URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [big/] [nat.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.// Package big implements multi-precision arithmetic (big numbers).// The following numeric types are supported://// - Int signed integers// - Rat rational numbers//// Methods are typically of the form://// func (z *Int) Op(x, y *Int) *Int (similar for *Rat)//// and implement operations z = x Op y with the result as receiver; if it// is one of the operands it may be overwritten (and its memory reused).// To enable chaining of operations, the result is also returned. Methods// returning a result other than *Int or *Rat take one of the operands as// the receiver.//package big// This file contains operations on unsigned multi-precision integers.// These are the building blocks for the operations on signed integers// and rationals.import ("errors""io""math""math/rand""sync")// An unsigned integer x of the form//// x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0]//// with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n,// with the digits x[i] as the slice elements.//// A number is normalized if the slice contains no leading 0 digits.// During arithmetic operations, denormalized values may occur but are// always normalized before returning the final result. The normalized// representation of 0 is the empty or nil slice (length = 0).//type nat []Wordvar (natOne = nat{1}natTwo = nat{2}natTen = nat{10})func (z nat) clear() {for i := range z {z[i] = 0}}func (z nat) norm() nat {i := len(z)for i > 0 && z[i-1] == 0 {i--}return z[0:i]}func (z nat) make(n int) nat {if n <= cap(z) {return z[0:n] // reuse z}// Choosing a good value for e has significant performance impact// because it increases the chance that a value can be reused.const e = 4 // extra capacityreturn make(nat, n, n+e)}func (z nat) setWord(x Word) nat {if x == 0 {return z.make(0)}z = z.make(1)z[0] = xreturn z}func (z nat) setUint64(x uint64) nat {// single-digit valuesif w := Word(x); uint64(w) == x {return z.setWord(w)}// compute number of words n required to represent xn := 0for t := x; t > 0; t >>= _W {n++}// split x into n wordsz = z.make(n)for i := range z {z[i] = Word(x & _M)x >>= _W}return z}func (z nat) set(x nat) nat {z = z.make(len(x))copy(z, x)return z}func (z nat) add(x, y nat) nat {m := len(x)n := len(y)switch {case m < n:return z.add(y, x)case m == 0:// n == 0 because m >= n; result is 0return z.make(0)case n == 0:// result is xreturn z.set(x)}// m > 0z = z.make(m + 1)c := addVV(z[0:n], x, y)if m > n {c = addVW(z[n:m], x[n:], c)}z[m] = creturn z.norm()}func (z nat) sub(x, y nat) nat {m := len(x)n := len(y)switch {case m < n:panic("underflow")case m == 0:// n == 0 because m >= n; result is 0return z.make(0)case n == 0:// result is xreturn z.set(x)}// m > 0z = z.make(m)c := subVV(z[0:n], x, y)if m > n {c = subVW(z[n:], x[n:], c)}if c != 0 {panic("underflow")}return z.norm()}func (x nat) cmp(y nat) (r int) {m := len(x)n := len(y)if m != n || m == 0 {switch {case m < n:r = -1case m > n:r = 1}return}i := m - 1for i > 0 && x[i] == y[i] {i--}switch {case x[i] < y[i]:r = -1case x[i] > y[i]:r = 1}return}func (z nat) mulAddWW(x nat, y, r Word) nat {m := len(x)if m == 0 || y == 0 {return z.setWord(r) // result is r}// m > 0z = z.make(m + 1)z[m] = mulAddVWW(z[0:m], x, y, r)return z.norm()}// basicMul multiplies x and y and leaves the result in z.// The (non-normalized) result is placed in z[0 : len(x) + len(y)].func basicMul(z, x, y nat) {z[0 : len(x)+len(y)].clear() // initialize zfor i, d := range y {if d != 0 {z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d)}}}// Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks.