URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [image/] [image.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.// Package image implements a basic 2-D image library.//// The fundamental interface is called Image. An Image contains colors, which// are described in the image/color package.//// Values of the Image interface are created either by calling functions such// as NewRGBA and NewPaletted, or by calling Decode on an io.Reader containing// image data in a format such as GIF, JPEG or PNG. Decoding any particular// image format requires the prior registration of a decoder function.// Registration is typically automatic as a side effect of initializing that// format's package so that, to decode a PNG image, it suffices to have// import _ "image/png"// in a program's main package. The _ means to import a package purely for its// initialization side effects.//// See "The Go image package" for more details:// http://blog.golang.org/2011/09/go-image-package.htmlpackage imageimport ("image/color")// Config holds an image's color model and dimensions.type Config struct {ColorModel color.ModelWidth, Height int}// Image is a finite rectangular grid of color.Color values taken from a color// model.type Image interface {// ColorModel returns the Image's color model.ColorModel() color.Model// Bounds returns the domain for which At can return non-zero color.// The bounds do not necessarily contain the point (0, 0).Bounds() Rectangle// At returns the color of the pixel at (x, y).// At(Bounds().Min.X, Bounds().Min.Y) returns the upper-left pixel of the grid.// At(Bounds().Max.X-1, Bounds().Max.Y-1) returns the lower-right one.At(x, y int) color.Color}// PalettedImage is an image whose colors may come from a limited palette.// If m is a PalettedImage and m.ColorModel() returns a PalettedColorModel p,// then m.At(x, y) should be equivalent to p[m.ColorIndexAt(x, y)]. If m's// color model is not a PalettedColorModel, then ColorIndexAt's behavior is// undefined.type PalettedImage interface {// ColorIndexAt returns the palette index of the pixel at (x, y).ColorIndexAt(x, y int) uint8Image}// RGBA is an in-memory image whose At method returns color.RGBA values.type RGBA struct {// Pix holds the image's pixels, in R, G, B, A order. The pixel at// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].Pix []uint8// Stride is the Pix stride (in bytes) between vertically adjacent pixels.Stride int// Rect is the image's bounds.Rect Rectangle}func (p *RGBA) ColorModel() color.Model { return color.RGBAModel }func (p *RGBA) Bounds() Rectangle { return p.Rect }func (p *RGBA) At(x, y int) color.Color {if !(Point{x, y}.In(p.Rect)) {return color.RGBA{}}i := p.PixOffset(x, y)return color.RGBA{p.Pix[i+0], p.Pix[i+1], p.Pix[i+2], p.Pix[i+3]}}// PixOffset returns the index of the first element of Pix that corresponds to// the pixel at (x, y).func (p *RGBA) PixOffset(x, y int) int {return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4}func (p *RGBA) Set(x, y int, c color.Color) {if !(Point{x, y}.In(p.Rect)) {return}i := p.PixOffset(x, y)c1 := color.RGBAModel.Convert(c).(color.RGBA)p.Pix[i+0] = c1.Rp.Pix[i+1] = c1.Gp.Pix[i+2] = c1.Bp.Pix[i+3] = c1.A}func (p *RGBA) SetRGBA(x, y int, c color.RGBA) {if !(Point{x, y}.In(p.Rect)) {return}i := p.PixOffset(x, y)p.Pix[i+0] = c.Rp.Pix[i+1] = c.Gp.Pix[i+2] = c.Bp.Pix[i+3] = c.A}// SubImage returns an image representing the portion of the image p visible// through r. The returned value shares pixels with the original image.func (p *RGBA) SubImage(r Rectangle) Image {r = r.Intersect(p.Rect)// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside// either r1 or r2 if the intersection is empty. Without explicitly checking for// this, the Pix[i:] expression below can panic.if r.Empty() {return &RGBA{}}i := p.PixOffset(r.Min.X, r.Min.Y)return &RGBA{Pix: