URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [gamma.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2010 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package math// The original C code, the long comment, and the constants// below are from http://netlib.sandia.gov/cephes/cprob/gamma.c.// The go code is a simplified version of the original C.//// tgamma.c//// Gamma function//// SYNOPSIS://// double x, y, tgamma();// extern int signgam;//// y = tgamma( x );//// DESCRIPTION://// Returns gamma function of the argument. The result is// correctly signed, and the sign (+1 or -1) is also// returned in a global (extern) variable named signgam.// This variable is also filled in by the logarithmic gamma// function lgamma().//// Arguments |x| <= 34 are reduced by recurrence and the function// approximated by a rational function of degree 6/7 in the// interval (2,3). Large arguments are handled by Stirling's// formula. Large negative arguments are made positive using// a reflection formula.//// ACCURACY://// Relative error:// arithmetic domain # trials peak rms// DEC -34, 34 10000 1.3e-16 2.5e-17// IEEE -170,-33 20000 2.3e-15 3.3e-16// IEEE -33, 33 20000 9.4e-16 2.2e-16// IEEE 33, 171.6 20000 2.3e-15 3.2e-16//// Error for arguments outside the test range will be larger// owing to error amplification by the exponential function.//// Cephes Math Library Release 2.8: June, 2000// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier//// The readme file at http://netlib.sandia.gov/cephes/ says:// Some software in this archive may be from the book _Methods and// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster// International, 1989) or from the Cephes Mathematical Library, a// commercial product. In either event, it is copyrighted by the author.// What you see here may be used freely but it comes with no support or// guarantee.//// The two known misprints in the book are repaired here in the// source listings for the gamma function and the incomplete beta// integral.//// Stephen L. Moshier// moshier@na-net.ornl.govvar _gamP = [...]float64{1.60119522476751861407e-04,1.19135147006586384913e-03,1.04213797561761569935e-02,4.76367800457137231464e-02,2.07448227648435975150e-01,4.94214826801497100753e-01,9.99999999999999996796e-01,}var _gamQ = [...]float64{-2.31581873324120129819e-05,5.39605580493303397842e-04,-4.45641913851797240494e-03,1.18139785222060435552e-02,3.58236398605498653373e-02,-2.34591795718243348568e-01,7.14304917030273074085e-02,1.00000000000000000320e+00,}var _gamS = [...]float64{7.87311395793093628397e-04,-2.29549961613378126380e-04,-2.68132617805781232825e-03,3.47222221605458667310e-03,8.33333333333482257126e-02,}// Gamma function computed by Stirling's formula.// The polynomial is valid for 33 <= x <= 172.func stirling(x float64) float64 {const (SqrtTwoPi = 2.506628274631000502417MaxStirling = 143.01608)w := 1 / xw = 1 + w*((((_gamS[0]*w+_gamS[1])*w+_gamS[2])*w+_gamS[3])*w+_gamS[4])y := Exp(x)if x > MaxStirling { // avoid Pow() overflowv := Pow(x, 0.5*x-0.25)y = v * (v / y)} else {y = Pow(x, x-0.5) / y}y = SqrtTwoPi * y * wreturn y}// Gamma(x) returns the Gamma function of x.//// Special cases are:// Gamma(±Inf) = ±Inf// Gamma(NaN) = NaN// Large values overflow to +Inf.// Negative integer values equal ±Inf.func Gamma(x float64) float64 {const Euler = 0.57721566490153286060651209008240243104215933593992 // A001620// special casesswitch {case IsInf(x, -1) || IsNaN(x):return xcase x < -170.5674972726612 || x > 171.61447887182298:return Inf(1)}q := Abs(x)p := Floor(q)if q > 33 {if x >= 0 {return stirling(x)}signgam := 1if ip := int(p); ip&1 == 0 {signgam = -1}z := q - pif z > 0.5 {p = p + 1z = q - p}z = q * Sin(Pi*z)if z == 0 {return Inf(signgam)}z = Pi / (Abs(z) * stirling(q))return float64(signgam) * z}// Reduce argumentz := 1.0for x >= 3 {x = x - 1z = z * x}for x < 0 {if x > -1e-09 {goto small}z = z / xx = x + 1}for x < 2 {if x < 1e-09 {goto small}z = z / xx = x + 1}if x == 2 {return z}x = x - 2p = (((((x*_gamP[0]+_gamP[1])*x+_gamP[2])*x+_gamP[3])*x+_gamP[4])*x+_gamP[5])*x + _gamP[6]q = ((((((x*_gamQ[0]+_gamQ[1])*x+_gamQ[2])*x+_gamQ[3])*x+_gamQ[4])*x+_gamQ[5])*x+_gamQ[6])*x + _gamQ[7]return z * p / qsmall:if x == 0 {return Inf(1)}return z / ((1 + Euler*x) * x)}
