URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [j1.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2010 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package math/*Bessel function of the first and second kinds of order one.*/// The original C code and the long comment below are// from FreeBSD's /usr/src/lib/msun/src/e_j1.c and// came with this notice. The go code is a simplified// version of the original C.//// ====================================================// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.//// Developed at SunPro, a Sun Microsystems, Inc. business.// Permission to use, copy, modify, and distribute this// software is freely granted, provided that this notice// is preserved.// ====================================================//// __ieee754_j1(x), __ieee754_y1(x)// Bessel function of the first and second kinds of order one.// Method -- j1(x):// 1. For tiny x, we use j1(x) = x/2 - x**3/16 + x**5/384 - ...// 2. Reduce x to |x| since j1(x)=-j1(-x), and// for x in (0,2)// j1(x) = x/2 + x*z*R0/S0, where z = x*x;// (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )// for x in (2,inf)// j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))// y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))// where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)// as follow:// cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)// = 1/sqrt(2) * (sin(x) - cos(x))// sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)// = -1/sqrt(2) * (sin(x) + cos(x))// (To avoid cancellation, use// sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))// to compute the worse one.)//// 3 Special cases// j1(nan)= nan// j1(0) = 0// j1(inf) = 0//// Method -- y1(x):// 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN// 2. For x<2.// Since// y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x**3-...)// therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.// We use the following function to approximate y1,// y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x**2// where for x in [0,2] (abs err less than 2**-65.89)// U(z) = U0[0] + U0[1]*z + ... + U0[4]*z**4// V(z) = 1 + v0[0]*z + ... + v0[4]*z**5// Note: For tiny x, 1/x dominate y1 and hence// y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)// 3. For x>=2.// y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))// where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)// by method mentioned above.// J1 returns the order-one Bessel function of the first kind.//// Special cases are:// J1(±Inf) = 0// J1(NaN) = NaNfunc J1(x float64) float64 {const (TwoM27 = 1.0 / (1 << 27) // 2**-27 0x3e40000000000000Two129 = 1 << 129 // 2**129 0x4800000000000000// R0/S0 on [0, 2]R00 = -6.25000000000000000000e-02 // 0xBFB0000000000000R01 = 1.40705666955189706048e-03 // 0x3F570D9F98472C61R02 = -1.59955631084035597520e-05 // 0xBEF0C5C6BA169668R03 = 4.96727999609584448412e-08 // 0x3E6AAAFA46CA0BD9S01 = 1.91537599538363460805e-02 // 0x3F939D0B12637E53S02 = 1.85946785588630915560e-04 // 0x3F285F56B9CDF664S03 = 1.17718464042623683263e-06 // 