p.Pix[i:],Stride: p.Stride,Rect: r,}}// Opaque scans the entire image and returns whether or not it is fully opaque.func (p *RGBA) Opaque() bool {if p.Rect.Empty() {return true}i0, i1 := 3, p.Rect.Dx()*4for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {for i := i0; i < i1; i += 4 {if p.Pix[i] != 0xff {return false}}i0 += p.Stridei1 += p.Stride}return true}// NewRGBA returns a new RGBA with the given bounds.func NewRGBA(r Rectangle) *RGBA {w, h := r.Dx(), r.Dy()buf := make([]uint8, 4*w*h)return &RGBA{buf, 4 * w, r}}// RGBA64 is an in-memory image whose At method returns color.RGBA64 values.type RGBA64 struct {// Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8].Pix []uint8// Stride is the Pix stride (in bytes) between vertically adjacent pixels.Stride int// Rect is the image's bounds.Rect Rectangle}func (p *RGBA64) ColorModel() color.Model { return color.RGBA64Model }func (p *RGBA64) Bounds() Rectangle { return p.Rect }func (p *RGBA64) At(x, y int) color.Color {if !(Point{x, y}.In(p.Rect)) {return color.RGBA64{}}i := p.PixOffset(x, y)return color.RGBA64{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1]),uint16(p.Pix[i+2])<<8 | uint16(p.Pix[i+3]),uint16(p.Pix[i+4])<<8 | uint16(p.Pix[i+5]),uint16(p.Pix[i+6])<<8 | uint16(p.Pix[i+7]),}}// PixOffset returns the index of the first element of Pix that corresponds to// the pixel at (x, y).func (p *RGBA64) PixOffset(x, y int) int {return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8}func (p *RGBA64) Set(x, y int, c color.Color) {if !(Point{x, y}.In(p.Rect)) {return}i := p.PixOffset(x, y)c1 := color.RGBA64Model.Convert(c).(color.RGBA64)p.Pix[i+0] = uint8(c1.R >> 8)p.Pix[i+1] = uint8(c1.R)p.Pix[i+2] = uint8(c1.G >> 8)p.Pix[i+3] = uint8(c1.G)p.Pix[i+4] = uint8(c1.B >> 8)p.Pix[i+5] = uint8(c1.B)p.Pix[i+6] = uint8(c1.A >> 8)p.Pix[i+7] = uint8(c1.A)}func (p *RGBA64) SetRGBA64(x, y int, c color.RGBA64) {if !(Point{x, y}.In(p.Rect)) {return}i := p.PixOffset(x, y)p.Pix[i+0] = uint8(c.R >> 8)p.Pix[i+1] = uint8(c.R)p.Pix[i+2] = uint8(c.G >> 8)p.Pix[i+3] = uint8(c.G)p.Pix[i+4] = uint8(c.B >> 8)p.Pix[i+5] = uint8(c.B)p.Pix[i+6] = uint8(c.A >> 8)p.Pix[i+7] = uint8(c.A)}// SubImage returns an image representing the portion of the image p visible// through r. The returned value shares pixels with the original image.func (p *RGBA64) SubImage(r Rectangle) Image {r = r.Intersect(p.Rect)// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside// either r1 or r2 if the intersection is empty. Without explicitly checking for// this, the Pix[i:] expression below can panic.if r.Empty() {return &RGBA64{}}i := p.PixOffset(r.Min.X, r.Min.Y)return &RGBA64{Pix: p.Pix[i:],Stride: p.Stride,Rect: r,}}// Opaque scans the entire image and returns whether or not it is fully opaque.func (p *RGBA64) Opaque() bool {if p.Rect.Empty() {return true}i0, i1 := 6, p.Rect.Dx()*8for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {for i := i0; i < i1; i += 8 {if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {return false}}i0 += p.Stridei1 += p.Stride}return true}// NewRGBA64 returns a new RGBA64 with the given bounds.func NewRGBA64(r Rectangle) *RGBA64 {w, h := r.Dx(), r.Dy()pix := make([]uint8, 8*w*h)return &RGBA64{pix, 8 * w, r}}// NRGBA is an in-memory image whose At method returns color.NRGBA values.type NRGBA struct {// Pix holds the image's pixels, in R, G, B, A order. The pixel at// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].Pix []uint8// Stride is the Pix stride (in bytes) between vertically adjacent pixels.Stride int// Rect is the image's bounds.Rect Rectangle}func (p *NRGBA) ColorModel() color.Model { return color.NRGBAModel }func (p *NRGBA) Bounds() Rectangle { return p.Rect }func (p *NRGBA) At(x, y int) color.Color {if !