// Factored out for readability - do not use outside karatsuba.func karatsubaAdd(z, x nat, n int) {if c := addVV(z[0:n], z, x); c != 0 {addVW(z[n:n+n>>1], z[n:], c)}}// Like karatsubaAdd, but does subtract.func karatsubaSub(z, x nat, n int) {if c := subVV(z[0:n], z, x); c != 0 {subVW(z[n:n+n>>1], z[n:], c)}}// Operands that are shorter than karatsubaThreshold are multiplied using// "grade school" multiplication; for longer operands the Karatsuba algorithm// is used.var karatsubaThreshold int = 32 // computed by calibrate.go// karatsuba multiplies x and y and leaves the result in z.// Both x and y must have the same length n and n must be a// power of 2. The result vector z must have len(z) >= 6*n.// The (non-normalized) result is placed in z[0 : 2*n].func karatsuba(z, x, y nat) {n := len(y)// Switch to basic multiplication if numbers are odd or small.// (n is always even if karatsubaThreshold is even, but be// conservative)if n&1 != 0 || n < karatsubaThreshold || n < 2 {basicMul(z, x, y)return}// n&1 == 0 && n >= karatsubaThreshold && n >= 2// Karatsuba multiplication is based on the observation that// for two numbers x and y with://// x = x1*b + x0// y = y1*b + y0//// the product x*y can be obtained with 3 products z2, z1, z0// instead of 4://// x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0// = z2*b*b + z1*b + z0//// with://// xd = x1 - x0// yd = y0 - y1//// z1 = xd*yd + z1 + z0// = (x1-x0)*(y0 - y1) + z1 + z0// = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z1 + z0// = x1*y0 - z1 - z0 + x0*y1 + z1 + z0// = x1*y0 + x0*y1// split x, y into "digits"n2 := n >> 1 // n2 >= 1x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0// z is used for the result and temporary storage://// 6*n 5*n 4*n 3*n 2*n 1*n 0*n// z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ]//// For each recursive call of karatsuba, an unused slice of// z is passed in that has (at least) half the length of the// caller's z.// compute z0 and z2 with the result "in place" in zkaratsuba(z, x0, y0) // z0 = x0*y0karatsuba(z[n:], x1, y1) // z2 = x1*y1// compute xd (or the negative value if underflow occurs)s := 1 // sign of product xd*ydxd := z[2*n : 2*n+n2]if subVV(xd, x1, x0) != 0 { // x1-x0s = -ssubVV(xd, x0, x1) // x0-x1}// compute yd (or the negative value if underflow occurs)yd := z[2*n+n2 : 3*n]if subVV(yd, y0, y1) != 0 { // y0-y1s = -ssubVV(yd, y1, y0) // y1-y0}// p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0// p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0p := z[n*3:]karatsuba(p, xd, yd)// save original z2:z0// (ok to use upper half of z since we're done recursing)r := z[n*4:]copy(r, z)// add up all partial products//// 2*n n 0// z = [ z2 | z0 ]// + [ z0 ]// + [ z2 ]// + [ p ]//karatsubaAdd(z[n2:], r, n)karatsubaAdd(z[n2:], r[n:], n)if s > 0 {karatsubaAdd(z[n2:], p, n)} else {karatsubaSub(z[n2:], p, n)}}// alias returns true if x and y share the same base array.func alias(x, y nat) bool {return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1]}// addAt implements z += x*(1<<(_W*i)); z must be long enough.