URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [big/] [int.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.// This file implements signed multi-precision integers.package bigimport ("errors""fmt""io""math/rand""strings")// An Int represents a signed multi-precision integer.// The zero value for an Int represents the value 0.type Int struct {neg bool // signabs nat // absolute value of the integer}var intOne = &Int{false, natOne}// Sign returns://// -1 if x < 0// 0 if x == 0// +1 if x > 0//func (x *Int) Sign() int {if len(x.abs) == 0 {return 0}if x.neg {return -1}return 1}// SetInt64 sets z to x and returns z.func (z *Int) SetInt64(x int64) *Int {neg := falseif x < 0 {neg = truex = -x}z.abs = z.abs.setUint64(uint64(x))z.neg = negreturn z}// NewInt allocates and returns a new Int set to x.func NewInt(x int64) *Int {return new(Int).SetInt64(x)}// Set sets z to x and returns z.func (z *Int) Set(x *Int) *Int {if z != x {z.abs = z.abs.set(x.abs)z.neg = x.neg}return z}// Bits provides raw (unchecked but fast) access to x by returning its// absolute value as a little-endian Word slice. The result and x share// the same underlying array.// Bits is intended to support implementation of missing low-level Int// functionality outside this package; it should be avoided otherwise.func (x *Int) Bits() []Word {return x.abs}// SetBits provides raw (unchecked but fast) access to z by setting its// value to abs, interpreted as a little-endian Word slice, and returning// z. The result and abs share the same underlying array.// SetBits is intended to support implementation of missing low-level Int// functionality outside this package; it should be avoided otherwise.func (z *Int) SetBits(abs []Word) *Int {z.abs = nat(abs).norm()z.neg = falsereturn z}// Abs sets z to |x| (the absolute value of x) and returns z.func (z *Int) Abs(x *Int) *Int {z.Set(x)z.neg = falsereturn z}// Neg sets z to -x and returns z.func (z *Int) Neg(x *Int) *Int {z.Set(x)z.neg = len(z.abs) > 0 && !z.neg // 0 has no signreturn z}// Add sets z to the sum x+y and returns z.func (z *Int) Add(x, y *Int) *Int {neg := x.negif x.neg == y.neg {// x + y == x + y// (-x) + (-y) == -(x + y)z.abs = z.abs.add(x.abs, y.abs)} else {// x + (-y) == x - y == -(y - x)// (-x) + y == y - x == -(x - y)if x.abs.cmp(y.abs) >= 0 {z.abs = z.abs.sub(x.abs, y.abs)} else {neg = !negz.abs = z.abs.sub(y.abs, x.abs)}}z.neg = len(z.abs) > 0 && neg // 0 has no signreturn z}// Sub sets z to the difference x-y and returns z.func (z *Int) Sub(x, y *Int) *Int {neg := x.negif x.neg != y.neg {// x - (-y) == x + y// (-x) - y == -(x + y)z.abs = z.abs.add(x.abs, y.abs)} else {// x - y == x - y == -(y - x)// (-x) - (-y) == y - x == -(x - y)if x.abs.cmp(y.abs) >= 0 {z.abs = z.abs.sub(x.abs, y.abs)} else {neg = !negz.abs = z.abs.sub(y.abs, x.abs)}}z.neg = len(z.abs) > 0 && neg // 0 has no signreturn z}// Mul sets z to the product x*y and returns z.func (z *Int) Mul(x, y *Int) *Int {// x * y == x * y// x * (-y) == -(x * y)// (-x) * y == -(x * y)// (-x) * (-y) == x * yz.abs = z.abs.mul(x.abs, y.abs)z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no signreturn z}// MulRange sets z to the product of all integers// in the range [a, b] inclusively and returns z.// If a > b (empty range), the result is 1.func (z *Int) MulRange(a, b int64) *Int {switch {case a > b:return z.SetInt64(1) // empty rangecase a <= 0 && b >= 0:return z.SetInt64(0) // range includes 0}// a <= b && (b < 0 || a > 0)neg := falseif a < 0 {neg = (b-a)&1 == 0a, b = -b, -a}z.abs = z.abs.mulRange(uint64(a), uint64(b))z.neg = negreturn z}// Binomial sets z to the binomial coefficient of (n, k) and returns z.func (z *Int) Binomial(n, k int64) *Int {var a, b Inta.MulRange(n-k+1, n)b.MulRange(1, k)return z.Quo(&a, &b)}// Quo sets z to the quotient x/y for y != 0 and returns z.// If y == 0, a division-by-zero run-time panic occurs.