OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [big/] [rat.go] - Rev 867

Go to most recent revision | Compare with Previous | Blame | View Log

// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file implements multi-precision rational numbers.

package big

import (
        "encoding/binary"
        "errors"
        "fmt"
        "strings"
)

// A Rat represents a quotient a/b of arbitrary precision.
// The zero value for a Rat represents the value 0.
type Rat struct {
        a Int
        b nat // len(b) == 0 acts like b == 1
}

// NewRat creates a new Rat with numerator a and denominator b.
func NewRat(a, b int64) *Rat {
        return new(Rat).SetFrac64(a, b)
}

// SetFrac sets z to a/b and returns z.
func (z *Rat) SetFrac(a, b *Int) *Rat {
        z.a.neg = a.neg != b.neg
        babs := b.abs
        if len(babs) == 0 {
                panic("division by zero")
        }
        if &z.a == b || alias(z.a.abs, babs) {
                babs = nat(nil).set(babs) // make a copy
        }
        z.a.abs = z.a.abs.set(a.abs)
        z.b = z.b.set(babs)
        return z.norm()
}

// SetFrac64 sets z to a/b and returns z.
func (z *Rat) SetFrac64(a, b int64) *Rat {
        z.a.SetInt64(a)
        if b == 0 {
                panic("division by zero")
        }
        if b < 0 {
                b = -b
                z.a.neg = !z.a.neg
        }
        z.b = z.b.setUint64(uint64(b))
        return z.norm()
}

// SetInt sets z to x (by making a copy of x) and returns z.
func (z *Rat) SetInt(x *Int) *Rat {
        z.a.Set(x)
        z.b = z.b.make(0)
        return z
}

// SetInt64 sets z to x and returns z.
func (z *Rat) SetInt64(x int64) *Rat {
        z.a.SetInt64(x)
        z.b = z.b.make(0)
        return z
}

// Set sets z to x (by making a copy of x) and returns z.
func (z *Rat) Set(x *Rat) *Rat {
        if z != x {
                z.a.Set(&x.a)
                z.b = z.b.set(x.b)
        }
        return z
}

// Abs sets z to |x| (the absolute value of x) and returns z.
func (z *Rat) Abs(x *Rat) *Rat {
        z.Set(x)
        z.a.neg = false
        return z
}

// Neg sets z to -x and returns z.
func (z *Rat) Neg(x *Rat) *Rat {
        z.Set(x)
        z.a.neg = len(z.a.abs) > 0 && !z.a.neg // 0 has no sign
        return z
}

// Inv sets z to 1/x and returns z.
func (z *Rat) Inv(x *Rat) *Rat {
        if len(x.a.abs) == 0 {
                panic("division by zero")
        }
        z.Set(x)
        a := z.b
        if len(a) == 0 {
                a = a.setWord(1) // materialize numerator
        }
        b := z.a.abs
        if b.cmp(natOne) == 0 {
                b = b.make(0) // normalize denominator
        }
        z.a.abs, z.b = a, b // sign doesn't change
        return z
}

// Sign returns:
//
//      -1 if x <  0
//       0 if x == 0
//      +1 if x >  0
//
func (x *Rat) Sign() int {
        return x.a.Sign()
}

// IsInt returns true if the denominator of x is 1.
func (x *Rat) IsInt() bool {
        return len(x.b) == 0 || x.b.cmp(natOne) == 0
}

// Num returns the numerator of x; it may be <= 0.
// The result is a reference to x's numerator; it
// may change if a new value is assigned to x.
func (x *Rat) Num() *Int {
        return &x.a
}

// Denom returns the denominator of x; it is always > 0.
// The result is a reference to x's denominator; it
// may change if a new value is assigned to x.
func (x *Rat) Denom() *Int {
        if len(x.b) == 0 {
                return &Int{abs: nat{1}}
        }
        return &Int{abs: x.b}
}

func gcd(x, y nat) nat {
        // Euclidean algorithm.
        var a, b nat
        a = a.set(x)
        b = b.set(y)
        for len(b) != 0 {
                var q, r nat
                _, r = q.div(r, a, b)
                a = b
                b = r
        }
        return a
}

func (z *Rat) norm() *Rat {
        switch {
        case len(z.a.abs) == 0:
                // z == 0 - normalize sign and denominator
                z.a.neg = false
                z.b = z.b.make(0)
        case len(z.b) == 0:
                // z is normalized int - nothing to do
        case z.b.cmp(natOne) == 0:
                // z is int - normalize denominator
                z.b = z.b.make(0)
        default:
                if f := gcd(z.a.abs, z.b); f.cmp(natOne) != 0 {
                        z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f)
                        z.b, _ = z.b.div(nil, z.b, f)
                }
        }
        return z
}

