URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [cmplx/] [sin.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2010 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package cmplximport "math"// The original C code, the long comment, and the constants// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.// The go code is a simplified version of the original C.//// Cephes Math Library Release 2.8: June, 2000// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier//// The readme file at http://netlib.sandia.gov/cephes/ says:// Some software in this archive may be from the book _Methods and// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster// International, 1989) or from the Cephes Mathematical Library, a// commercial product. In either event, it is copyrighted by the author.// What you see here may be used freely but it comes with no support or// guarantee.//// The two known misprints in the book are repaired here in the// source listings for the gamma function and the incomplete beta// integral.//// Stephen L. Moshier// moshier@na-net.ornl.gov// Complex circular sine//// DESCRIPTION://// If// z = x + iy,//// then//// w = sin x cosh y + i cos x sinh y.//// csin(z) = -i csinh(iz).//// ACCURACY://// Relative error:// arithmetic domain # trials peak rms// DEC -10,+10 8400 5.3e-17 1.3e-17// IEEE -10,+10 30000 3.8e-16 1.0e-16// Also tested by csin(casin(z)) = z.// Sin returns the sine of x.func Sin(x complex128) complex128 {s, c := math.Sincos(real(x))sh, ch := sinhcosh(imag(x))return complex(s*ch, c*sh)}// Complex hyperbolic sine//// DESCRIPTION://// csinh z = (cexp(z) - cexp(-z))/2// = sinh x * cos y + i cosh x * sin y .//// ACCURACY://// Relative error:// arithmetic domain # trials peak rms// IEEE -10,+10 30000 3.1e-16 8.2e-17// Sinh returns the hyperbolic sine of x.func Sinh(x complex128) complex128 {s, c := math.Sincos(imag(x))sh, ch := sinhcosh(real(x))return complex(c*sh, s*ch)}// Complex circular cosine//// DESCRIPTION://// If// z = x + iy,//// then//// w = cos x cosh y - i sin x sinh y.//// ACCURACY://// Relative error:// arithmetic domain # trials peak rms// DEC -10,+10 8400 4.5e-17 1.3e-17// IEEE -10,+10 30000 3.8e-16 1.0e-16// Cos returns the cosine of x.func Cos(x complex128) complex128 {s, c := math.Sincos(real(x))sh, ch := sinhcosh(imag(x))return complex(c*ch, -s*sh)}// Complex hyperbolic cosine//// DESCRIPTION://// ccosh(z) = cosh x cos y + i sinh x sin y .//// ACCURACY://// Relative error:// arithmetic domain # trials peak rms// IEEE -10,+10 30000 2.9e-16 8.1e-17// Cosh returns the hyperbolic cosine of x.func Cosh(x complex128) complex128 {s, c := math.Sincos(imag(x))sh, ch := sinhcosh(real(x))return complex(c*ch, s*sh)}// calculate sinh and coshfunc sinhcosh(x float64) (sh, ch float64) {if math.Abs(x) <= 0.5 {return math.Sinh(x), math.Cosh(x)}e := math.Exp(x)ei := 0.5 / ee *= 0.5return e - ei, e + ei}