// Quo implements truncated division (like Go); see QuoRem for more details.func (z *Int) Quo(x, y *Int) *Int {z.abs, _ = z.abs.div(nil, x.abs, y.abs)z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no signreturn z}// Rem sets z to the remainder x%y for y != 0 and returns z.// If y == 0, a division-by-zero run-time panic occurs.// Rem implements truncated modulus (like Go); see QuoRem for more details.func (z *Int) Rem(x, y *Int) *Int {_, z.abs = nat(nil).div(z.abs, x.abs, y.abs)z.neg = len(z.abs) > 0 && x.neg // 0 has no signreturn z}// QuoRem sets z to the quotient x/y and r to the remainder x%y// and returns the pair (z, r) for y != 0.// If y == 0, a division-by-zero run-time panic occurs.//// QuoRem implements T-division and modulus (like Go)://// q = x/y with the result truncated to zero// r = x - y*q//// (See Daan Leijen, ``Division and Modulus for Computer Scientists''.)// See DivMod for Euclidean division and modulus (unlike Go).//func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no signreturn z, r}// Div sets z to the quotient x/y for y != 0 and returns z.// If y == 0, a division-by-zero run-time panic occurs.// Div implements Euclidean division (unlike Go); see DivMod for more details.func (z *Int) Div(x, y *Int) *Int {y_neg := y.neg // z may be an alias for yvar r Intz.QuoRem(x, y, &r)if r.neg {if y_neg {z.Add(z, intOne)} else {z.Sub(z, intOne)}}return z}// Mod sets z to the modulus x%y for y != 0 and returns z.// If y == 0, a division-by-zero run-time panic occurs.// Mod implements Euclidean modulus (unlike Go); see DivMod for more details.func (z *Int) Mod(x, y *Int) *Int {y0 := y // save yif z == y || alias(z.abs, y.abs) {y0 = new(Int).Set(y)}var q Intq.QuoRem(x, y, z)if z.neg {if y0.neg {z.Sub(z, y0)} else {z.Add(z, y0)}}return z}// DivMod sets z to the quotient x div y and m to the modulus x mod y// and returns the pair (z, m) for y != 0.// If y == 0, a division-by-zero run-time panic occurs.//// DivMod implements Euclidean division and modulus (unlike Go)://// q = x div y such that// m = x - y*q with 0 <= m < |q|//// (See Raymond T. Boute, ``The Euclidean definition of the functions// div and mod''. ACM Transactions on Programming Languages and// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.// ACM press.)// See QuoRem for T-division and modulus (like Go).//func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {y0 := y // save yif z == y || alias(z.abs, y.abs) {y0 = new(Int).Set(y)}z.QuoRem(x, y, m)if m.neg {if y0.neg {z.Add(z, intOne)m.Sub(m, y0)} else {z.Sub(z, intOne)m.Add(m, y0)}}return z, m}// Cmp compares x and y and returns://// -1 if x < y// 0 if x == y// +1 if x > y//func (x *Int) Cmp(y *Int) (r int) {// x cmp y == x cmp y// x cmp (-y) == x// (-x) cmp y == y// (-x) cmp (-y) == -(x cmp y)switch {case x.neg == y.neg:r = x.abs.cmp(y.abs)if x.neg {r = -r}case x.neg:r = -1default:r = 1}return}func (x *Int) String() string {switch {case x == nil:return "<nil>"case x.neg:return "-" + x.abs.decimalString()}return x.abs.decimalString()}func charset(ch rune) string {switch ch {case 'b':return lowercaseDigits[0:2]case 'o':return lowercaseDigits[0:8]case 'd', 's', 'v':return lowercaseDigits[0:10]case 'x':return lowercaseDigits[0:16]case 'X':return uppercaseDigits[0:16]}return "" // unknown format}// write count copies of text to sfunc writeMultiple(s fmt.State, text string, count int) {if len(text) > 0 {b := []byte(text)for ; count > 0; count-- {s.Write(b)}}}// Format is a support routine for fmt.Formatter. It accepts// the formats 'b' (binary), 'o' (octal), 'd' (decimal), 'x'// (lowercase hexadecimal), and 'X' (uppercase hexadecimal).// Also supported are the full suite of package fmt's format// verbs for integral types, including '+', '-', and ' '// for sign control, '#' for leading zero in octal and for// hexadecimal, a leading "0x" or "0X" for "%#x" and "%#X"// respectively, specification of minimum digits precision,// output field width, space or zero padding, and left or// right justification.