// (we don't use nat.add because we need z to stay the same// slice, and we don't need to normalize z after each addition)func addAt(z, x nat, i int) {if n := len(x); n > 0 {if c := addVV(z[i:i+n], z[i:], x); c != 0 {j := i + nif j < len(z) {addVW(z[j:], z[j:], c)}}}}func max(x, y int) int {if x > y {return x}return y}// karatsubaLen computes an approximation to the maximum k <= n such that// k = p<<i for a number p <= karatsubaThreshold and an i >= 0. Thus, the// result is the largest number that can be divided repeatedly by 2 before// becoming about the value of karatsubaThreshold.func karatsubaLen(n int) int {i := uint(0)for n > karatsubaThreshold {n >>= 1i++}return n << i}func (z nat) mul(x, y nat) nat {m := len(x)n := len(y)switch {case m < n:return z.mul(y, x)case m == 0 || n == 0:return z.make(0)case n == 1:return z.mulAddWW(x, y[0], 0)}// m >= n > 1// determine if z can be reusedif alias(z, x) || alias(z, y) {z = nil // z is an alias for x or y - cannot reuse}// use basic multiplication if the numbers are smallif n < karatsubaThreshold || n < 2 {z = z.make(m + n)basicMul(z, x, y)return z.norm()}// m >= n && n >= karatsubaThreshold && n >= 2// determine Karatsuba length k such that//// x = x1*b + x0// y = y1*b + y0 (and k <= len(y), which implies k <= len(x))// b = 1<<(_W*k) ("base" of digits xi, yi)//k := karatsubaLen(n)// k <= n// multiply x0 and y0 via Karatsubax0 := x[0:k] // x0 is not normalizedy0 := y[0:k] // y0 is not normalizedz = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*ykaratsuba(z, x0, y0)z = z[0 : m+n] // z has final length but may be incomplete, upper portion is garbage// If x1 and/or y1 are not 0, add missing terms to z explicitly://// m+n 2*k 0// z = [ ... | x0*y0 ]// + [ x1*y1 ]// + [ x1*y0 ]// + [ x0*y1 ]//if k < n || m != n {x1 := x[k:] // x1 is normalized because x isy1 := y[k:] // y1 is normalized because y isvar t natt = t.mul(x1, y1)copy(z[2*k:], t)z[2*k+len(t):].clear() // upper portion of z is garbaget = t.mul(x1, y0.norm())addAt(z, t, k)t = t.mul(x0.norm(), y1)addAt(z, t, k)}return z.norm()}// mulRange computes the product of all the unsigned integers in the// range [a, b] inclusively. If a > b (empty range), the result is 1.func (z nat) mulRange(a, b uint64) nat {switch {case a == 0:// cut long ranges short (optimization)return z.setUint64(0)case a > b:return z.setUint64(1)case a == b:return z.setUint64(a)case a+1 == b:return z.mul(nat(nil).setUint64(a), nat(nil).setUint64(b))}m := (a + b) / 2return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b))}// q = (x-r)/y, with 0 <= r < yfunc (z nat) divW(x nat, y Word) (q nat, r Word) {m := len(x)switch {case y == 0:panic("division by zero")case y == 1:q = z.set(x) // result is xreturncase m == 0:q = z.make(0) // result is 0return}// m > 0z = z.make(m)r = divWVW(z, 0, x, y)q = z.norm()return}func (z nat) div(z2, u, v nat) (q, r nat) {if len(v) == 0 {panic("division by zero")}if u.cmp(v) < 0 {q = z.make(0)r = z2.set(u)return}if len(v) == 1 {var rprime Wordq, rprime = z.divW(u, v[0])if rprime > 0 {r = z2.make(1)r[0] = rprime} else {r = z2.make(0)}return}q, r = z.divLarge(z2, u, v)return}// q = (uIn-r)/v, with 0 <= r < y// Uses z as storage for q, and u as storage for r if possible.// See Knuth, Volume 2, section 4.3.1, Algorithm D.// Preconditions:// len(v) >= 2// len(uIn) >= len(v)func (z nat) divLarge(u, uIn, v nat) (q, r nat) {n := len(v)m := len(uIn) - n// determine if z can be reused// TODO(gri) should find a better solution - this if statement// is very costly (see e.g. time pidigits -s -n 10000)if alias(z, uIn) || alias(z, v) {z = nil // z is an alias for uIn or v - cannot reuse}q = z.make(m + 1)qhatv := make(nat, n+1)if alias(u, uIn) || alias(u, v) {u = nil // u is an alias for uIn or v - cannot reuse}u = u.make(len(uIn) + 1)u.clear()// D1.shift := leadingZeros(v[n-1])if shift > 0 {// do not modify v, it may be used by another goroutine simultaneouslyv1 := make(nat, n)shlVU(v1, v, shift)v = v1}u[len(uIn)] = shlVU(u[0:len(uIn)], uIn, shift)// D2.for j := m; j >= 0; j-- {// D3.qhat := Word(_M)if u[j+n] != v[n-1] {var rhat Wordqhat, rhat = divWW(u[j+n], u[j+n-1], v[n-1])// x1 | x2 = q̂v_{n-2}x1, x2 := mulWW(qhat, v[n-2])// test if q̂v_{n-2} > br̂ + u_{j+n-2}for greaterThan(x1, x2, rhat, u[j+n-2]) {qhat--prevRhat := rhatrhat += v[n-1]// v[n-1] >= 0, so this tests for overflow.if rhat < prevRhat {break}x1, x2 = mulWW(qhat, v[n-2])}}// D4.qhatv[n] = mulAddVWW(qhatv[0:n], v, qhat, 0)c := subVV(u[j:j+len(qhatv)], u[j:], qhatv)if c != 0 {c := addVV(u[j:j+n], u[j:], v)u[j+n] += cqhat--}q[j] = qhat}q = q.norm()shrVU(u, u, shift)r = u.norm()return q, r}// Length of x in bits. x must be normalized.func (x nat) bitLen() int {if i := len(x) - 1; i >= 0 {return i*_W + bitLen(x[i])}return 0}// MaxBase is the largest number base accepted for string conversions.const MaxBase = 'z' - 'a' + 10 + 1 // = hexValue('z') + 1func hexValue(ch rune) Word {d := int(MaxBase + 1) // illegal baseswitch {case '0' <= ch && ch <= '9':d = int(ch - '0')case 'a' <= ch && ch <= 'z':d = int(ch - 'a' + 10)case 'A' <= ch && ch <= 'Z':d = int(ch - 'A' + 10)}return Word(d)}// scan sets z to the natural number corresponding to the longest possible prefix// read from r representing an unsigned integer in a given conversion base.// It returns z, the actual conversion base used, and an error, if any. In the// error case, the value of z is undefined. The syntax follows the syntax of// unsigned integer literals in Go.//// The base argument must be 0 or a value from 2 through MaxBase. If the base// is 0, the string prefix determines the actual conversion base. A prefix of// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.//func (z nat) scan(r io.RuneScanner, base int) (nat, int, error) {// reject illegal basesif base < 0 || base == 1 || MaxBase < base {return z, 0, errors.New("illegal number base")}// one char look-aheadch, _, err := r.ReadRune()if err != nil {return z, 0, err}// determine base if necessaryb := Word(base)if base == 0 {b = 10if ch == '0' {switch ch, _, err = r.ReadRune(); err {case nil:b = 8switch ch {case 'x', 'X':b = 16case 'b', 'B':b = 2}if b == 2 || b == 16 {if ch, _, err = r.ReadRune(); err != nil {return z, 0, err}}case io.EOF:return z.make(0), 10, nildefault:return z, 10, err}}}// convert string// - group as many digits d as possible together into a "super-digit" dd with "super-base" bb// - only when bb does not fit into a word anymore, do a full number mulAddWW using bb and ddz = z.make(0)bb := Word(1)dd := Word(0)for max := _M / b; ; {d := hexValue(ch)if d >= b {r.UnreadRune() // ch does not belong to number anymorebreak}if bb <= max {bb *= bdd = dd*b + d} else {// bb * b would overflowz = z.mulAddWW(z, bb, dd)bb = bdd = d}if ch, _, err = r.ReadRune(); err != nil {if err != io.EOF {return z, int(b), err}break}}switch {case bb > 1:// there was at least one mantissa digitz = z.mulAddWW(z, bb, dd)case base == 0 && b == 8:// there was only the octal prefix 0 (possibly followed by digits > 7);// return base 10, not 8return z, 10, nilcase base != 0 || b != 8:// there was neither a mantissa digit nor the octal prefix 0return z, int(b), errors.New("syntax error scanning number")}return z.norm(), int(b), nil}// Character sets for string conversion.const (lowercaseDigits = "0123456789abcdefghijklmnopqrstuvwxyz"uppercaseDigits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ")// decimalString returns a decimal representation of x.