URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [image/] [jpeg/] [writer.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2011 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package jpegimport ("bufio""errors""image""image/color""io")// min returns the minimum of two integers.func min(x, y int) int {if x < y {return x}return y}// div returns a/b rounded to the nearest integer, instead of rounded to zero.func div(a int, b int) int {if a >= 0 {return (a + (b >> 1)) / b}return -((-a + (b >> 1)) / b)}// bitCount counts the number of bits needed to hold an integer.var bitCount = [256]byte{0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,}type quantIndex intconst (quantIndexLuminance quantIndex = iotaquantIndexChrominancenQuantIndex)// unscaledQuant are the unscaled quantization tables. Each encoder copies and// scales the tables according to its quality parameter.var unscaledQuant = [nQuantIndex][blockSize]byte{// Luminance.{16, 11, 10, 16, 24, 40, 51, 61,12, 12, 14, 19, 26, 58, 60, 55,14, 13, 16, 24, 40, 57, 69, 56,14, 17, 22, 29, 51, 87, 80, 62,18, 22, 37, 56, 68, 109, 103, 77,24, 35, 55, 64, 81, 104, 113, 92,49, 64, 78, 87, 103, 121, 120, 101,72, 92, 95, 98, 112, 100, 103, 99,},// Chrominance.{17, 18, 24, 47, 99, 99, 99, 99,18, 21, 26, 66, 99, 99, 99, 99,24, 26, 56, 99, 99, 99, 99, 99,47, 66, 99, 99, 99, 99, 99, 99,99, 99, 99, 99, 99, 99, 99, 99,99, 99, 99, 99, 99, 99, 99, 99,99, 99, 99, 99, 99, 99, 99, 99,99, 99, 99, 99, 99, 99, 99, 99,},}type huffIndex intconst (huffIndexLuminanceDC huffIndex = iotahuffIndexLuminanceAChuffIndexChrominanceDChuffIndexChrominanceACnHuffIndex)// huffmanSpec specifies a Huffman encoding.type huffmanSpec struct {// count[i] is the number of codes of length i bits.count [16]byte// value[i] is the decoded value of the i'th codeword.value []byte}// theHuffmanSpec is the Huffman encoding specifications.// This encoder uses the same Huffman encoding for all images.var theHuffmanSpec = [nHuffIndex]huffmanSpec{// Luminance DC.{[16]byte{0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0},[]byte{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},},// Luminance AC.{[16]byte{0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 125},[]byte{0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,0xf9, 0xfa,},},// Chrominance DC.{[16]byte{0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0},[]byte{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},},// Chrominance AC.{[16]byte{0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 119},[]byte{0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,0xf9, 0xfa,},},}// huffmanLUT is a compiled look-up table representation of a huffmanSpec.// Each value maps to a uint32 of which the 8 most significant bits hold the// codeword size in bits and the 24 least significant bits hold the codeword.// The maximum codeword size is 16 bits.type huffmanLUT []uint32func (h *huffmanLUT) init(s huffmanSpec) {maxValue := 0for _, v := range s.value {if int(v) > maxValue {maxValue = int(v)}}*h = make([]uint32, maxValue+1)code, k := uint32(0), 0for i := 0; i < len(s.count); i++ {nBits := uint32(i+1) << 24for j := uint8(0); j < s.count[i]; j++ {(*h)[s.value[k]] = nBits | codecode++k++}code <<= 1}}// theHuffmanLUT are compiled representations of theHuffmanSpec.var theHuffmanLUT [4]huffmanLUTfunc init() {for i, s := range theHuffmanSpec {theHuffmanLUT[i].init(s)}}// writer is a buffered writer.type writer interface {Flush() errorWrite([]byte) (int, error)WriteByte(byte) error}// encoder encodes an image to the JPEG format.type encoder struct {// w is the writer to write to. err is the first error encountered during// writing. All attempted writes after the first error become no-ops.w writererr error// buf is a scratch buffer.buf [16]byte// bits and nBits are accumulated bits to write to w.bits, nBits uint32// quant is the scaled quantization tables.quant [nQuantIndex][blockSize]byte}func (e *encoder) flush() {if e.err != nil {return}e.err = e.w.Flush()}func (e *encoder) write(p []byte) {if e.err != nil {return}_, e.err = e.w.Write(p)}func (e *encoder) writeByte(b byte) {if e.err != nil {return}e.err = e.w.WriteByte(b)}// emit emits the least significant nBits bits of bits to the bitstream.