneInString(format[i+w:]) // will not match % if string is emptyif nextc != '%' {return}i += w // skip the first %}sawSpace := falsefor unicode.IsSpace(fmtc) && i < len(format) {sawSpace = truei += wfmtc, w = utf8.DecodeRuneInString(format[i:])}if sawSpace {// There was space in the format, so there should be space (EOF)// in the input.inputc := s.getRune()if inputc == eof {return}if !unicode.IsSpace(inputc) {// Space in format but not in input: errors.errorString("expected space in input to match format")}s.skipSpace(true)continue}inputc := s.mustReadRune()if fmtc != inputc {s.UnreadRune()return -1}i += w}return}// doScanf does the real work when scanning with a format string.// At the moment, it handles only pointers to basic types.func (s *ss) doScanf(format string, a []interface{}) (numProcessed int, err error) {defer errorHandler(&err)end := len(format) - 1// We process one item per non-trivial formatfor i := 0; i <= end; {w := s.advance(format[i:])if w > 0 {i += wcontinue}// Either we failed to advance, we have a percent character, or we ran out of input.if format[i] != '%' {// Can't advance format. Why not?if w < 0 {s.errorString("input does not match format")}// Otherwise at EOF; "too many operands" error handled belowbreak}i++ // % is one byte// do we have 20 (width)?var widPresent bools.maxWid, widPresent, i = parsenum(format, i, end)if !widPresent {s.maxWid = hugeWid}s.fieldLimit = s.limitif f := s.count + s.maxWid; f < s.fieldLimit {s.fieldLimit = f}c, w := utf8.DecodeRuneInString(format[i:])i += wif numProcessed >= len(a) { // out of operandss.errorString("too few operands for format %" + format[i-w:])break}field := a[numProcessed]s.scanOne(c, field)numProcessed++s.fieldLimit = s.limit}if numProcessed < len(a) {s.errorString("too many operands")}return}