0x3EB3BFF8333F8498S04 = 5.04636257076217042715e-09 // 0x3E35AC88C97DFF2CS05 = 1.23542274426137913908e-11 // 0x3DAB2ACFCFB97ED8)// special casesswitch {case IsNaN(x):return xcase IsInf(x, 0) || x == 0:return 0}sign := falseif x < 0 {x = -xsign = true}if x >= 2 {s, c := Sincos(x)ss := -s - ccc := s - c// make sure x+x does not overflowif x < MaxFloat64/2 {z := Cos(x + x)if s*c > 0 {cc = z / ss} else {ss = z / cc}}// j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)// y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)var z float64if x > Two129 {z = (1 / SqrtPi) * cc / Sqrt(x)} else {u := pone(x)v := qone(x)z = (1 / SqrtPi) * (u*cc - v*ss) / Sqrt(x)}if sign {return -z}return z}if x < TwoM27 { // |x|<2**-27return 0.5 * x // inexact if x!=0 necessary}z := x * xr := z * (R00 + z*(R01+z*(R02+z*R03)))s := 1.0 + z*(S01+z*(S02+z*(S03+z*(S04+z*S05))))r *= xz = 0.5*x + r/sif sign {return -z}return z}// Y1 returns the order-one Bessel function of the second kind.//// Special cases are:// Y1(+Inf) = 0// Y1(0) = -Inf// Y1(x < 0) = NaN// Y1(NaN) = NaNfunc Y1(x float64) float64 {const (TwoM54 = 1.0 / (1 << 54) // 2**-54 0x3c90000000000000Two129 = 1 << 129 // 2**129 0x4800000000000000U00 = -1.96057090646238940668e-01 // 0xBFC91866143CBC8AU01 = 5.04438716639811282616e-02 // 0x3FA9D3C776292CD1U02 = -1.91256895875763547298e-03 // 0xBF5F55E54844F50FU03 = 2.35252600561610495928e-05 // 0x3EF8AB038FA6B88EU04 = -9.19099158039878874504e-08 // 0xBE78AC00569105B8V00 = 1.99167318236649903973e-02 // 0x3F94650D3F4DA9F0V01 = 2.02552581025135171496e-04 // 0x3F2A8C896C257764V02 = 1.35608801097516229404e-06 // 0x3EB6C05A894E8CA6V03 = 6.22741452364621501295e-09 // 0x3E3ABF1D5BA69A86V04 = 1.66559246207992079114e-11 // 0x3DB25039DACA772A)// special casesswitch {case x < 0 || IsNaN(x):return NaN()case IsInf(x, 1):return 0case x == 0:return Inf(-1)}if x >= 2 {s, c := Sincos(x)ss := -s - ccc := s - c// make sure x+x does not overflowif x < MaxFloat64/2 {z := Cos(x + x)if s*c > 0 {cc = z / ss} else {ss = z / cc}}// y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))// where x0 = x-3pi/4// Better formula:// cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)// = 1/sqrt(2) * (sin(x) - cos(x))// sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)// = -1/sqrt(2) * (cos(x) + sin(x))// To avoid cancellation, use// sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))// to compute the worse one.var z float64if x > Two129 {z = (1 / SqrtPi) * ss / Sqrt(x)} else {u := pone(x)v := qone(x)z = (1 / SqrtPi) * (u*ss + v*cc) / Sqrt(x)}return z}if x <= TwoM54 { // x < 2**-54return -(2 / Pi) / x}z := x * xu := U00 + z*(U01+z*(U02+z*(U03+z*U04)))v := 1 + z*(V00+z*(V01+z*(V02+z*(V03+z*V04))))return x*(u/v) + (2/Pi)*(J1(x)*Log(x)-1/x)}// For x >= 8, the asymptotic expansions of pone is// 1 + 15/128 s**2 - 4725/2**15 s**4 - ..., where s = 1/x.