URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [image/] [png/] [writer.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package pngimport ("bufio""compress/zlib""hash/crc32""image""image/color""io""strconv")type encoder struct {w io.Writerm image.Imagecb interr errorheader [8]bytefooter [4]bytetmp [3 * 256]byte}// Big-endian.func writeUint32(b []uint8, u uint32) {b[0] = uint8(u >> 24)b[1] = uint8(u >> 16)b[2] = uint8(u >> 8)b[3] = uint8(u >> 0)}type opaquer interface {Opaque() bool}// Returns whether or not the image is fully opaque.func opaque(m image.Image) bool {if o, ok := m.(opaquer); ok {return o.Opaque()}b := m.Bounds()for y := b.Min.Y; y < b.Max.Y; y++ {for x := b.Min.X; x < b.Max.X; x++ {_, _, _, a := m.At(x, y).RGBA()if a != 0xffff {return false}}}return true}// The absolute value of a byte interpreted as a signed int8.func abs8(d uint8) int {if d < 128 {return int(d)}return 256 - int(d)}func (e *encoder) writeChunk(b []byte, name string) {if e.err != nil {return}n := uint32(len(b))if int(n) != len(b) {e.err = UnsupportedError(name + " chunk is too large: " + strconv.Itoa(len(b)))return}writeUint32(e.header[0:4], n)e.header[4] = name[0]e.header[5] = name[1]e.header[6] = name[2]e.header[7] = name[3]crc := crc32.NewIEEE()crc.Write(e.header[4:8])crc.Write(b)writeUint32(e.footer[0:4], crc.Sum32())_, e.err = e.w.Write(e.header[0:8])if e.err != nil {return}_, e.err = e.w.Write(b)if e.err != nil {return}_, e.err = e.w.Write(e.footer[0:4])}func (e *encoder) writeIHDR() {b := e.m.Bounds()writeUint32(e.tmp[0:4], uint32(b.Dx()))writeUint32(e.tmp[4:8], uint32(b.Dy()))// Set bit depth and color type.switch e.cb {case cbG8:e.tmp[8] = 8e.tmp[9] = ctGrayscalecase cbTC8:e.tmp[8] = 8e.tmp[9] = ctTrueColorcase cbP8:e.tmp[8] = 8e.tmp[9] = ctPalettedcase cbTCA8:e.tmp[8] = 8e.tmp[9] = ctTrueColorAlphacase cbG16:e.tmp[8] = 16e.tmp[9] = ctGrayscalecase cbTC16:e.tmp[8] = 16e.tmp[9] = ctTrueColorcase cbTCA16:e.tmp[8] = 16e.tmp[9] = ctTrueColorAlpha}e.tmp[10] = 0 // default compression methode.tmp[11] = 0 // default filter methode.tmp[12] = 0 // non-interlacede.writeChunk(e.tmp[0:13], "IHDR")}func (e *encoder) writePLTE(p color.Palette) {if len(p) < 1 || len(p) > 256 {e.err = FormatError("bad palette length: " + strconv.Itoa(len(p)))return}for i, c := range p {r, g, b, _ := c.RGBA()e.tmp[3*i+0] = uint8(r >> 8)e.tmp[3*i+1] = uint8(g >> 8)e.tmp[3*i+2] = uint8(b >> 8)}e.writeChunk(e.tmp[0:3*len(p)], "PLTE")}func (e *encoder) maybeWritetRNS(p color.Palette) {last := -1for i, c := range p {_, _, _, a := c.RGBA()if a != 0xffff {last = i}e.tmp[i] = uint8(a >> 8)}if last == -1 {return}e.writeChunk(e.tmp[:last+1], "tRNS")}// An encoder is an io.Writer that satisfies writes by writing PNG IDAT chunks,// including an 8-byte header and 4-byte CRC checksum per Write call. Such calls// should be relatively infrequent, since writeIDATs uses a bufio.Writer.//// This method should only be called from writeIDATs (via writeImage).// No other code should treat an encoder as an io.Writer.func (e *encoder) Write(b []byte) (int, error) {e.writeChunk(b, "IDAT")if e.err != nil {return 0, e.err}return len(b), nil}// Chooses the filter to use for encoding the current row, and applies it.