URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [exp.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package math// Exp returns e**x, the base-e exponential of x.//// Special cases are:// Exp(+Inf) = +Inf// Exp(NaN) = NaN// Very large values overflow to 0 or +Inf.// Very small values underflow to 1.//extern expfunc libc_exp(float64) float64func Exp(x float64) float64 {return libc_exp(x)}// The original C code, the long comment, and the constants// below are from FreeBSD's /usr/src/lib/msun/src/e_exp.c// and came with this notice. The go code is a simplified// version of the original C.//// ====================================================// Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.//// Permission to use, copy, modify, and distribute this// software is freely granted, provided that this notice// is preserved.// ====================================================////// exp(x)// Returns the exponential of x.//// Method// 1. Argument reduction:// Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.// Given x, find r and integer k such that//// x = k*ln2 + r, |r| <= 0.5*ln2.//// Here r will be represented as r = hi-lo for better// accuracy.//// 2. Approximation of exp(r) by a special rational function on// the interval [0,0.34658]:// Write// R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...// We use a special Remes algorithm on [0,0.34658] to generate// a polynomial of degree 5 to approximate R. The maximum error// of this polynomial approximation is bounded by 2**-59. In// other words,// R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5// (where z=r*r, and the values of P1 to P5 are listed below)// and// | 5 | -59// | 2.0+P1*z+...+P5*z - R(z) | <= 2// | |// The computation of exp(r) thus becomes// 2*r// exp(r) = 1 + -------// R - r// r*R1(r)// = 1 + r + ----------- (for better accuracy)// 2 - R1(r)// where// 2 4 10// R1(r) = r - (P1*r + P2*r + ... + P5*r ).//// 3. Scale back to obtain exp(x):// From step 1, we have// exp(x) = 2**k * exp(r)//// Special cases:// exp(INF) is INF, exp(NaN) is NaN;// exp(-INF) is 0, and// for finite argument, only exp(0)=1 is exact.//// Accuracy:// according to an error analysis, the error is always less than// 1 ulp (unit in the last place).//// Misc. info.// For IEEE double// if x > 7.09782712893383973096e+02 then exp(x) overflow// if x < -7.45133219101941108420e+02 then exp(x) underflow//// Constants:// The hexadecimal values are the intended ones for the following// constants. The decimal values may be used, provided that the// compiler will convert from decimal to binary accurately enough// to produce the hexadecimal values shown.func exp(x float64) float64 {const (Ln2Hi = 6.93147180369123816490e-01Ln2Lo = 1.90821492927058770002e-10Log2e = 1.44269504088896338700e+00Overflow = 7.09782712893383973096e+02Underflow = -7.45133219101941108420e+02NearZero = 1.0 / (1 << 28) // 2**-28)// special casesswitch {case IsNaN(x) || IsInf(x, 1):return xcase IsInf(x, -1):return 0case x > Overflow:return Inf(1)case x < Underflow:return 0case -NearZero < x && x < NearZero:return 1 + x}// reduce; computed as r = hi - lo for extra precision.var k intswitch {case x < 0:k = int(Log2e*x - 0.5)case x > 0:k = int(Log2e*x + 0.5)}hi := x - float64(k)*Ln2Hilo := float64(k) * Ln2Lo// computereturn expmulti(hi, lo, k)}// Exp2 returns 2**x, the base-2 exponential of x.//// Special cases are the same as Exp.func Exp2(x float64) float64 {return exp2(x)}func exp2(x float64) float64 {const (Ln2Hi = 6.93147180369123816490e-01Ln2Lo = 1.90821492927058770002e-10Overflow = 1.0239999999999999e+03Underflow = -1.0740e+03)// special casesswitch {case IsNaN(x) || IsInf(x, 1):return xcase IsInf(x, -1):return 0case x > Overflow:return Inf(1)case x < Underflow:return 0}// argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2.// computed as r = hi - lo for extra precision.var k intswitch {case x > 0:k = int(x + 0.5)case x < 0:k = int(x - 0.5)}t := x - float64(k)hi := t * Ln2Hilo := -t * Ln2Lo// computereturn expmulti(hi, lo, k)}// exp1 returns e**r × 2**k where r = hi - lo and |r| ≤ ln(2)/2.func expmulti(hi, lo float64, k int) float64 {const (P1 = 1.66666666666666019037e-01 /* 0x3FC55555; 0x5555553E */P2 = -2.77777777770155933842e-03 /* 0xBF66C16C; 0x16BEBD93 */P3 = 6.61375632143793436117e-05 /* 0x3F11566A; 0xAF25DE2C */P4 = -1.65339022054652515390e-06 /* 0xBEBBBD41; 0xC5D26BF1 */P5 = 4.13813679705723846039e-08 /* 0x3E663769; 0x72BEA4D0 */)r := hi - lot := r * rc := r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))))y := 1 - ((lo - (r*c)/(2-c)) - hi)// TODO(rsc): make sure Ldexp can handle boundary kreturn Ldexp(y, k)}