(Point{x, y}.In(p.Rect)) {return color.NRGBA{}}i := p.PixOffset(x, y)return color.NRGBA{p.Pix[i+0], p.Pix[i+1], p.Pix[i+2], p.Pix[i+3]}}// PixOffset returns the index of the first element of Pix that corresponds to// the pixel at (x, y).func (p *NRGBA) PixOffset(x, y int) int {return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4}func (p *NRGBA) Set(x, y int, c color.Color) {if !(Point{x, y}.In(p.Rect)) {return}i := p.PixOffset(x, y)c1 := color.NRGBAModel.Convert(c).(color.NRGBA)p.Pix[i+0] = c1.Rp.Pix[i+1] = c1.Gp.Pix[i+2] = c1.Bp.Pix[i+3] = c1.A}func (p *NRGBA) SetNRGBA(x, y int, c color.NRGBA) {if !(Point{x, y}.In(p.Rect)) {return}i := p.PixOffset(x, y)p.Pix[i+0] = c.Rp.Pix[i+1] = c.Gp.Pix[i+2] = c.Bp.Pix[i+3] = c.A}// SubImage returns an image representing the portion of the image p visible// through r. The returned value shares pixels with the original image.func (p *NRGBA) SubImage(r Rectangle) Image {r = r.Intersect(p.Rect)// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside// either r1 or r2 if the intersection is empty. Without explicitly checking for// this, the Pix[i:] expression below can panic.if r.Empty() {return &NRGBA{}}i := p.PixOffset(r.Min.X, r.Min.Y)return &NRGBA{Pix: p.Pix[i:],Stride: p.Stride,Rect: r,}}// Opaque scans the entire image and returns whether or not it is fully opaque.func (p *NRGBA) Opaque() bool {if p.Rect.Empty() {return true}i0, i1 := 3, p.Rect.Dx()*4for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {for i := i0; i < i1; i += 4 {if p.Pix[i] != 0xff {return false}}i0 += p.Stridei1 += p.Stride}return true}// NewNRGBA returns a new NRGBA with the given bounds.func NewNRGBA(r Rectangle) *NRGBA {w, h := r.Dx(), r.Dy()pix := make([]uint8, 4*w*h)return &NRGBA{pix, 4 * w, r}}// NRGBA64 is an in-memory image whose At method returns color.NRGBA64 values.type NRGBA64 struct {// Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8].Pix []uint8// Stride is the Pix stride (in bytes) between vertically adjacent pixels.Stride int// Rect is the image's bounds.Rect Rectangle}func (p *NRGBA64) ColorModel() color.Model { return color.NRGBA64Model }func (p *NRGBA64) Bounds() Rectangle { return p.Rect }func (p *NRGBA64) At(x, y int) color.Color {if !(Point{x, y}.In(p.Rect)) {return color.NRGBA64{}}i := p.PixOffset(x, y)return color.NRGBA64{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1]),uint16(p.Pix[i+2])<<8 | uint16(p.Pix[i+3]),uint16(p.Pix[i+4])<<8 | uint16(p.Pix[i+5]),uint16(p.Pix[i+6])<<8 | uint16(p.Pix[i+7]),}}// PixOffset returns the index of the first element of Pix that corresponds to// the pixel at (x, y).func (p *NRGBA64) PixOffset(x, y int) int {return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8}func (p *NRGBA64) Set(x, y int, c color.Color) {if !(Point{x, y}.In(p.Rect)) {return}i := p.PixOffset(x, y)c1 := color.NRGBA64Model.Convert(c).(color.NRGBA64)p.Pix[i+0] = uint8(c1.R >> 8)p.Pix[i+1] = uint8(c1.R)p.Pix[i+2] = uint8(c1.G >> 8)p.Pix[i+3] = uint8(c1.G)p.Pix[i+4] = uint8(c1.B >> 8)p.Pix[i+5] = uint8(c1.B)p.Pix[i+6] = uint8(c1.A >> 8)p.Pix[i+7] = uint8(c1.A)}func (p *NRGBA64) SetNRGBA64(x, y int, c color.NRGBA64) {if !(Point{x, y}.In(p.Rect)) {return}i := p.PixOffset(x, y)p.Pix[i+0] = uint8(c.R >> 8)p.Pix[i+1] = uint8(c.R)p.Pix[i+2] = uint8(c.G >> 8)p.Pix[i+3] = uint8(c.G)p.Pix[i+4] = uint8(c.B >> 8)p.Pix[i+5] = uint8(c.B)p.Pix[i+6] = uint8(c.A >> 8)p.Pix[i+7] = uint8(c.A)}// SubImage returns an image representing the portion of the image p visible// through r. The returned value shares pixels with the original image.func (p *NRGBA64) SubImage(r Rectangle) Image {r = r.Intersect(p.Rect)// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside// either r1 or r2 if the intersection is empty. Without explicitly checking for// this, the Pix[i:] expression below can panic.if r.Empty() {return &NRGBA64{}}i := p.PixOffset(r.Min.X, r.Min.Y)return &NRGBA64{Pix: p.Pix[i:],Stride: p.Stride,Rect: r,}}// Opaque