// The precondition is bits < 1<<nBits && nBits <= 16.func (e *encoder) emit(bits, nBits uint32) {nBits += e.nBitsbits <<= 32 - nBitsbits |= e.bitsfor nBits >= 8 {b := uint8(bits >> 24)e.writeByte(b)if b == 0xff {e.writeByte(0x00)}bits <<= 8nBits -= 8}e.bits, e.nBits = bits, nBits}// emitHuff emits the given value with the given Huffman encoder.func (e *encoder) emitHuff(h huffIndex, value int) {x := theHuffmanLUT[h][value]e.emit(x&(1<<24-1), x>>24)}// emitHuffRLE emits a run of runLength copies of value encoded with the given// Huffman encoder.func (e *encoder) emitHuffRLE(h huffIndex, runLength, value int) {a, b := value, valueif a < 0 {a, b = -value, value-1}var nBits uint32if a < 0x100 {nBits = uint32(bitCount[a])} else {nBits = 8 + uint32(bitCount[a>>8])}e.emitHuff(h, runLength<<4|int(nBits))if nBits > 0 {e.emit(uint32(b)&(1<<nBits-1), nBits)}}// writeMarkerHeader writes the header for a marker with the given length.func (e *encoder) writeMarkerHeader(marker uint8, markerlen int) {e.buf[0] = 0xffe.buf[1] = markere.buf[2] = uint8(markerlen >> 8)e.buf[3] = uint8(markerlen & 0xff)e.write(e.buf[:4])}// writeDQT writes the Define Quantization Table marker.func (e *encoder) writeDQT() {markerlen := 2 + int(nQuantIndex)*(1+blockSize)e.writeMarkerHeader(dqtMarker, markerlen)for i := range e.quant {e.writeByte(uint8(i))e.write(e.quant[i][:])}}// writeSOF0 writes the Start Of Frame (Baseline) marker.func (e *encoder) writeSOF0(size image.Point) {markerlen := 8 + 3*nColorComponente.writeMarkerHeader(sof0Marker, markerlen)e.buf[0] = 8 // 8-bit color.e.buf[1] = uint8(size.Y >> 8)e.buf[2] = uint8(size.Y & 0xff)e.buf[3] = uint8(size.X >> 8)e.buf[4] = uint8(size.X & 0xff)e.buf[5] = nColorComponentfor i := 0; i < nColorComponent; i++ {e.buf[3*i+6] = uint8(i + 1)// We use 4:2:0 chroma subsampling.e.buf[3*i+7] = "\x22\x11\x11"[i]e.buf[3*i+8] = "\x00\x01\x01"[i]}e.write(e.buf[:3*(nColorComponent-1)+9])}// writeDHT writes the Define Huffman Table marker.func (e *encoder) writeDHT() {markerlen := 2for _, s := range theHuffmanSpec {markerlen += 1 + 16 + len(s.value)}e.writeMarkerHeader(dhtMarker, markerlen)for i, s := range theHuffmanSpec {e.writeByte("\x00\x10\x01\x11"[i])e.write(s.count[:])e.write(s.value)}}// writeBlock writes a block of pixel data using the given quantization table,// returning the post-quantized DC value of the DCT-transformed block.func (e *encoder) writeBlock(b *block, q quantIndex, prevDC int) int {fdct(b)// Emit the DC delta.dc := div(b[0], (8 * int(e.quant[q][0])))e.emitHuffRLE(huffIndex(2*q+0), 0, dc-prevDC)// Emit the AC components.h, runLength := huffIndex(2*q+1), 0for k := 1; k < blockSize; k++ {ac := div(b[unzig[k]], (8 * int(e.quant[q][k])))if ac == 0 {runLength++} else {for runLength > 15 {e.emitHuff(h, 0xf0)runLength -= 16}e.emitHuffRLE(h, runLength, ac)runLength = 0}}if runLength > 0 {e.emitHuff(h, 0x00)}return dc}// toYCbCr converts the 8x8 region of m whose top-left corner is p to its// YCbCr values.func toYCbCr(m image.Image, p image.Point, yBlock, cbBlock, crBlock *block) {b := m.Bounds()xmax := b.Max.X - 1ymax := b.Max.Y - 1for j := 0; j < 8; j++ {for i := 0; i < 8; i++ {r, g, b, _ := m.At(min(p.X+i, xmax), min(p.Y+j, ymax)).RGBA()yy, cb, cr := color.RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))yBlock[8*j+i] = int(yy)cbBlock[8*j+i] = int(cb)crBlock[8*j+i] = int(cr)}}}// rgbaToYCbCr is a specialized version of toYCbCr for image.RGBA images.func rgbaToYCbCr(m *image.RGBA, p image.Point, yBlock, cbBlock, crBlock *block) {b := m.Bounds()xmax := b.Max.X - 1ymax := b.Max.Y - 1for j := 0; j < 8; j++ {sj := p.Y + jif sj > ymax {sj = ymax}offset := (sj-b.Min.Y)*m.Stride - b.Min.X*4for i := 0; i < 8; i++ {sx := p.X + iif sx > xmax {sx = xmax}pix := m.Pix[offset+sx*4:]yy, cb, cr := color.RGBToYCbCr(pix[0], pix[1], pix[2])yBlock[8*j+i] = int(yy)cbBlock[8*j+i] = int(cb)crBlock[8*j+i] = int(cr)}}}// scale scales the 16x16 region represented by the 4 src blocks to the 8x8// dst block.func scale(dst *block, src *[4]block) {for i := 0; i < 4; i++ {dstOff := (i&2)<<4 | (i&1)<<2for y := 0; y < 4; y++ {for x := 0; x < 4; x++ {j := 16*y + 2*xsum := src[i][j] + src[i][j+1] + src[i][j+8] + src[i][j+9]dst[8*y+x+dstOff] = (sum + 2) >> 2}}}}// sosHeader is the SOS marker "\xff\xda" followed by 12 bytes:// - the marker length "\x00\x0c",// - the number of components "\x03",// - component 1 uses DC table 0 and AC table 0 "\x01\x00",// - component 2 uses DC table 1 and AC table 1 "\x02\x11",// - component 3 uses DC table 1 and AC table 1 "\x03\x11",// - padding "\x00\x00\x00".var sosHeader = []byte{0xff, 0xda, 0x00, 0x0c, 0x03, 0x01, 0x00, 0x02,0x11, 0x03, 0x11, 0x00, 0x00, 0x00,}// writeSOS writes the StartOfScan marker.func (e *encoder) writeSOS(m image.Image) {e.write(sosHeader)var (// Scratch buffers to hold the YCbCr values.yBlock blockcbBlock [4]blockcrBlock [4]blockcBlock block// DC components are delta-encoded.prevDCY, prevDCCb, prevDCCr int)bounds := m.Bounds()rgba, _ := m.(*image.RGBA)for y := bounds.Min.Y; y < bounds.Max.Y; y += 16 {for x := bounds.Min.X; x < bounds.Max.X; x += 16 {for i := 0; i < 4; i++ {xOff := (i & 1) * 8yOff := (i & 2) * 4p := image.Pt(x+xOff, y+yOff)if rgba != nil {rgbaToYCbCr(rgba, p, &yBlock, &cbBlock[i], &crBlock[i])} else {toYCbCr(m, p, &yBlock, &cbBlock[i], &crBlock[i])}prevDCY = e.writeBlock(&yBlock, 0, prevDCY)}scale(&cBlock, &cbBlock)prevDCCb = e.writeBlock(&cBlock, 1, prevDCCb)scale(&cBlock, &crBlock)prevDCCr = e.writeBlock(&cBlock, 1, prevDCCr)}}// Pad the last byte with 1's.e.emit(0x7f, 7)}// DefaultQuality is the default quality encoding parameter.const DefaultQuality = 75// Options are the encoding parameters.// Quality ranges from 1 to 100 inclusive, higher is better.type Options struct {Quality int}// Encode writes the Image m to w in JPEG 4:2:0 baseline format with the given// options. Default parameters are used if a nil *Options is passed.func Encode(w io.Writer, m image.Image, o *Options) error {b := m.Bounds()if b.Dx() >= 1<<16 || b.Dy() >= 1<<16 {return errors.New("jpeg: image is too large to encode")}var e encoderif ww, ok := w.(writer); ok {e.w = ww} else {e.w = bufio.NewWriter(w)}// Clip quality to [1, 100].quality := DefaultQualityif o != nil {quality = o.Qualityif quality < 1 {quality = 1} else if quality > 100 {quality = 100}}// Convert from a quality rating to a scaling factor.var scale intif quality < 50 {scale = 5000 / quality} else {scale = 200 - quality*2}// Initialize the quantization tables.for i := range e.quant {for j := range e.quant[i] {x := int(unscaledQuant[i][j])x = (x*scale + 50) / 100if x < 1 {x = 1} else if x > 255 {x = 255}e.quant[i][j] = uint8(x)}}// Write the Start Of Image marker.e.buf[0] = 0xffe.buf[1] = 0xd8e.write(e.buf[:2])// Write the quantization tables.e.writeDQT()// Write the image dimensions.e.writeSOF0(b.Size())// Write the Huffman tables.e.writeDHT()// Write the image data.e.writeSOS(m)// Write the End Of Image marker.e.buf[0] = 0xffe.buf[1] = 0xd9e.write(e.buf[:2])e.flush()return e.err}