// We approximate pone by// pone(x) = 1 + (R/S)// where R = pr0 + pr1*s**2 + pr2*s**4 + ... + pr5*s**10// S = 1 + ps0*s**2 + ... + ps4*s**10// and// | pone(x)-1-R/S | <= 2**(-60.06)// for x in [inf, 8]=1/[0,0.125]var p1R8 = [6]float64{0.00000000000000000000e+00, // 0x00000000000000001.17187499999988647970e-01, // 0x3FBDFFFFFFFFFCCE1.32394806593073575129e+01, // 0x402A7A9D357F7FCE4.12051854307378562225e+02, // 0x4079C0D4652EA5903.87474538913960532227e+03, // 0x40AE457DA3A532CC7.91447954031891731574e+03, // 0x40BEEA7AC32782DD}var p1S8 = [5]float64{1.14207370375678408436e+02, // 0x405C8D458E656CAC3.65093083420853463394e+03, // 0x40AC85DC964D274F3.69562060269033463555e+04, // 0x40E20B8697C5BB7F9.76027935934950801311e+04, // 0x40F7D42CB28F17BB3.08042720627888811578e+04, // 0x40DE1511697A0B2D}// for x in [8,4.5454] = 1/[0.125,0.22001]var p1R5 = [6]float64{1.31990519556243522749e-11, // 0x3DAD0667DAE1CA7D1.17187493190614097638e-01, // 0x3FBDFFFFE2C100436.80275127868432871736e+00, // 0x401B36046E6315E31.08308182990189109773e+02, // 0x405B13B9452602ED5.17636139533199752805e+02, // 0x40802D16D052D6495.28715201363337541807e+02, // 0x408085B8BB7E0CB7}var p1S5 = [5]float64{5.92805987221131331921e+01, // 0x404DA3EAA8AF633D9.91401418733614377743e+02, // 0x408EFB361B0667015.35326695291487976647e+03, // 0x40B4E9445706B6FB7.84469031749551231769e+03, // 0x40BEA4B0B8A5BB151.50404688810361062679e+03, // 0x40978030036F5E51}// for x in[4.5453,2.8571] = 1/[0.2199,0.35001]var p1R3 = [6]float64{3.02503916137373618024e-09, // 0x3E29FC21A7AD9EDD1.17186865567253592491e-01, // 0x3FBDFFF55B21D17B3.93297750033315640650e+00, // 0x400F76BCE85EAD8A3.51194035591636932736e+01, // 0x40418F489DA6D1299.10550110750781271918e+01, // 0x4056C3854D2C18374.85590685197364919645e+01, // 0x4048478F8EA83EE5}var p1S3 = [5]float64{3.47913095001251519989e+01, // 0x40416549A134069C3.36762458747825746741e+02, // 0x40750C3307F1A75F1.04687139975775130551e+03, // 0x40905B7C5037D5238.90811346398256432622e+02, // 0x408BD67DA32E31E91.03787932439639277504e+02, // 0x4059F26D7C2EED53}// for x in [2.8570,2] = 1/[0.3499,0.5]var p1R2 = [6]float64{1.07710830106873743082e-07, // 0x3E7CE9D4F65544F41.17176219462683348094e-01, // 0x3FBDFF42BE760D832.36851496667608785174e+00, // 0x4002F2B7F98FAEC01.22426109148261232917e+01, // 0x40287C377F71A9641.76939711271687727390e+01, // 0x4031B1A8177F8EE25.07352312588818499250e+00, // 0x40144B49A574C1FE}var p1S2 = [5]float64{2.14364859363821409488e+01, // 0x40356FBD8AD5ECDC1.25290227168402751090e+02, // 0x405F529314F92CD52.32276469057162813669e+02, // 0x406D08D8D5A2DBD91.17679373287147100768e+02, // 0x405D6B7ADA1884A98.36463893371618283368e+00, // 0x4020BAB1F44E5192}func pone(x float64) float64 {var p [6]float64var q [5]float64if x >= 8 {p = p1R8q = p1S8} else if x >= 4.5454 {p = p1R5q = p1S5} else if x >= 2.8571 {p = p1R3q = p1S3} else if x >= 2 {p = p1R2q = p1S2}z := 1 / (x * x)r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))s := 1.0 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))))return 1 + r/s}// For x >= 8, the asymptotic expansions of qone is// 3/8 s - 105/1024 s**3 - ..., where s = 1/x.