scans the entire image and returns whether or not it is fully opaque.func (p *NRGBA64) Opaque() bool {if p.Rect.Empty() {return true}i0, i1 := 6, p.Rect.Dx()*8for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {for i := i0; i < i1; i += 8 {if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {return false}}i0 += p.Stridei1 += p.Stride}return true}// NewNRGBA64 returns a new NRGBA64 with the given bounds.func NewNRGBA64(r Rectangle) *NRGBA64 {w, h := r.Dx(), r.Dy()pix := make([]uint8, 8*w*h)return &NRGBA64{pix, 8 * w, r}}// Alpha is an in-memory image whose At method returns color.Alpha values.type Alpha struct {// Pix holds the image's pixels, as alpha values. The pixel at// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].Pix []uint8// Stride is the Pix stride (in bytes) between vertically adjacent pixels.Stride int// Rect is the image's bounds.Rect Rectangle}func (p *Alpha) ColorModel() color.Model { return color.AlphaModel }func (p *Alpha) Bounds() Rectangle { return p.Rect }func (p *Alpha) At(x, y int) color.Color {if !(Point{x, y}.In(p.Rect)) {return color.Alpha{}}i := p.PixOffset(x, y)return color.Alpha{p.Pix[i]}}// PixOffset returns the index of the first element of Pix that corresponds to// the pixel at (x, y).func (p *Alpha) PixOffset(x, y int) int {return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1}func (p *Alpha) Set(x, y int, c color.Color) {if !(Point{x, y}.In(p.Rect)) {return}i := p.PixOffset(x, y)p.Pix[i] = color.AlphaModel.Convert(c).(color.Alpha).A}func (p *Alpha) SetAlpha(x, y int, c color.Alpha) {if !(Point{x, y}.In(p.Rect)) {return}i := p.PixOffset(x, y)p.Pix[i] = c.A}// SubImage returns an image representing the portion of the image p visible// through r. The returned value shares pixels with the original image.func (p *Alpha) SubImage(r Rectangle) Image {r = r.Intersect(p.Rect)// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside// either r1 or r2 if the intersection is empty. Without explicitly checking for// this, the Pix[i:] expression below can panic.if r.Empty() {return &Alpha{}}i := p.PixOffset(r.Min.X, r.Min.Y)return &Alpha{Pix: p.Pix[i:],Stride: p.Stride,Rect: r,}}// Opaque scans the entire image and returns whether or not it is fully opaque.func (p *Alpha) Opaque() bool {if p.Rect.Empty() {return true}i0, i1 := 0, p.Rect.Dx()for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {for i := i0; i < i1; i++ {if p.Pix[i] != 0xff {return false}}i0 += p.Stridei1 += p.Stride}return true}// NewAlpha returns a new Alpha with the given bounds.func NewAlpha(r Rectangle) *Alpha {w, h := r.Dx(), r.Dy()pix := make([]uint8, 1*w*h)return &Alpha{pix, 1 * w, r}}// Alpha16 is an in-memory image whose At method returns color.Alpha64 values.type Alpha16 struct {// Pix holds the image's pixels, as alpha values in big-endian format. The pixel at// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2].Pix []uint8// Stride is the Pix stride (in bytes) between vertically adjacent pixels.Stride int// Rect is the image's bounds.Rect Rectangle}func (p *Alpha16) ColorModel() color.Model { return color.Alpha16Model }func (p *Alpha16) Bounds() Rectangle { return p.Rect }func (p *Alpha16) At(x, y int) color.Color {if !(Point{x, y}.In(p.Rect)) {return color.Alpha16{}}i := p.PixOffset(x, y)return color.Alpha16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])}}// PixOffset returns the index of the first element of Pix that corresponds to// the pixel at (x, y).func (p *Alpha16) PixOffset(x, y int) int {return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2}func (p *Alpha16) Set(x, y int, c color.Color) {if !(Point{x, y}.In(p.Rect)) {return}i := p.PixOffset(x, y)c1 := color.Alpha16Model.Convert(c).(color.Alpha16)p.Pix[i+0] = uint8(c1.A >> 8)p.Pix[i+1] = uint8(c1.A)}func (p *Alpha16) SetAlpha16(x, y int, c color.Alpha16) {if !