URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [image/] [geom.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2010 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package imageimport ("strconv")// A Point is an X, Y coordinate pair. The axes increase right and down.type Point struct {X, Y int}// String returns a string representation of p like "(3,4)".func (p Point) String() string {return "(" + strconv.Itoa(p.X) + "," + strconv.Itoa(p.Y) + ")"}// Add returns the vector p+q.func (p Point) Add(q Point) Point {return Point{p.X + q.X, p.Y + q.Y}}// Sub returns the vector p-q.func (p Point) Sub(q Point) Point {return Point{p.X - q.X, p.Y - q.Y}}// Mul returns the vector p*k.func (p Point) Mul(k int) Point {return Point{p.X * k, p.Y * k}}// Div returns the vector p/k.func (p Point) Div(k int) Point {return Point{p.X / k, p.Y / k}}// In returns whether p is in r.func (p Point) In(r Rectangle) bool {return r.Min.X <= p.X && p.X < r.Max.X &&r.Min.Y <= p.Y && p.Y < r.Max.Y}// Mod returns the point q in r such that p.X-q.X is a multiple of r's width// and p.Y-q.Y is a multiple of r's height.func (p Point) Mod(r Rectangle) Point {w, h := r.Dx(), r.Dy()p = p.Sub(r.Min)p.X = p.X % wif p.X < 0 {p.X += w}p.Y = p.Y % hif p.Y < 0 {p.Y += h}return p.Add(r.Min)}// Eq returns whether p and q are equal.func (p Point) Eq(q Point) bool {return p.X == q.X && p.Y == q.Y}// ZP is the zero Point.var ZP Point// Pt is shorthand for Point{X, Y}.func Pt(X, Y int) Point {return Point{X, Y}}// A Rectangle contains the points with Min.X <= X < Max.X, Min.Y <= Y < Max.Y.// It is well-formed if Min.X <= Max.X and likewise for Y. Points are always// well-formed. A rectangle's methods always return well-formed outputs for// well-formed inputs.type Rectangle struct {Min, Max Point}// String returns a string representation of r like "(3,4)-(6,5)".func (r Rectangle) String() string {return r.Min.String() + "-" + r.Max.String()}// Dx returns r's width.func (r Rectangle) Dx() int {return r.Max.X - r.Min.X}// Dy returns r's height.func (r Rectangle) Dy() int {return r.Max.Y - r.Min.Y}// Size returns r's width and height.func (r Rectangle) Size() Point {return Point{r.Max.X - r.Min.X,r.Max.Y - r.Min.Y,}}// Add returns the rectangle r translated by p.func (r Rectangle) Add(p Point) Rectangle {return Rectangle{Point{r.Min.X + p.X, r.Min.Y + p.Y},Point{r.Max.X + p.X, r.Max.Y + p.Y},}}// Sub returns the rectangle r translated by -p.func (r Rectangle) Sub(p Point) Rectangle {return Rectangle{Point{r.Min.X - p.X, r.Min.Y - p.Y},Point{r.Max.X - p.X, r.Max.Y - p.Y},}}// Inset returns the rectangle r inset by n, which may be negative. If either// of r's dimensions is less than 2*n then an empty rectangle near the center// of r will be returned.func (r Rectangle) Inset(n int) Rectangle {if r.Dx() < 2*n {r.Min.X = (r.Min.X + r.Max.X) / 2r.Max.X = r.Min.X} else {r.Min.X += nr.Max.X -= n}if r.Dy() < 2*n {r.Min.Y = (r.Min.Y + r.Max.Y) / 2r.Max.Y = r.Min.Y} else {r.Min.Y += nr.Max.Y -= n}return r}// Intersect returns the largest rectangle contained by both r and s. If the// two rectangles do not overlap then the zero rectangle will be returned.func (r Rectangle) Intersect(s Rectangle) Rectangle {if r.Min.X < s.Min.X {r.Min.X = s.Min.X}if r.Min.Y < s.Min.Y {r.Min.Y = s.Min.Y}if r.Max.X > s.Max.X {r.Max.X = s.Max.X}if r.Max.Y > s.Max.Y {r.Max.Y = s.Max.Y}if r.Min.X > r.Max.X || r.Min.Y > r.Max.Y {return ZR}return r}// Union returns the smallest rectangle that contains both r and s.func (r Rectangle) Union(s Rectangle) Rectangle {if r.Min.X > s.Min.X {r.Min.X = s.Min.X}if r.Min.Y > s.Min.Y {r.Min.Y = s.Min.Y}if r.Max.X < s.Max.X {r.Max.X = s.Max.X}if r.Max.Y < s.Max.Y {r.Max.Y = s.Max.Y}return r}// Empty returns whether the rectangle contains no points.func (r Rectangle) Empty() bool {return r.Min.X >= r.Max.X || r.Min.Y >= r.Max.Y}// Eq returns whether r and s are equal.func (r Rectangle) Eq(s Rectangle) bool {return r.Min.X == s.Min.X && r.Min.Y == s.Min.Y &&r.Max.X == s.Max.X && r.Max.Y == s.Max.Y}// Overlaps returns whether r and s have a non-empty intersection.func (r Rectangle) Overlaps(s Rectangle) bool {return r.Min.X < s.Max.X && s.Min.X < r.Max.X &&r.Min.Y < s.Max.Y && s.Min.Y < r.Max.Y}// In returns whether every point in r is in s.func (r Rectangle) In(s Rectangle) bool {if r.Empty() {return true}// Note that r.Max is an exclusive bound for r, so that r.In(s)// does not require that r.Max.In(s).return s.Min.X <= r.Min.X && r.Max.X <= s.Max.X &&s.Min.Y <= r.Min.Y && r.Max.Y <= s.Max.Y}// Canon returns the canonical version of r. The returned rectangle has minimum// and maximum coordinates swapped if necessary so that it is well-formed.func (r Rectangle) Canon() Rectangle {if r.Max.X < r.Min.X {r.Min.X, r.Max.X = r.Max.X, r.Min.X}if r.Max.Y < r.Min.Y {r.Min.Y, r.Max.Y = r.Max.Y, r.Min.Y}return r}// ZR is the zero Rectangle.var ZR Rectangle// Rect is shorthand for Rectangle{Pt(x0, y0), Pt(x1, y1)}.func Rect(x0, y0, x1, y1 int) Rectangle {if x0 > x1 {x0, x1 = x1, x0}if y0 > y1 {y0, y1 = y1, y0}return Rectangle{Point{x0, y0}, Point{x1, y1}}}
