OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [jn.go] - Rev 801

Go to most recent revision | Compare with Previous | Blame | View Log

// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package math

/*
        Bessel function of the first and second kinds of order n.
*/

// The original C code and the long comment below are
// from FreeBSD's /usr/src/lib/msun/src/e_jn.c and
// came with this notice.  The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
// __ieee754_jn(n, x), __ieee754_yn(n, x)
// floating point Bessel's function of the 1st and 2nd kind
// of order n
//
// Special cases:
//      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
//      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
// Note 2. About jn(n,x), yn(n,x)
//      For n=0, j0(x) is called,
//      for n=1, j1(x) is called,
//      for n<x, forward recursion is used starting
//      from values of j0(x) and j1(x).
//      for n>x, a continued fraction approximation to
//      j(n,x)/j(n-1,x) is evaluated and then backward
//      recursion is used starting from a supposed value
//      for j(n,x). The resulting value of j(0,x) is
//      compared with the actual value to correct the
//      supposed value of j(n,x).
//
//      yn(n,x) is similar in all respects, except
//      that forward recursion is used for all
//      values of n>1.

// Jn returns the order-n Bessel function of the first kind.
//
// Special cases are:
//      Jn(n, ±Inf) = 0
//      Jn(n, NaN) = NaN
func Jn(n int, x float64) float64 {
        const (
                TwoM29 = 1.0 / (1 << 29) // 2**-29 0x3e10000000000000
                Two302 = 1 << 302        // 2**302 0x52D0000000000000
        )
        // special cases
        switch {
        case IsNaN(x):
                return x
        case IsInf(x, 0):
                return 0
        }
        // J(-n, x) = (-1)**n * J(n, x), J(n, -x) = (-1)**n * J(n, x)
        // Thus, J(-n, x) = J(n, -x)

        if n == 0 {
                return J0(x)
        }
        if x == 0 {
                return 0
        }
        if n < 0 {
                n, x = -n, -x
        }
        if n == 1 {
                return J1(x)
        }
        sign := false
        if x < 0 {
                x = -x
                if n&1 == 1 {
                        sign = true // odd n and negative x
                }
        }
        var b float64
        if float64(n) <= x {
                // Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
                if x >= Two302 { // x > 2**302

                        // (x >> n**2)
                        //          Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
                        //          Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
                        //          Let s=sin(x), c=cos(x),
                        //              xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
                        //
                        //                 n    sin(xn)*sqt2    cos(xn)*sqt2
                        //              ----------------------------------
                        //                 0     s-c             c+s
                        //                 1    -s-c            -c+s
                        //                 2    -s+c            -c-s
                        //                 3     s+c             c-s

                        var temp float64
                        switch n & 3 {
                        case 0:
                                temp = Cos(x) + Sin(x)
                        case 1:
                                temp = -Cos(x) + Sin(x)
                        case 2:
                                temp = -Cos(x) - Sin(x)
                        case 3:
                                temp = Cos(x) - Sin(x)
                        }
                        b = (1 / SqrtPi) * temp / Sqrt(x)
                } else {
                        b = J1(x)
                        for i, a := 1, J0(x); i < n; i++ {
                                a, b = b, b*(float64(i+i)/x)-a // avoid underflow
                        }
                }
        } else {
                if x < TwoM29 { // x < 2**-29
                        // x is tiny, return the first Taylor expansion of J(n,x)
                        // J(n,x) = 1/n!*(x/2)**n  - ...

                        if n > 33 { // underflow
                                b = 0
                        } else {
                                temp := x * 0.5
                                b = temp
                                a := 1.0
                                for i := 2; i <= n; i++ {
                                        a *= float64(i) // a = n!
                                        b *= temp       // b = (x/2)**n
                                }
                                b /= a
                        }
                } else {
                        // use backward recurrence
                        //                      x      x**2      x**2
                        //  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
                        //                      2n  - 2(n+1) - 2(n+2)
                        //
                        //                      1      1        1
                        //  (for large x)   =  ----  ------   ------   .....
                        //                      2n   2(n+1)   2(n+2)
                        //                      -- - ------ - ------ -
                        //                       x     x         x
                        //
                        // Let w = 2n/x and h=2/x, then the above quotient
                        // is equal to the continued fraction:
                        //                  1
                        //      = -----------------------
                        //                     1
                        //         w - -----------------
                        //                        1
                        //              w+h - ---------
                        //                     w+2h - ...
                        //
                        // To determine how many terms needed, let
                        // Q(0) = w, Q(1) = w(w+h) - 1,
                        // Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
                        // When Q(k) > 1e4      good for single
                        // When Q(k) > 1e9      good for double
                        // When Q(k) > 1e17     good for quadruple