(Point{x, y}.In(p.Rect)) {return}i := p.PixOffset(x, y)p.Pix[i+0] = uint8(c.A >> 8)p.Pix[i+1] = uint8(c.A)}// SubImage returns an image representing the portion of the image p visible// through r. The returned value shares pixels with the original image.func (p *Alpha16) SubImage(r Rectangle) Image {r = r.Intersect(p.Rect)// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside// either r1 or r2 if the intersection is empty. Without explicitly checking for// this, the Pix[i:] expression below can panic.if r.Empty() {return &Alpha16{}}i := p.PixOffset(r.Min.X, r.Min.Y)return &Alpha16{Pix: p.Pix[i:],Stride: p.Stride,Rect: r,}}// Opaque scans the entire image and returns whether or not it is fully opaque.func (p *Alpha16) Opaque() bool {if p.Rect.Empty() {return true}i0, i1 := 0, p.Rect.Dx()*2for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {for i := i0; i < i1; i += 2 {if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {return false}}i0 += p.Stridei1 += p.Stride}return true}// NewAlpha16 returns a new Alpha16 with the given bounds.func NewAlpha16(r Rectangle) *Alpha16 {w, h := r.Dx(), r.Dy()pix := make([]uint8, 2*w*h)return &Alpha16{pix, 2 * w, r}}// Gray is an in-memory image whose At method returns color.Gray values.type Gray struct {// Pix holds the image's pixels, as gray values. The pixel at// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].Pix []uint8// Stride is the Pix stride (in bytes) between vertically adjacent pixels.Stride int// Rect is the image's bounds.Rect Rectangle}func (p *Gray) ColorModel() color.Model { return color.GrayModel }func (p *Gray) Bounds() Rectangle { return p.Rect }func (p *Gray) At(x, y int) color.Color {if !(Point{x, y}.In(p.Rect)) {return color.Gray{}}i := p.PixOffset(x, y)return color.Gray{p.Pix[i]}}// PixOffset returns the index of the first element of Pix that corresponds to// the pixel at (x, y).func (p *Gray) PixOffset(x, y int) int {return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1}func (p *Gray) Set(x, y int, c color.Color) {if !(Point{x, y}.In(p.Rect)) {return}i := p.PixOffset(x, y)p.Pix[i] = color.GrayModel.Convert(c).(color.Gray).Y}func (p *Gray) SetGray(x, y int, c color.Gray) {if !(Point{x, y}.In(p.Rect)) {return}i := p.PixOffset(x, y)p.Pix[i] = c.Y}// SubImage returns an image representing the portion of the image p visible// through r. The returned value shares pixels with the original image.func (p *Gray) SubImage(r Rectangle) Image {r = r.Intersect(p.Rect)// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside// either r1 or r2 if the intersection is empty. Without explicitly checking for// this, the Pix[i:] expression below can panic.if r.Empty() {return &Gray{}}i := p.PixOffset(r.Min.X, r.Min.Y)return &Gray{Pix: p.Pix[i:],Stride: p.Stride,Rect: r,}}// Opaque scans the entire image and returns whether or not it is fully opaque.func (p *Gray) Opaque() bool {return true}// NewGray returns a new Gray with the given bounds.func NewGray(r Rectangle) *Gray {w, h := r.Dx(), r.Dy()pix := make([]uint8, 1*w*h)return &Gray{pix, 1 * w, r}}// Gray16 is an in-memory image whose At method returns color.Gray16 values.type Gray16 struct {// Pix holds the image's pixels, as gray values in big-endian format. The pixel at// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2].Pix []uint8// Stride is the Pix stride (in bytes) between vertically adjacent pixels.Stride int// Rect is the image's bounds.Rect Rectangle}func (p *Gray16) ColorModel() color.Model { return color.Gray16Model }func (p *Gray16) Bounds() Rectangle { return p.Rect }func (p *Gray16) At(x, y int) color.Color {if !(Point{x, y}.In(p.Rect)) {return color.Gray16{}}i := p.PixOffset(x, y)return color.Gray16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])}}// PixOffset returns the index of the first element of Pix that corresponds to// the pixel at (x, y).func (p *Gray16) PixOffset(x, y int) int {return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2}func (p *Gray16) Set(x, y int, c color.Color) {if !