// It calls x.string with the charset "0123456789".func (x nat) decimalString() string {return x.string(lowercaseDigits[0:10])}// string converts x to a string using digits from a charset; a digit with// value d is represented by charset[d]. The conversion base is determined// by len(charset), which must be >= 2 and <= 256.func (x nat) string(charset string) string {b := Word(len(charset))// special casesswitch {case b < 2 || MaxBase > 256:panic("illegal base")case len(x) == 0:return string(charset[0])}// allocate buffer for conversioni := int(float64(x.bitLen())/math.Log2(float64(b))) + 1 // off by one at mosts := make([]byte, i)// convert power of two and non power of two bases separatelyif b == b&-b {// shift is base-b digit size in bitsshift := uint(trailingZeroBits(b)) // shift > 0 because b >= 2mask := Word(1)<<shift - 1w := x[0]nbits := uint(_W) // number of unprocessed bits in w// convert less-significant wordsfor k := 1; k < len(x); k++ {// convert full digitsfor nbits >= shift {i--s[i] = charset[w&mask]w >>= shiftnbits -= shift}// convert any partial leading digit and advance to next wordif nbits == 0 {// no partial digit remaining, just advancew = x[k]nbits = _W} else {// partial digit in current (k-1) and next (k) wordw |= x[k] << nbitsi--s[i] = charset[w&mask]// advancew = x[k] >> (shift - nbits)nbits = _W - (shift - nbits)}}// convert digits of most-significant word (omit leading zeros)for nbits >= 0 && w != 0 {i--s[i] = charset[w&mask]w >>= shiftnbits -= shift}} else {// determine "big base"; i.e., the largest possible value bb// that is a power of base b and still fits into a Word// (as in 10^19 for 19 decimal digits in a 64bit Word)bb := b // big base is b**ndigitsndigits := 1 // number of base b digitsfor max := Word(_M / b); bb <= max; bb *= b {ndigits++ // maximize ndigits where bb = b**ndigits, bb <= _M}// construct table of successive squares of bb*leafSize to use in subdivisions// result (table != nil) <=> (len(x) > leafSize > 0)table := divisors(len(x), b, ndigits, bb)// preserve x, create local copy for use by convertWordsq := nat(nil).set(x)// convert q to string s in base bq.convertWords(s, charset, b, ndigits, bb, table)// strip leading zeros// (x != 0; thus s must contain at least one non-zero digit// and the loop will terminate)i = 0for zero := charset[0]; s[i] == zero; {i++}}return string(s[i:])}// Convert words of q to base b digits in s. If q is large, it is recursively "split in half"// by nat/nat division using tabulated divisors. Otherwise, it is converted iteratively using// repeated nat/Word divison.//// The iterative method processes n Words by n divW() calls, each of which visits every Word in the// incrementally shortened q for a total of n + (n-1) + (n-2) ... + 2 + 1, or n(n+1)/2 divW()'s.// Recursive conversion divides q by its approximate square root, yielding two parts, each half// the size of q. Using the iterative method on both halves means 2 * (n/2)(n/2 + 1)/2 divW()'s// plus the expensive long div(). Asymptotically, the ratio is favorable at 1/2 the divW()'s, and// is made better by splitting the subblocks recursively. Best is to split blocks until one more// split would take longer (because of the nat/nat div()) than the twice as many divW()'s of the// iterative approach. This threshold is represented by leafSize. Benchmarking of leafSize in the// range 2..64 shows that values of 8 and 16 work well, with a 4x speedup at medium lengths and// ~30x for 20000 digits. Use nat_test.go's BenchmarkLeafSize tests to optimize leafSize for// specfic hardware.