                        // determine k
                        w := float64(n+n) / x
                        h := 2 / x
                        q0 := w
                        z := w + h
                        q1 := w*z - 1
                        k := 1
                        for q1 < 1e9 {
                                k += 1
                                z += h
                                q0, q1 = q1, z*q1-q0
                        }
                        m := n + n
                        t := 0.0
                        for i := 2 * (n + k); i >= m; i -= 2 {
                                t = 1 / (float64(i)/x - t)
                        }
                        a := t
                        b = 1
                        //  estimate log((2/x)**n*n!) = n*log(2/x)+n*ln(n)
                        //  Hence, if n*(log(2n/x)) > ...
                        //  single 8.8722839355e+01
                        //  double 7.09782712893383973096e+02
                        //  long double 1.1356523406294143949491931077970765006170e+04
                        //  then recurrent value may overflow and the result is
                        //  likely underflow to zero

                        tmp := float64(n)
                        v := 2 / x
                        tmp = tmp * Log(Abs(v*tmp))
                        if tmp < 7.09782712893383973096e+02 {
                                for i := n - 1; i > 0; i-- {
                                        di := float64(i + i)
                                        a, b = b, b*di/x-a
                                        di -= 2
                                }
                        } else {
                                for i := n - 1; i > 0; i-- {
                                        di := float64(i + i)
                                        a, b = b, b*di/x-a
                                        di -= 2
                                        // scale b to avoid spurious overflow
                                        if b > 1e100 {
                                                a /= b
                                                t /= b
                                                b = 1
                                        }
                                }
                        }
                        b = t * J0(x) / b
                }
        }
        if sign {
                return -b
        }
        return b
}

// Yn returns the order-n Bessel function of the second kind.
//
// Special cases are:
//      Yn(n, +Inf) = 0
//      Yn(n > 0, 0) = -Inf
//      Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even
//      Y1(n, x < 0) = NaN
//      Y1(n, NaN) = NaN
func Yn(n int, x float64) float64 {
        const Two302 = 1 << 302 // 2**302 0x52D0000000000000
        // special cases
        switch {
        case x < 0 || IsNaN(x):
                return NaN()
        case IsInf(x, 1):
                return 0
        }

        if n == 0 {
                return Y0(x)
        }
        if x == 0 {
                if n < 0 && n&1 == 1 {
                        return Inf(1)
                }
                return Inf(-1)
        }
        sign := false
        if n < 0 {
                n = -n
                if n&1 == 1 {
                        sign = true // sign true if n < 0 && |n| odd
                }
        }
        if n == 1 {
                if sign {
                        return -Y1(x)
                }
                return Y1(x)
        }
        var b float64
        if x >= Two302 { // x > 2**302
                // (x >> n**2)
                //          Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
                //          Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
                //          Let s=sin(x), c=cos(x),
                //              xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
                //
                //                 n    sin(xn)*sqt2    cos(xn)*sqt2
                //              ----------------------------------
                //                 0     s-c             c+s
                //                 1    -s-c            -c+s
                //                 2    -s+c            -c-s
                //                 3     s+c             c-s

                var temp float64
                switch n & 3 {
                case 0:
                        temp = Sin(x) - Cos(x)
                case 1:
                        temp = -Sin(x) - Cos(x)
                case 2:
                        temp = -Sin(x) + Cos(x)
                case 3:
                        temp = Sin(x) + Cos(x)
                }
                b = (1 / SqrtPi) * temp / Sqrt(x)
        } else {
                a := Y0(x)
                b = Y1(x)
                // quit if b is -inf
                for i := 1; i < n && !IsInf(b, -1); i++ {
                        a, b = b, (float64(i+i)/x)*b-a
                }
        }
        if sign {
                return -b
        }
        return b
}

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.