//func (x *Int) Format(s fmt.State, ch rune) {cs := charset(ch)// special casesswitch {case cs == "":// unknown formatfmt.Fprintf(s, "%%!%c(big.Int=%s)", ch, x.String())returncase x == nil:fmt.Fprint(s, "<nil>")return}// determine sign charactersign := ""switch {case x.neg:sign = "-"case s.Flag('+'): // supersedes ' ' when both specifiedsign = "+"case s.Flag(' '):sign = " "}// determine prefix characters for indicating output baseprefix := ""if s.Flag('#') {switch ch {case 'o': // octalprefix = "0"case 'x': // hexadecimalprefix = "0x"case 'X':prefix = "0X"}}// determine digits with base set by len(cs) and digit characters from csdigits := x.abs.string(cs)// number of characters for the three classes of number paddingvar left int // space characters to left of digits for right justification ("%8d")var zeroes int // zero characters (actually cs[0]) as left-most digits ("%.8d")var right int // space characters to right of digits for left justification ("%-8d")// determine number padding from precision: the least number of digits to outputprecision, precisionSet := s.Precision()if precisionSet {switch {case len(digits) < precision:zeroes = precision - len(digits) // count of zero paddingcase digits == "0" && precision == 0:return // print nothing if zero value (x == 0) and zero precision ("." or ".0")}}// determine field pad from width: the least number of characters to outputlength := len(sign) + len(prefix) + zeroes + len(digits)if width, widthSet := s.Width(); widthSet && length < width { // pad as specifiedswitch d := width - length; {case s.Flag('-'):// pad on the right with spaces; supersedes '0' when both specifiedright = dcase s.Flag('0') && !precisionSet:// pad with zeroes unless precision also specifiedzeroes = ddefault:// pad on the left with spacesleft = d}}// print number as [left pad][sign][prefix][zero pad][digits][right pad]writeMultiple(s, " ", left)writeMultiple(s, sign, 1)writeMultiple(s, prefix, 1)writeMultiple(s, "0", zeroes)writeMultiple(s, digits, 1)writeMultiple(s, " ", right)}// scan sets z to the integer value corresponding to the longest possible prefix// read from r representing a signed integer number in a given conversion base.// It returns z, the actual conversion base used, and an error, if any. In the// error case, the value of z is undefined but the returned value is nil. The// syntax follows the syntax of integer literals in Go.//// The base argument must be 0 or a value from 2 through MaxBase. If the base// is 0, the string prefix determines the actual conversion base. A prefix of// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.//func (z *Int) scan(r io.RuneScanner, base int) (*Int, int, error) {// determine signch, _, err := r.ReadRune()if err != nil {return nil, 0, err}neg := falseswitch ch {case '-':neg = truecase '+': // nothing to dodefault:r.UnreadRune()}// determine mantissaz.abs, base, err = z.abs.scan(r, base)if err != nil {return nil, base, err}z.neg = len(z.abs) > 0 && neg // 0 has no signreturn z, base, nil}// Scan is a support routine for fmt.Scanner; it sets z to the value of// the scanned number. It accepts the formats 'b' (binary), 'o' (octal),// 'd' (decimal), 'x' (lowercase hexadecimal), and 'X' (uppercase hexadecimal).func (z *Int) Scan(s fmt.ScanState, ch rune) error {s.SkipSpace() // skip leading space charactersbase := 0switch ch {case 'b':base = 2case 'o':base = 8case 'd':base = 10case 'x', 'X':base = 16case 's', 'v':// let scan determine the basedefault:return errors.New("Int.Scan: invalid verb")}_, _, err := z.scan(s, base)return err}// Int64 returns the int64 representation of x.// If x cannot be represented in an int64, the result is undefined.func (x *Int) Int64() int64 {if len(x.abs) == 0 {return 0}v := int64(x.abs[0])if _W == 32 && len(x.abs) > 1 {v |= int64(x.abs[1]) << 32}if x.neg {v = -v}return v}// SetString sets z to the value of s, interpreted in the given base,// and returns z and a boolean indicating success. If SetString fails,// the value of z is undefined but the returned value is nil.