//func (q nat) convertWords(s []byte, charset string, b Word, ndigits int, bb Word, table []divisor) {// split larger blocks recursivelyif table != nil {// len(q) > leafSize > 0var r natindex := len(table) - 1for len(q) > leafSize {// find divisor close to sqrt(q) if possible, but in any case < qmaxLength := q.bitLen() // ~= log2 q, or at of least largest possible q of this bit lengthminLength := maxLength >> 1 // ~= log2 sqrt(q)for index > 0 && table[index-1].nbits > minLength {index-- // desired}if table[index].nbits >= maxLength && table[index].bbb.cmp(q) >= 0 {index--if index < 0 {panic("internal inconsistency")}}// split q into the two digit number (q'*bbb + r) to form independent subblocksq, r = q.div(r, q, table[index].bbb)// convert subblocks and collect results in s[:h] and s[h:]h := len(s) - table[index].ndigitsr.convertWords(s[h:], charset, b, ndigits, bb, table[0:index])s = s[:h] // == q.convertWords(s, charset, b, ndigits, bb, table[0:index+1])}}// having split any large blocks now process the remaining (small) block iterativelyi := len(s)var r Wordif b == 10 {// hard-coding for 10 here speeds this up by 1.25x (allows for / and % by constants)for len(q) > 0 {// extract least significant, base bb "digit"q, r = q.divW(q, bb)for j := 0; j < ndigits && i > 0; j++ {i--// avoid % computation since r%10 == r - int(r/10)*10;// this appears to be faster for BenchmarkString10000Base10// and smaller strings (but a bit slower for larger ones)t := r / 10s[i] = charset[r-t<<3-t-t] // TODO(gri) replace w/ t*10 once compiler produces better coder = t}}} else {for len(q) > 0 {// extract least significant, base bb "digit"q, r = q.divW(q, bb)for j := 0; j < ndigits && i > 0; j++ {i--s[i] = charset[r%b]r /= b}}}// prepend high-order zeroeszero := charset[0]for i > 0 { // while need more leading zeroesi--s[i] = zero}}// Split blocks greater than leafSize Words (or set to 0 to disable recursive conversion)// Benchmark and configure leafSize using: gotest -test.bench="Leaf"// 8 and 16 effective on 3.0 GHz Xeon "Clovertown" CPU (128 byte cache lines)// 8 and 16 effective on 2.66 GHz Core 2 Duo "Penryn" CPUvar leafSize int = 8 // number of Word-size binary values treat as a monolithic blocktype divisor struct {bbb nat // divisornbits int // bit length of divisor (discounting leading zeroes) ~= log2(bbb)ndigits int // digit length of divisor in terms of output base digits}var cacheBase10 [64]divisor // cached divisors for base 10var cacheLock sync.Mutex // protects cacheBase10// expWW computes x**yfunc (z nat) expWW(x, y Word) nat {return z.expNN(nat(nil).setWord(x), nat(nil).setWord(y), nil)}// construct table of powers of bb*leafSize to use in subdivisionsfunc divisors(m int, b Word, ndigits int, bb Word) []divisor {// only compute table when recursive conversion is enabled and x is largeif leafSize == 0 || m <= leafSize {return nil}// determine k where (bb**leafSize)**(2**k) >= sqrt(x)k := 1for words := leafSize; words < m>>1 && k < len(cacheBase10); words <<= 1 {k++}// create new table of divisors or extend and reuse existing table as appropriatevar table []divisorvar cached boolswitch b {case 10:table = cacheBase10[0:k] // reuse old table for this conversioncached = truedefault:table = make([]divisor, k) // new table for this conversion}// extend tableif table[k-1].ndigits == 0 {if cached {cacheLock.Lock() // begin critical section}// add new entries as neededvar larger natfor i := 0; i < k; i++ {if table[i].ndigits == 0 {if i == 0 {table[i].bbb = nat(nil).expWW(bb, Word(leafSize))table[i].ndigits = ndigits * leafSize} else {table[i].bbb = nat(nil).mul(table[i-1].bbb, table[i-1].bbb)table[i].ndigits = 2 * table[i-1].ndigits}// optimization: exploit aggregated extra bits in macro blockslarger = nat(nil).set(table[i].bbb)for mulAddVWW(larger, larger, b, 0) == 0 {table[i].bbb = table[i].bbb.set(larger)table[i].ndigits++}table[i].nbits = table[i].bbb.bitLen()}}if cached {cacheLock.Unlock() // end critical section}}return table}const deBruijn32 = 0x077CB531var deBruijn32Lookup = []byte{0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,}const deBruijn64 = 0x03f79d71b4ca8b09var deBruijn64Lookup = []byte{0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,}// trailingZeroBits returns the number of consecutive zero bits on the right// side of the given Word.