// We approximate qone by// qone(x) = s*(0.375 + (R/S))// where R = qr1*s**2 + qr2*s**4 + ... + qr5*s**10// S = 1 + qs1*s**2 + ... + qs6*s**12// and// | qone(x)/s -0.375-R/S | <= 2**(-61.13)// for x in [inf, 8] = 1/[0,0.125]var q1R8 = [6]float64{0.00000000000000000000e+00, // 0x0000000000000000-1.02539062499992714161e-01, // 0xBFBA3FFFFFFFFDF3-1.62717534544589987888e+01, // 0xC0304591A26779F7-7.59601722513950107896e+02, // 0xC087BCD053E4B576-1.18498066702429587167e+04, // 0xC0C724E740F87415-4.84385124285750353010e+04, // 0xC0E7A6D065D09C6A}var q1S8 = [6]float64{1.61395369700722909556e+02, // 0x40642CA6DE5BCDE57.82538599923348465381e+03, // 0x40BE9162D0D884191.33875336287249578163e+05, // 0x4100579AB0B75E987.19657723683240939863e+05, // 0x4125F65372869C196.66601232617776375264e+05, // 0x412457D27719AD5C-2.94490264303834643215e+05, // 0xC111F9690EA5AA18}// for x in [8,4.5454] = 1/[0.125,0.22001]var q1R5 = [6]float64{-2.08979931141764104297e-11, // 0xBDB6FA431AA1A098-1.02539050241375426231e-01, // 0xBFBA3FFFCB597FEF-8.05644828123936029840e+00, // 0xC0201CE6CA03AD4B-1.83669607474888380239e+02, // 0xC066F56D6CA7B9B0-1.37319376065508163265e+03, // 0xC09574C66931734F-2.61244440453215656817e+03, // 0xC0A468E388FDA79D}var q1S5 = [6]float64{8.12765501384335777857e+01, // 0x405451B2FF5A11B21.99179873460485964642e+03, // 0x409F1F31E77BF8391.74684851924908907677e+04, // 0x40D10F1F0D64CE294.98514270910352279316e+04, // 0x40E8576DAABAD1972.79480751638918118260e+04, // 0x40DB4B04CF7C364B-4.71918354795128470869e+03, // 0xC0B26F2EFCFFA004}// for x in [4.5454,2.8571] = 1/[0.2199,0.35001] ???var q1R3 = [6]float64{-5.07831226461766561369e-09, // 0xBE35CFA9D38FC84F-1.02537829820837089745e-01, // 0xBFBA3FEB51AEED54-4.61011581139473403113e+00, // 0xC01270C23302D9FF-5.78472216562783643212e+01, // 0xC04CEC71C25D16DA-2.28244540737631695038e+02, // 0xC06C87D34718D55F-2.19210128478909325622e+02, // 0xC06B66B95F5C1BF6}var q1S3 = [6]float64{4.76651550323729509273e+01, // 0x4047D523CCD367E46.73865112676699709482e+02, // 0x40850EEBC031EE3E3.38015286679526343505e+03, // 0x40AA684E448E7C9A5.54772909720722782367e+03, // 0x40B5ABBAA61D54A61.90311919338810798763e+03, // 0x409DBC7A0DD4DF4B-1.35201191444307340817e+02, // 0xC060E670290A311F}// for x in [2.8570,2] = 1/[0.3499,0.5]var q1R2 = [6]float64{-1.78381727510958865572e-07, // 0xBE87F12644C626D2-1.02517042607985553460e-01, // 0xBFBA3E8E9148B010-2.75220568278187460720e+00, // 0xC006048469BB4EDA-1.96636162643703720221e+01, // 0xC033A9E2C168907F-4.23253133372830490089e+01, // 0xC04529A3DE104AAA-2.13719211703704061733e+01, // 0xC0355F3639CF6E52}var q1S2 = [6]float64{2.95333629060523854548e+01, // 0x403D888A78AE64FF2.52981549982190529136e+02, // 0x406F9F68DB821CBA7.57502834868645436472e+02, // 0x4087AC05CE49A0F77.39393205320467245656e+02, // 0x40871B2548D4C0291.55949003336666123687e+02, // 0x40637E5E3C3ED8D4-4.95949898822628210127e+00, // 0xC013D686E71BE86B}func qone(x float64) float64 {var p, q [6]float64if x >= 8 {p = q1R8q = q1S8} else if x >= 4.5454 {p = q1R5q = q1S5} else if x >= 2.8571 {p = q1R3q = q1S3} else if x >= 2 {p = q1R2q = q1S2}z := 1 / (x * x)r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))s := 1 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))))return (0.375 + r/s) / x}
