OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [cbrt.go] - Rev 774

Go to most recent revision | Compare with Previous | Blame | View Log

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package math

/*
        The algorithm is based in part on "Optimal Partitioning of
        Newton's Method for Calculating Roots", by Gunter Meinardus
        and G. D. Taylor, Mathematics of Computation © 1980 American
        Mathematical Society.
        (http://www.jstor.org/stable/2006387?seq=9, accessed 11-Feb-2010)
*/

// Cbrt returns the cube root of its argument.
//
// Special cases are:
//      Cbrt(±0) = ±0
//      Cbrt(±Inf) = ±Inf
//      Cbrt(NaN) = NaN
func Cbrt(x float64) float64 {
        const (
                A1 = 1.662848358e-01
                A2 = 1.096040958e+00
                A3 = 4.105032829e-01
                A4 = 5.649335816e-01
                B1 = 2.639607233e-01
                B2 = 8.699282849e-01
                B3 = 1.629083358e-01
                B4 = 2.824667908e-01
                C1 = 4.190115298e-01
                C2 = 6.904625373e-01
                C3 = 6.46502159e-02
                C4 = 1.412333954e-01
        )
        // special cases
        switch {
        case x == 0 || IsNaN(x) || IsInf(x, 0):
                return x
        }
        sign := false
        if x < 0 {
                x = -x
                sign = true
        }
        // Reduce argument and estimate cube root
        f, e := Frexp(x) // 0.5 <= f < 1.0
        m := e % 3
        if m > 0 {
                m -= 3
                e -= m // e is multiple of 3
        }
        switch m {
        case 0: // 0.5 <= f < 1.0
                f = A1*f + A2 - A3/(A4+f)
        case -1:
                f *= 0.5 // 0.25 <= f < 0.5
                f = B1*f + B2 - B3/(B4+f)
        default: // m == -2
                f *= 0.25 // 0.125 <= f < 0.25
                f = C1*f + C2 - C3/(C4+f)
        }
        y := Ldexp(f, e/3) // e/3 = exponent of cube root

        // Iterate
        s := y * y * y
        t := s + x
        y *= (t + x) / (s + t)
        // Reiterate
        s = (y*y*y - x) / x
        y -= y * (((14.0/81.0)*s-(2.0/9.0))*s + (1.0 / 3.0)) * s
        if sign {
                y = -y
        }
        return y
}

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.