// The return value is the index of the filter and also of the row in cr that has had it applied.func filter(cr *[nFilter][]byte, pr []byte, bpp int) int {// We try all five filter types, and pick the one that minimizes the sum of absolute differences.// This is the same heuristic that libpng uses, although the filters are attempted in order of// estimated most likely to be minimal (ftUp, ftPaeth, ftNone, ftSub, ftAverage), rather than// in their enumeration order (ftNone, ftSub, ftUp, ftAverage, ftPaeth).cdat0 := cr[0][1:]cdat1 := cr[1][1:]cdat2 := cr[2][1:]cdat3 := cr[3][1:]cdat4 := cr[4][1:]pdat := pr[1:]n := len(cdat0)// The up filter.sum := 0for i := 0; i < n; i++ {cdat2[i] = cdat0[i] - pdat[i]sum += abs8(cdat2[i])}best := sumfilter := ftUp// The Paeth filter.sum = 0for i := 0; i < bpp; i++ {cdat4[i] = cdat0[i] - paeth(0, pdat[i], 0)sum += abs8(cdat4[i])}for i := bpp; i < n; i++ {cdat4[i] = cdat0[i] - paeth(cdat0[i-bpp], pdat[i], pdat[i-bpp])sum += abs8(cdat4[i])if sum >= best {break}}if sum < best {best = sumfilter = ftPaeth}// The none filter.sum = 0for i := 0; i < n; i++ {sum += abs8(cdat0[i])if sum >= best {break}}if sum < best {best = sumfilter = ftNone}// The sub filter.sum = 0for i := 0; i < bpp; i++ {cdat1[i] = cdat0[i]sum += abs8(cdat1[i])}for i := bpp; i < n; i++ {cdat1[i] = cdat0[i] - cdat0[i-bpp]sum += abs8(cdat1[i])if sum >= best {break}}if sum < best {best = sumfilter = ftSub}// The average filter.sum = 0for i := 0; i < bpp; i++ {cdat3[i] = cdat0[i] - pdat[i]/2sum += abs8(cdat3[i])}for i := bpp; i < n; i++ {cdat3[i] = cdat0[i] - uint8((int(cdat0[i-bpp])+int(pdat[i]))/2)sum += abs8(cdat3[i])if sum >= best {break}}if sum < best {best = sumfilter = ftAverage}return filter}func writeImage(w io.Writer, m image.Image, cb int) error {zw, err := zlib.NewWriter(w)if err != nil {return err}defer zw.Close()bpp := 0 // Bytes per pixel.switch cb {case cbG8:bpp = 1case cbTC8:bpp = 3case cbP8:bpp = 1case cbTCA8:bpp = 4case cbTC16:bpp = 6case cbTCA16:bpp = 8case cbG16:bpp = 2}// cr[*] and pr are the bytes for the current and previous row.// cr[0] is unfiltered (or equivalently, filtered with the ftNone filter).// cr[ft], for non-zero filter types ft, are buffers for transforming cr[0] under the// other PNG filter types. These buffers are allocated once and re-used for each row.// The +1 is for the per-row filter type, which is at cr[*][0].b := m.Bounds()var cr [nFilter][]uint8for i := range cr {cr[i] = make([]uint8, 1+bpp*b.Dx())cr[i][0] = uint8(i)}pr := make([]uint8, 1+bpp*b.Dx())for y := b.Min.Y; y < b.Max.Y; y++ {// Convert from colors to bytes.i := 1switch cb {case cbG8:for x := b.Min.X; x < b.Max.X; x++ {c := color.GrayModel.Convert(m.At(x, y)).(color.Gray)cr[0][i] = c.Yi++}case cbTC8:// We have previously verified that the alpha value is fully opaque.cr0 := cr[0]if rgba, _ := m.(*image.RGBA); rgba != nil {j0 := (y - b.Min.Y) * rgba.Stridej1 := j0 + b.Dx()*4for j := j0; j < j1; j += 4 {cr0[i+0] = rgba.Pix[j+0]cr0[i+1] = rgba.Pix[j+1]cr0[i+2] = rgba.Pix[j+2]i += 3}} else {for x := b.Min.X; x < b.Max.X; x++ {r, g, b, _ := m.At(x, y).RGBA()cr0[i+0] = uint8(r >> 8)cr0[i+1] = uint8(g >> 8)cr0[i+2] = uint8(b >> 8)i += 3}}case cbP8:if p, _ := m.