URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [cmplx/] [pow.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2010 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package cmplximport "math"// The original C code, the long comment, and the constants// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.// The go code is a simplified version of the original C.//// Cephes Math Library Release 2.8: June, 2000// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier//// The readme file at http://netlib.sandia.gov/cephes/ says:// Some software in this archive may be from the book _Methods and// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster// International, 1989) or from the Cephes Mathematical Library, a// commercial product. In either event, it is copyrighted by the author.// What you see here may be used freely but it comes with no support or// guarantee.//// The two known misprints in the book are repaired here in the// source listings for the gamma function and the incomplete beta// integral.//// Stephen L. Moshier// moshier@na-net.ornl.gov// Complex power function//// DESCRIPTION://// Raises complex A to the complex Zth power.// Definition is per AMS55 # 4.2.8,// analytically equivalent to cpow(a,z) = cexp(z clog(a)).//// ACCURACY://// Relative error:// arithmetic domain # trials peak rms// IEEE -10,+10 30000 9.4e-15 1.5e-15// Pow returns x**y, the base-x exponential of y.func Pow(x, y complex128) complex128 {modulus := Abs(x)if modulus == 0 {return complex(0, 0)}r := math.Pow(modulus, real(y))arg := Phase(x)theta := real(y) * argif imag(y) != 0 {r *= math.Exp(-imag(y) * arg)theta += imag(y) * math.Log(modulus)}s, c := math.Sincos(theta)return complex(r*c, r*s)}