// mulDenom sets z to the denominator product x*y (by taking into
// account that 0 values for x or y must be interpreted as 1) and
// returns z.
func mulDenom(z, x, y nat) nat {
        switch {
        case len(x) == 0:
                return z.set(y)
        case len(y) == 0:
                return z.set(x)
        }
        return z.mul(x, y)
}

// scaleDenom computes x*f.
// If f == 0 (zero value of denominator), the result is (a copy of) x.
func scaleDenom(x *Int, f nat) *Int {
        var z Int
        if len(f) == 0 {
                return z.Set(x)
        }
        z.abs = z.abs.mul(x.abs, f)
        z.neg = x.neg
        return &z
}

// Cmp compares x and y and returns:
//
//   -1 if x <  y
//    0 if x == y
//   +1 if x >  y
//
func (x *Rat) Cmp(y *Rat) int {
        return scaleDenom(&x.a, y.b).Cmp(scaleDenom(&y.a, x.b))
}

// Add sets z to the sum x+y and returns z.
func (z *Rat) Add(x, y *Rat) *Rat {
        a1 := scaleDenom(&x.a, y.b)
        a2 := scaleDenom(&y.a, x.b)
        z.a.Add(a1, a2)
        z.b = mulDenom(z.b, x.b, y.b)
        return z.norm()
}

// Sub sets z to the difference x-y and returns z.
func (z *Rat) Sub(x, y *Rat) *Rat {
        a1 := scaleDenom(&x.a, y.b)
        a2 := scaleDenom(&y.a, x.b)
        z.a.Sub(a1, a2)
        z.b = mulDenom(z.b, x.b, y.b)
        return z.norm()
}

// Mul sets z to the product x*y and returns z.
func (z *Rat) Mul(x, y *Rat) *Rat {
        z.a.Mul(&x.a, &y.a)
        z.b = mulDenom(z.b, x.b, y.b)
        return z.norm()
}

// Quo sets z to the quotient x/y and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
func (z *Rat) Quo(x, y *Rat) *Rat {
        if len(y.a.abs) == 0 {
                panic("division by zero")
        }
        a := scaleDenom(&x.a, y.b)
        b := scaleDenom(&y.a, x.b)
        z.a.abs = a.abs
        z.b = b.abs
        z.a.neg = a.neg != b.neg
        return z.norm()
}

func ratTok(ch rune) bool {
        return strings.IndexRune("+-/0123456789.eE", ch) >= 0
}

// Scan is a support routine for fmt.Scanner. It accepts the formats
// 'e', 'E', 'f', 'F', 'g', 'G', and 'v'. All formats are equivalent.
func (z *Rat) Scan(s fmt.ScanState, ch rune) error {
        tok, err := s.Token(true, ratTok)
        if err != nil {
                return err
        }
        if strings.IndexRune("efgEFGv", ch) < 0 {
                return errors.New("Rat.Scan: invalid verb")
        }
        if _, ok := z.SetString(string(tok)); !ok {
                return errors.New("Rat.Scan: invalid syntax")
        }
        return nil
}

// SetString sets z to the value of s and returns z and a boolean indicating
// success. s can be given as a fraction "a/b" or as a floating-point number
// optionally followed by an exponent. If the operation failed, the value of
// z is undefined but the returned value is nil.
func (z *Rat) SetString(s string) (*Rat, bool) {
        if len(s) == 0 {
                return nil, false
        }

        // check for a quotient
        sep := strings.Index(s, "/")
        if sep >= 0 {
                if _, ok := z.a.SetString(s[0:sep], 10); !ok {
                        return nil, false
                }
                s = s[sep+1:]
                var err error
                if z.b, _, err = z.b.scan(strings.NewReader(s), 10); err != nil {
                        return nil, false
                }
                return z.norm(), true
        }