(Point{x, y}.In(p.Rect)) {return}i := p.PixOffset(x, y)c1 := color.Gray16Model.Convert(c).(color.Gray16)p.Pix[i+0] = uint8(c1.Y >> 8)p.Pix[i+1] = uint8(c1.Y)}func (p *Gray16) SetGray16(x, y int, c color.Gray16) {if !(Point{x, y}.In(p.Rect)) {return}i := p.PixOffset(x, y)p.Pix[i+0] = uint8(c.Y >> 8)p.Pix[i+1] = uint8(c.Y)}// SubImage returns an image representing the portion of the image p visible// through r. The returned value shares pixels with the original image.func (p *Gray16) SubImage(r Rectangle) Image {r = r.Intersect(p.Rect)// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside// either r1 or r2 if the intersection is empty. Without explicitly checking for// this, the Pix[i:] expression below can panic.if r.Empty() {return &Gray16{}}i := p.PixOffset(r.Min.X, r.Min.Y)return &Gray16{Pix: p.Pix[i:],Stride: p.Stride,Rect: r,}}// Opaque scans the entire image and returns whether or not it is fully opaque.func (p *Gray16) Opaque() bool {return true}// NewGray16 returns a new Gray16 with the given bounds.func NewGray16(r Rectangle) *Gray16 {w, h := r.Dx(), r.Dy()pix := make([]uint8, 2*w*h)return &Gray16{pix, 2 * w, r}}// Paletted is an in-memory image of uint8 indices into a given palette.type Paletted struct {// Pix holds the image's pixels, as palette indices. The pixel at// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].Pix []uint8// Stride is the Pix stride (in bytes) between vertically adjacent pixels.Stride int// Rect is the image's bounds.Rect Rectangle// Palette is the image's palette.Palette color.Palette}func (p *Paletted) ColorModel() color.Model { return p.Palette }func (p *Paletted) Bounds() Rectangle { return p.Rect }func (p *Paletted) At(x, y int) color.Color {if len(p.Palette) == 0 {return nil}if !(Point{x, y}.In(p.Rect)) {return p.Palette[0]}i := p.PixOffset(x, y)return p.Palette[p.Pix[i]]}// PixOffset returns the index of the first element of Pix that corresponds to// the pixel at (x, y).func (p *Paletted) PixOffset(x, y int) int {return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1}func (p *Paletted) Set(x, y int, c color.Color) {if !(Point{x, y}.In(p.Rect)) {return}i := p.PixOffset(x, y)p.Pix[i] = uint8(p.Palette.Index(c))}func (p *Paletted) ColorIndexAt(x, y int) uint8 {if !(Point{x, y}.In(p.Rect)) {return 0}i := p.PixOffset(x, y)return p.Pix[i]}func (p *Paletted) SetColorIndex(x, y int, index uint8) {if !(Point{x, y}.In(p.Rect)) {return}i := p.PixOffset(x, y)p.Pix[i] = index}// SubImage returns an image representing the portion of the image p visible// through r. The returned value shares pixels with the original image.func (p *Paletted) SubImage(r Rectangle) Image {r = r.Intersect(p.Rect)// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside// either r1 or r2 if the intersection is empty. Without explicitly checking for// this, the Pix[i:] expression below can panic.if r.Empty() {return &Paletted{Palette: p.Palette,}}i := p.PixOffset(r.Min.X, r.Min.Y)return &Paletted{Pix: p.Pix[i:],Stride: p.Stride,Rect: p.Rect.Intersect(r),Palette: p.Palette,}}// Opaque scans the entire image and returns whether or not it is fully opaque.func (p *Paletted) Opaque() bool {var present [256]booli0, i1 := 0, p.Rect.Dx()for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {for _, c := range p.Pix[i0:i1] {present[c] = true}i0 += p.Stridei1 += p.Stride}for i, c := range p.Palette {if !present[i] {continue}_, _, _, a := c.RGBA()if a != 0xffff {return false}}return true}// NewPaletted returns a new Paletted with the given width, height and palette.func NewPaletted(r Rectangle, p color.Palette) *Paletted {w, h := r.Dx(), r.Dy()pix := make([]uint8, 1*w*h)return &Paletted{pix, 1 * w, r, p}}