//// The base argument must be 0 or a value from 2 through MaxBase. If the base// is 0, the string prefix determines the actual conversion base. A prefix of// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.//func (z *Int) SetString(s string, base int) (*Int, bool) {r := strings.NewReader(s)_, _, err := z.scan(r, base)if err != nil {return nil, false}_, _, err = r.ReadRune()if err != io.EOF {return nil, false}return z, true // err == io.EOF => scan consumed all of s}// SetBytes interprets buf as the bytes of a big-endian unsigned// integer, sets z to that value, and returns z.func (z *Int) SetBytes(buf []byte) *Int {z.abs = z.abs.setBytes(buf)z.neg = falsereturn z}// Bytes returns the absolute value of z as a big-endian byte slice.func (x *Int) Bytes() []byte {buf := make([]byte, len(x.abs)*_S)return buf[x.abs.bytes(buf):]}// BitLen returns the length of the absolute value of z in bits.// The bit length of 0 is 0.func (x *Int) BitLen() int {return x.abs.bitLen()}// Exp sets z = x**y mod m and returns z. If m is nil, z = x**y.// See Knuth, volume 2, section 4.6.3.func (z *Int) Exp(x, y, m *Int) *Int {if y.neg || len(y.abs) == 0 {neg := x.negz.SetInt64(1)z.neg = negreturn z}var mWords natif m != nil {mWords = m.abs}z.abs = z.abs.expNN(x.abs, y.abs, mWords)z.neg = len(z.abs) > 0 && x.neg && y.abs[0]&1 == 1 // 0 has no signreturn z}// GCD sets z to the greatest common divisor of a and b, which must be// positive numbers, and returns z.// If x and y are not nil, GCD sets x and y such that z = a*x + b*y.// If either a or b is not positive, GCD sets z = x = y = 0.func (z *Int) GCD(x, y, a, b *Int) *Int {if a.neg || b.neg {z.SetInt64(0)if x != nil {x.SetInt64(0)}if y != nil {y.SetInt64(0)}return z}A := new(Int).Set(a)B := new(Int).Set(b)X := new(Int)Y := new(Int).SetInt64(1)lastX := new(Int).SetInt64(1)lastY := new(Int)q := new(Int)temp := new(Int)for len(B.abs) > 0 {r := new(Int)q, r = q.QuoRem(A, B, r)A, B = B, rtemp.Set(X)X.Mul(X, q)X.neg = !X.negX.Add(X, lastX)lastX.Set(temp)temp.Set(Y)Y.Mul(Y, q)Y.neg = !Y.negY.Add(Y, lastY)lastY.Set(temp)}if x != nil {*x = *lastX}if y != nil {*y = *lastY}*z = *Areturn z}// ProbablyPrime performs n Miller-Rabin tests to check whether x is prime.// If it returns true, x is prime with probability 1 - 1/4^n.// If it returns false, x is not prime.func (x *Int) ProbablyPrime(n int) bool {return !x.neg && x.abs.probablyPrime(n)}// Rand sets z to a pseudo-random number in [0, n) and returns z.func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {z.neg = falseif n.neg == true || len(n.abs) == 0 {z.abs = nilreturn z}z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())return z}// ModInverse sets z to the multiplicative inverse of g in the group ℤ/pℤ (where// p is a prime) and returns z.func (z *Int) ModInverse(g, p *Int) *Int {var d Intd.GCD(z, nil, g, p)// x and y are such that g*x + p*y = d. Since p is prime, d = 1. Taking// that modulo p results in g*x = 1, therefore x is the inverse element.if z.neg {z.Add(z, p)}return z}// Lsh sets z = x << n and returns z.func (z *Int) Lsh(x *Int, n uint) *Int {z.abs = z.abs.shl(x.abs, n)z.neg = x.negreturn z}// Rsh sets z = x >> n and returns z.func (z *Int) Rsh(x *Int, n uint) *Int {if x.neg {// (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0t = t.shr(t, n)z.abs = t.add(t, natOne)z.neg = true // z cannot be zero if x is negativereturn z}z.abs = z.abs.shr(x.abs, n)z.neg = falsereturn z}// Bit returns the value of the i'th bit of x. That is, it// returns (x>>i)&1. The bit index i must be >= 0.func (x *Int) Bit(i int) uint {if i < 0 {panic("negative bit index")}if x.neg {t := nat(nil).sub(x.abs, natOne)return t.bit(uint(i)) ^ 1}return x.abs.bit(uint(i))}// SetBit sets z to x, with x's i'th bit set to b (0 or 1).