URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [index/] [suffixarray/] [qsufsort.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2011 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.// This algorithm is based on "Faster Suffix Sorting"// by N. Jesper Larsson and Kunihiko Sadakane// paper: http://www.larsson.dogma.net/ssrev-tr.pdf// code: http://www.larsson.dogma.net/qsufsort.c// This algorithm computes the suffix array sa by computing its inverse.// Consecutive groups of suffixes in sa are labeled as sorted groups or// unsorted groups. For a given pass of the sorter, all suffixes are ordered// up to their first h characters, and sa is h-ordered. Suffixes in their// final positions and unambiguouly sorted in h-order are in a sorted group.// Consecutive groups of suffixes with identical first h characters are an// unsorted group. In each pass of the algorithm, unsorted groups are sorted// according to the group number of their following suffix.// In the implementation, if sa[i] is negative, it indicates that i is// the first element of a sorted group of length -sa[i], and can be skipped.// An unsorted group sa[i:k] is given the group number of the index of its// last element, k-1. The group numbers are stored in the inverse slice (inv),// and when all groups are sorted, this slice is the inverse suffix array.package suffixarrayimport "sort"func qsufsort(data []byte) []int {// initial sorting by first byte of suffixsa := sortedByFirstByte(data)if len(sa) < 2 {return sa}// initialize the group lookup table// this becomes the inverse of the suffix array when all groups are sortedinv := initGroups(sa, data)// the index starts 1-orderedsufSortable := &suffixSortable{sa: sa, inv: inv, h: 1}for sa[0] > -len(sa) { // until all suffixes are one big sorted group// The suffixes are h-ordered, make them 2*h-orderedpi := 0 // pi is first position of first groupsl := 0 // sl is negated length of sorted groupsfor pi < len(sa) {if s := sa[pi]; s < 0 { // if pi starts sorted grouppi -= s // skip over sorted groupsl += s // add negated length to sl} else { // if pi starts unsorted groupif sl != 0 {sa[pi+sl] = sl // combine sorted groups before pisl = 0}pk := inv[s] + 1 // pk-1 is last position of unsorted groupsufSortable.sa = sa[pi:pk]sort.Sort(sufSortable)sufSortable.updateGroups(pi)pi = pk // next group}}if sl != 0 { // if the array ends with a sorted groupsa[pi+sl] = sl // combine sorted groups at end of sa}sufSortable.h *= 2 // double sorted depth}for i := range sa { // reconstruct suffix array from inversesa[inv[i]] = i}return sa}func sortedByFirstByte(data []byte) []int {// total byte countsvar count [256]intfor _, b := range data {count[b]++}// make count[b] equal index of first occurence of b in sorted arraysum := 0for b := range count {count[b], sum = sum, count[b]+sum}// iterate through bytes, placing index into the correct spot in sasa := make([]int, len(data))for i, b := range data {sa[count[b]] = icount[b]++}return sa}func initGroups(sa []int, data []byte) []int {// label contiguous same-letter groups with the same group numberinv := make([]int, len(data))prevGroup := len(sa) - 1groupByte := data[sa[prevGroup]]for i := len(sa) - 1; i >= 0; i-- {if b := data[sa[i]]; b < groupByte {if prevGroup == i+1 {sa[i+1] = -1}groupByte = bprevGroup = i}inv[sa[i]] = prevGroupif prevGroup == 0 {sa[0] = -1}}// Separate out the final suffix to the start of its group.// This is necessary to ensure the suffix "a" is before "aba"// when using a potentially unstable sort.lastByte := data[len(data)-1]s := -1for i := range sa {if sa[i] >= 0 {if data[sa[i]] == lastByte && s == -1 {s = i}if sa[i] == len(sa)-1 {sa[i], sa[s] = sa[s], sa[i]inv[sa[s]] = ssa[s] = -1 // mark it as an isolated sorted groupbreak}}}return inv}type suffixSortable struct {sa []intinv []inth intbuf []int // common scratch space}func (x *suffixSortable) Len() int { return len(x.sa) }func (x *suffixSortable) Less(i, j int) bool { return x.inv[x.sa[i]+x.h] < x.inv[x.sa[j]+x.h] }func (x *suffixSortable) Swap(i, j int) { x.sa[i], x.sa[j] = x.sa[j], x.sa[i] }func (x *suffixSortable) updateGroups(offset int) {bounds := x.buf[0:0]group := x.inv[x.sa[0]+x.h]for i := 1; i < len(x.sa); i++ {if g := x.inv[x.sa[i]+x.h]; g > group {bounds = append(bounds, i)group = g}}bounds = append(bounds, len(x.sa))x.buf = bounds// update the group numberings after all new groups are determinedprev := 0for _, b := range bounds {for i := prev; i < b; i++ {x.inv[x.sa[i]] = offset + b - 1}if b-prev == 1 {x.sa[prev] = -1}prev = b}}