(*image.Paletted); p != nil {offset := (y - b.Min.Y) * p.Stridecopy(cr[0][1:], p.Pix[offset:offset+b.Dx()])} else {pi := m.(image.PalettedImage)for x := b.Min.X; x < b.Max.X; x++ {cr[0][i] = pi.ColorIndexAt(x, y)i += 1}}case cbTCA8:// Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied.for x := b.Min.X; x < b.Max.X; x++ {c := color.NRGBAModel.Convert(m.At(x, y)).(color.NRGBA)cr[0][i+0] = c.Rcr[0][i+1] = c.Gcr[0][i+2] = c.Bcr[0][i+3] = c.Ai += 4}case cbG16:for x := b.Min.X; x < b.Max.X; x++ {c := color.Gray16Model.Convert(m.At(x, y)).(color.Gray16)cr[0][i+0] = uint8(c.Y >> 8)cr[0][i+1] = uint8(c.Y)i += 2}case cbTC16:// We have previously verified that the alpha value is fully opaque.for x := b.Min.X; x < b.Max.X; x++ {r, g, b, _ := m.At(x, y).RGBA()cr[0][i+0] = uint8(r >> 8)cr[0][i+1] = uint8(r)cr[0][i+2] = uint8(g >> 8)cr[0][i+3] = uint8(g)cr[0][i+4] = uint8(b >> 8)cr[0][i+5] = uint8(b)i += 6}case cbTCA16:// Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied.for x := b.Min.X; x < b.Max.X; x++ {c := color.NRGBA64Model.Convert(m.At(x, y)).(color.NRGBA64)cr[0][i+0] = uint8(c.R >> 8)cr[0][i+1] = uint8(c.R)cr[0][i+2] = uint8(c.G >> 8)cr[0][i+3] = uint8(c.G)cr[0][i+4] = uint8(c.B >> 8)cr[0][i+5] = uint8(c.B)cr[0][i+6] = uint8(c.A >> 8)cr[0][i+7] = uint8(c.A)i += 8}}// Apply the filter.f := filter(&cr, pr, bpp)// Write the compressed bytes._, err = zw.Write(cr[f])if err != nil {return err}// The current row for y is the previous row for y+1.pr, cr[0] = cr[0], pr}return nil}// Write the actual image data to one or more IDAT chunks.func (e *encoder) writeIDATs() {if e.err != nil {return}var bw *bufio.Writerbw = bufio.NewWriterSize(e, 1<<15)e.err = writeImage(bw, e.m, e.cb)if e.err != nil {return}e.err = bw.Flush()}func (e *encoder) writeIEND() { e.writeChunk(e.tmp[0:0], "IEND") }// Encode writes the Image m to w in PNG format. Any Image may be encoded, but// images that are not image.NRGBA might be encoded lossily.func Encode(w io.Writer, m image.Image) error {// Obviously, negative widths and heights are invalid. Furthermore, the PNG// spec section 11.2.2 says that zero is invalid. Excessively large images are// also rejected.mw, mh := int64(m.Bounds().Dx()), int64(m.Bounds().Dy())if mw <= 0 || mh <= 0 || mw >= 1<<32 || mh >= 1<<32 {return FormatError("invalid image size: " + strconv.FormatInt(mw, 10) + "x" + strconv.FormatInt(mw, 10))}var e encodere.w = we.m = mvar pal color.Palette// cbP8 encoding needs PalettedImage's ColorIndexAt method.if _, ok := m.(image.PalettedImage); ok {pal, _ = m.ColorModel().(color.Palette)}if pal != nil {e.cb = cbP8} else {switch m.ColorModel() {case color.GrayModel:e.cb = cbG8case color.Gray16Model:e.cb = cbG16case color.RGBAModel, color.NRGBAModel, color.AlphaModel:if opaque(m) {e.cb = cbTC8} else {e.cb = cbTCA8}default:if opaque(m) {e.cb = cbTC16} else {e.cb = cbTCA16}}}_, e.err = io.WriteString(w, pngHeader)e.writeIHDR()if pal != nil {e.writePLTE(pal)e.maybeWritetRNS(pal)}e.writeIDATs()e.writeIEND()return e.err}