// That is, if bit is 1 SetBit sets z = x | (1 << i);// if bit is 0 it sets z = x &^ (1 << i). If bit is not 0 or 1,// SetBit will panic.func (z *Int) SetBit(x *Int, i int, b uint) *Int {if i < 0 {panic("negative bit index")}if x.neg {t := z.abs.sub(x.abs, natOne)t = t.setBit(t, uint(i), b^1)z.abs = t.add(t, natOne)z.neg = len(z.abs) > 0return z}z.abs = z.abs.setBit(x.abs, uint(i), b)z.neg = falsereturn z}// And sets z = x & y and returns z.func (z *Int) And(x, y *Int) *Int {if x.neg == y.neg {if x.neg {// (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)x1 := nat(nil).sub(x.abs, natOne)y1 := nat(nil).sub(y.abs, natOne)z.abs = z.abs.add(z.abs.or(x1, y1), natOne)z.neg = true // z cannot be zero if x and y are negativereturn z}// x & y == x & yz.abs = z.abs.and(x.abs, y.abs)z.neg = falsereturn z}// x.neg != y.negif x.neg {x, y = y, x // & is symmetric}// x & (-y) == x & ^(y-1) == x &^ (y-1)y1 := nat(nil).sub(y.abs, natOne)z.abs = z.abs.andNot(x.abs, y1)z.neg = falsereturn z}// AndNot sets z = x &^ y and returns z.func (z *Int) AndNot(x, y *Int) *Int {if x.neg == y.neg {if x.neg {// (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)x1 := nat(nil).sub(x.abs, natOne)y1 := nat(nil).sub(y.abs, natOne)z.abs = z.abs.andNot(y1, x1)z.neg = falsereturn z}// x &^ y == x &^ yz.abs = z.abs.andNot(x.abs, y.abs)z.neg = falsereturn z}if x.neg {// (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)x1 := nat(nil).sub(x.abs, natOne)z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)z.neg = true // z cannot be zero if x is negative and y is positivereturn z}// x &^ (-y) == x &^ ^(y-1) == x & (y-1)y1 := nat(nil).add(y.abs, natOne)z.abs = z.abs.and(x.abs, y1)z.neg = falsereturn z}// Or sets z = x | y and returns z.func (z *Int) Or(x, y *Int) *Int {if x.neg == y.neg {if x.neg {// (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)x1 := nat(nil).sub(x.abs, natOne)y1 := nat(nil).sub(y.abs, natOne)z.abs = z.abs.add(z.abs.and(x1, y1), natOne)z.neg = true // z cannot be zero if x and y are negativereturn z}// x | y == x | yz.abs = z.abs.or(x.abs, y.abs)z.neg = falsereturn z}// x.neg != y.negif x.neg {x, y = y, x // | is symmetric}// x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)y1 := nat(nil).sub(y.abs, natOne)z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)z.neg = true // z cannot be zero if one of x or y is negativereturn z}// Xor sets z = x ^ y and returns z.func (z *Int) Xor(x, y *Int) *Int {if x.neg == y.neg {if x.neg {// (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)x1 := nat(nil).sub(x.abs, natOne)y1 := nat(nil).sub(y.abs, natOne)z.abs = z.abs.xor(x1, y1)z.neg = falsereturn z}// x ^ y == x ^ yz.abs = z.abs.xor(x.abs, y.abs)z.neg = falsereturn z}// x.neg != y.negif x.neg {x, y = y, x // ^ is symmetric}// x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)y1 := nat(nil).sub(y.abs, natOne)z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)z.neg = true // z cannot be zero if only one of x or y is negativereturn z}// Not sets z = ^x and returns z.func (z *Int) Not(x *Int) *Int {if x.neg {// ^(-x) == ^(^(x-1)) == x-1z.abs = z.abs.sub(x.abs, natOne)z.neg = falsereturn z}// ^x == -x-1 == -(x+1)z.abs = z.abs.add(x.abs, natOne)z.neg = true // z cannot be zero if x is positivereturn z}// Gob codec version. Permits backward-compatible changes to the encoding.const intGobVersion byte = 1// GobEncode implements the gob.GobEncoder interface.func (x *Int) GobEncode() ([]byte, error) {buf := make([]byte, 1+len(x.abs)*_S) // extra byte for version and sign biti := x.abs.bytes(buf) - 1 // i >= 0b := intGobVersion << 1 // make space for sign bitif x.neg {b |= 1}buf[i] = breturn buf[i:], nil}// GobDecode implements the gob.GobDecoder interface.func (z *Int) GobDecode(buf []byte) error {if len(buf) == 0 {return errors.New("Int.GobDecode: no data")}b := buf[0]if b>>1 != intGobVersion {return errors.New(fmt.Sprintf("Int.GobDecode: encoding version %d not supported", b>>1))}z.neg = b&1 != 0z.abs = z.abs.setBytes(buf[1:])return nil}
