URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [cmplx/] [log.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2010 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package cmplximport "math"// The original C code, the long comment, and the constants// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.// The go code is a simplified version of the original C.//// Cephes Math Library Release 2.8: June, 2000// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier//// The readme file at http://netlib.sandia.gov/cephes/ says:// Some software in this archive may be from the book _Methods and// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster// International, 1989) or from the Cephes Mathematical Library, a// commercial product. In either event, it is copyrighted by the author.// What you see here may be used freely but it comes with no support or// guarantee.//// The two known misprints in the book are repaired here in the// source listings for the gamma function and the incomplete beta// integral.//// Stephen L. Moshier// moshier@na-net.ornl.gov// Complex natural logarithm//// DESCRIPTION://// Returns complex logarithm to the base e (2.718...) of// the complex argument z.//// If// z = x + iy, r = sqrt( x**2 + y**2 ),// then// w = log(r) + i arctan(y/x).//// The arctangent ranges from -PI to +PI.//// ACCURACY://// Relative error:// arithmetic domain # trials peak rms// DEC -10,+10 7000 8.5e-17 1.9e-17// IEEE -10,+10 30000 5.0e-15 1.1e-16//// Larger relative error can be observed for z near 1 +i0.// In IEEE arithmetic the peak absolute error is 5.2e-16, rms// absolute error 1.0e-16.// Log returns the natural logarithm of x.func Log(x complex128) complex128 {return complex(math.Log(Abs(x)), Phase(x))}// Log10 returns the decimal logarithm of x.func Log10(x complex128) complex128 {return math.Log10E * Log(x)}