// See Knuth, volume 4, section 7.3.1func trailingZeroBits(x Word) int {// x & -x leaves only the right-most bit set in the word. Let k be the// index of that bit. Since only a single bit is set, the value is two// to the power of k. Multiplying by a power of two is equivalent to// left shifting, in this case by k bits. The de Bruijn constant is// such that all six bit, consecutive substrings are distinct.// Therefore, if we have a left shifted version of this constant we can// find by how many bits it was shifted by looking at which six bit// substring ended up at the top of the word.switch _W {case 32:return int(deBruijn32Lookup[((x&-x)*deBruijn32)>>27])case 64:return int(deBruijn64Lookup[((x&-x)*(deBruijn64&_M))>>58])default:panic("Unknown word size")}return 0}// z = x << sfunc (z nat) shl(x nat, s uint) nat {m := len(x)if m == 0 {return z.make(0)}// m > 0n := m + int(s/_W)z = z.make(n + 1)z[n] = shlVU(z[n-m:n], x, s%_W)z[0 : n-m].clear()return z.norm()}// z = x >> sfunc (z nat) shr(x nat, s uint) nat {m := len(x)n := m - int(s/_W)if n <= 0 {return z.make(0)}// n > 0z = z.make(n)shrVU(z, x[m-n:], s%_W)return z.norm()}func (z nat) setBit(x nat, i uint, b uint) nat {j := int(i / _W)m := Word(1) << (i % _W)n := len(x)switch b {case 0:z = z.make(n)copy(z, x)if j >= n {// no need to growreturn z}z[j] &^= mreturn z.norm()case 1:if j >= n {z = z.make(j + 1)z[n:].clear()} else {z = z.make(n)}copy(z, x)z[j] |= m// no need to normalizereturn z}panic("set bit is not 0 or 1")}func (z nat) bit(i uint) uint {j := int(i / _W)if j >= len(z) {return 0}return uint(z[j] >> (i % _W) & 1)}func (z nat) and(x, y nat) nat {m := len(x)n := len(y)if m > n {m = n}// m <= nz = z.make(m)for i := 0; i < m; i++ {z[i] = x[i] & y[i]}return z.norm()}func (z nat) andNot(x, y nat) nat {m := len(x)n := len(y)if n > m {n = m}// m >= nz = z.make(m)for i := 0; i < n; i++ {z[i] = x[i] &^ y[i]}copy(z[n:m], x[n:m])return z.norm()}func (z nat) or(x, y nat) nat {m := len(x)n := len(y)s := xif m < n {n, m = m, ns = y}// m >= nz = z.make(m)for i := 0; i < n; i++ {z[i] = x[i] | y[i]}copy(z[n:m], s[n:m])return z.norm()}func (z nat) xor(x, y nat) nat {m := len(x)n := len(y)s := xif m < n {n, m = m, ns = y}// m >= nz = z.make(m)for i := 0; i < n; i++ {z[i] = x[i] ^ y[i]}copy(z[n:m], s[n:m])return z.norm()}// greaterThan returns true iff (x1<<_W + x2) > (y1<<_W + y2)func greaterThan(x1, x2, y1, y2 Word) bool {return x1 > y1 || x1 == y1 && x2 > y2}// modW returns x % d.func (x nat) modW(d Word) (r Word) {// TODO(agl): we don't actually need to store the q value.var q natq = q.make(len(x))return divWVW(q, 0, x, d)}// powersOfTwoDecompose finds q and k with x = q * 1<<k and q is odd, or q and k are 0.func (x nat) powersOfTwoDecompose() (q nat, k int) {if len(x) == 0 {return x, 0}// One of the words must be non-zero by definition,// so this loop will terminate with i < len(x), and// i is the number of 0 words.i := 0for x[i] == 0 {i++}n := trailingZeroBits(x[i]) // x[i] != 0q = make(nat, len(x)-i)shrVU(q, x[i:], uint(n))q = q.norm()k = i*_W + nreturn}// random creates a random integer in [0..limit), using the space in z if// possible. n is the bit length of limit.func (z nat) random(rand *rand.Rand, limit nat, n int) nat {if alias(z, limit) {z = nil // z is an alias for limit - cannot reuse}z = z.make(len(limit))bitLengthOfMSW := uint(n % _W)if bitLengthOfMSW == 0 {bitLengthOfMSW = _W}mask := Word((1 << bitLengthOfMSW) - 1)for {for i := range z {switch _W {case 32:z[i] = Word(rand.Uint32())case 64:z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32}}z[len(limit)-1] &= maskif z.cmp(limit) < 0 {break}}return z.norm()}// If m != nil, expNN calculates x**y mod m. Otherwise it calculates x**y. It// reuses the storage of z if possible.func (z nat) expNN(x, y, m nat) nat {if alias(z, x) || alias(z, y) {// We cannot allow in place modification of x or y.z = nil}if len(y) == 0 {z = z.make(1)z[0] = 1return z}if m != nil {// We likely end up being as long as the modulus.z = z.make(len(m))}z = z.set(x)v := y[len(y)-1]// It's invalid for the most significant word to be zero, therefore we// will find a one bit.shift := leadingZeros(v) + 1v <<= shiftvar q natconst mask = 1 << (_W - 1)// We walk through the bits of the exponent one by one. Each time we// see a bit, we square, thus doubling the power. If the bit is a one,// we also multiply by x, thus adding one to the power.w := _W - int(shift)for j := 0; j < w; j++ {z = z.mul(z, z)if v&mask != 0 {z = z.mul(z, x)}if m != nil {q, z = q.div(z, z, m)}v <<= 1}for i := len(y) - 2; i >= 0; i-- {v = y[i]for j := 0; j < _W; j++ {z = z.mul(z, z)if v&mask != 0 {z = z.mul(z, x)}if m != nil {q, z = q.div(z, z, m)}v <<= 1}}return z.norm()}// probablyPrime performs reps Miller-Rabin tests to check whether n is prime.// If it returns true, n is prime with probability 1 - 1/4^reps.// If it returns false, n is not prime.func (n nat) probablyPrime(reps int) bool {if len(n) == 0 {return false}if len(n) == 1 {if n[0] < 2 {return false}if n[0]%2 == 0 {return n[0] == 2}// We have to exclude these cases because we reject all// multiples of these numbers below.switch n[0] {case 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53:return true}}const primesProduct32 = 0xC0CFD797 // Π {p ∈ primes, 2 < p <= 29}const primesProduct64 = 0xE221F97C30E94E1D // Π {p ∈ primes, 2 < p <= 53}var r Wordswitch _W {case 32:r = n.modW(primesProduct32)case 64:r = n.modW(primesProduct64 & _M)default:panic("Unknown word size")}if r%3 == 0 || r%5 == 0 || r%7 == 0 || r%11 == 0 ||r%13 == 0 || r%17 == 0 || r%19 == 0 || r%23 == 0 || r%29 == 0 {return false}if _W == 64 && (r%31 == 0 || r%37 == 0 || r%41 == 0 ||r%43 == 0 || r%47 == 0 || r%53 == 0) {return false}nm1 := nat(nil).sub(n, natOne)// 1<<k * q = nm1;q, k := nm1.powersOfTwoDecompose()nm3 := nat(nil).sub(nm1, natTwo)rand := rand.New(rand.NewSource(int64(n[0])))var x, y, quotient natnm3Len := nm3.bitLen()NextRandom:for i := 0; i < reps; i++ {x = x.random(rand, nm3, nm3Len)x = x.add(x, natTwo)y = y.expNN(x, q, n)if y.cmp(natOne) == 0 || y.cmp(nm1) == 0 {continue}for j := 1; j < k; j++ {y = y.mul(y, y)quotient, y = quotient.div(y, y, n)if y.cmp(nm1) == 0 {continue NextRandom}if y.cmp(natOne) == 0 {return false}}return false}return true}// bytes writes the value of z into buf using big-endian encoding.// len(buf) must be >= len(z)*_S. The value of z is encoded in the// slice buf[i:]. The number i of unused bytes at the beginning of// buf is returned as result.func (z nat) bytes(buf []byte) (i int) {i = len(buf)for _, d := range z {for j := 0; j < _S; j++ {i--buf[i] = byte(d)d >>= 8}}for i < len(buf) && buf[i] == 0 {i++}return}// setBytes interprets buf as the bytes of a big-endian unsigned// integer, sets z to that value, and returns z.func (z nat) setBytes(buf []byte) nat {z = z.make((len(buf) + _S - 1) / _S)k := 0s := uint(0)var d Wordfor i := len(buf); i > 0; i-- {d |= Word(buf[i-1]) << sif s += 8; s == _S*8 {z[k] = dk++s = 0d = 0}}if k < len(z) {z[k] = d}return z.norm()}