        // check for a decimal point
        sep = strings.Index(s, ".")
        // check for an exponent
        e := strings.IndexAny(s, "eE")
        var exp Int
        if e >= 0 {
                if e < sep {
                        // The E must come after the decimal point.
                        return nil, false
                }
                if _, ok := exp.SetString(s[e+1:], 10); !ok {
                        return nil, false
                }
                s = s[0:e]
        }
        if sep >= 0 {
                s = s[0:sep] + s[sep+1:]
                exp.Sub(&exp, NewInt(int64(len(s)-sep)))
        }

        if _, ok := z.a.SetString(s, 10); !ok {
                return nil, false
        }
        powTen := nat(nil).expNN(natTen, exp.abs, nil)
        if exp.neg {
                z.b = powTen
                z.norm()
        } else {
                z.a.abs = z.a.abs.mul(z.a.abs, powTen)
                z.b = z.b.make(0)
        }

        return z, true
}

// String returns a string representation of z in the form "a/b" (even if b == 1).
func (x *Rat) String() string {
        s := "/1"
        if len(x.b) != 0 {
                s = "/" + x.b.decimalString()
        }
        return x.a.String() + s
}

// RatString returns a string representation of z in the form "a/b" if b != 1,
// and in the form "a" if b == 1.
func (x *Rat) RatString() string {
        if x.IsInt() {
                return x.a.String()
        }
        return x.String()
}

// FloatString returns a string representation of z in decimal form with prec
// digits of precision after the decimal point and the last digit rounded.
func (x *Rat) FloatString(prec int) string {
        if x.IsInt() {
                s := x.a.String()
                if prec > 0 {
                        s += "." + strings.Repeat("0", prec)
                }
                return s
        }
        // x.b != 0

        q, r := nat(nil).div(nat(nil), x.a.abs, x.b)

        p := natOne
        if prec > 0 {
                p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil)
        }

        r = r.mul(r, p)
        r, r2 := r.div(nat(nil), r, x.b)

        // see if we need to round up
        r2 = r2.add(r2, r2)
        if x.b.cmp(r2) <= 0 {
                r = r.add(r, natOne)
                if r.cmp(p) >= 0 {
                        q = nat(nil).add(q, natOne)
                        r = nat(nil).sub(r, p)
                }
        }

        s := q.decimalString()
        if x.a.neg {
                s = "-" + s
        }

        if prec > 0 {
                rs := r.decimalString()
                leadingZeros := prec - len(rs)
                s += "." + strings.Repeat("0", leadingZeros) + rs
        }

        return s
}

// Gob codec version. Permits backward-compatible changes to the encoding.
const ratGobVersion byte = 1

// GobEncode implements the gob.GobEncoder interface.
func (x *Rat) GobEncode() ([]byte, error) {
        buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b))*_S) // extra bytes for version and sign bit (1), and numerator length (4)
        i := x.b.bytes(buf)
        j := x.a.abs.bytes(buf[0:i])
        n := i - j
        if int(uint32(n)) != n {
                // this should never happen
                return nil, errors.New("Rat.GobEncode: numerator too large")
        }
        binary.BigEndian.PutUint32(buf[j-4:j], uint32(n))
        j -= 1 + 4
        b := ratGobVersion << 1 // make space for sign bit
        if x.a.neg {
                b |= 1
        }
        buf[j] = b
        return buf[j:], nil
}

// GobDecode implements the gob.GobDecoder interface.
func (z *Rat) GobDecode(buf []byte) error {
        if len(buf) == 0 {
                return errors.New("Rat.GobDecode: no data")
        }
        b := buf[0]
        if b>>1 != ratGobVersion {
                return errors.New(fmt.Sprintf("Rat.GobDecode: encoding version %d not supported", b>>1))
        }
        const j = 1 + 4
        i := j + binary.BigEndian.Uint32(buf[j-4:j])
        z.a.neg = b&1 != 0
        z.a.abs = z.a.abs.setBytes(buf[j:i])
        z.b = z.b.setBytes(buf[i:])
        return nil
}

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.