URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [log1p.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2010 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package math// The original C code, the long comment, and the constants// below are from FreeBSD's /usr/src/lib/msun/src/s_log1p.c// and came with this notice. The go code is a simplified// version of the original C.//// ====================================================// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.//// Developed at SunPro, a Sun Microsystems, Inc. business.// Permission to use, copy, modify, and distribute this// software is freely granted, provided that this notice// is preserved.// ====================================================////// double log1p(double x)//// Method :// 1. Argument Reduction: find k and f such that// 1+x = 2**k * (1+f),// where sqrt(2)/2 < 1+f < sqrt(2) .//// Note. If k=0, then f=x is exact. However, if k!=0, then f// may not be representable exactly. In that case, a correction// term is need. Let u=1+x rounded. Let c = (1+x)-u, then// log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),// and add back the correction term c/u.// (Note: when x > 2**53, one can simply return log(x))//// 2. Approximation of log1p(f).// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)// = 2s + 2/3 s**3 + 2/5 s**5 + .....,// = 2s + s*R// We use a special Reme algorithm on [0,0.1716] to generate// a polynomial of degree 14 to approximate R The maximum error// of this polynomial approximation is bounded by 2**-58.45. In// other words,// 2 4 6 8 10 12 14// R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s// (the values of Lp1 to Lp7 are listed in the program)// and// | 2 14 | -58.45// | Lp1*s +...+Lp7*s - R(z) | <= 2// | |// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.// In order to guarantee error in log below 1ulp, we compute log// by// log1p(f) = f - (hfsq - s*(hfsq+R)).//// 3. Finally, log1p(x) = k*ln2 + log1p(f).// = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))// Here ln2 is split into two floating point number:// ln2_hi + ln2_lo,// where n*ln2_hi is always exact for |n| < 2000.//// Special cases:// log1p(x) is NaN with signal if x < -1 (including -INF) ;// log1p(+INF) is +INF; log1p(-1) is -INF with signal;// log1p(NaN) is that NaN with no signal.//// Accuracy:// according to an error analysis, the error is always less than// 1 ulp (unit in the last place).//// Constants:// The hexadecimal values are the intended ones for the following// constants. The decimal values may be used, provided that the// compiler will convert from decimal to binary accurately enough// to produce the hexadecimal values shown.//// Note: Assuming log() return accurate answer, the following// algorithm can be used to compute log1p(x) to within a few ULP://// u = 1+x;// if(u==1.0) return x ; else// return log(u)*(x/(u-1.0));//// See HP-15C Advanced Functions Handbook, p.193.// Log1p returns the natural logarithm of 1 plus its argument x.// It is more accurate than Log(1 + x) when x is near zero.//// Special cases are:// Log1p(+Inf) = +Inf// Log1p(±0) = ±0// Log1p(-1) = -Inf// Log1p(x < -1) = NaN// Log1p(NaN) = NaN//extern log1pfunc libc_log1p(float64) float64func Log1p(x float64) float64 {return libc_log1p(x)}func log1p(x float64) float64 {const (Sqrt2M1 = 4.142135623730950488017e-01 // Sqrt(2)-1 = 0x3fda827999fcef34Sqrt2HalfM1 = -2.928932188134524755992e-01 // Sqrt(2)/2-1 = 0xbfd2bec333018866Small = 1.0 / (1 << 29) // 2**-29 = 0x3e20000000000000Tiny = 1.0 / (1 << 54) // 2**-54Two53 = 1 << 53 // 2**53Ln2Hi = 6.93147180369123816490e-01 // 3fe62e42fee00000Ln2Lo = 1.90821492927058770002e-10 // 3dea39ef35793c76Lp1 = 6.666666666666735130e-01 // 3FE5555555555593Lp2 = 3.999999999940941908e-01 // 3FD999999997FA04Lp3 = 2.857142874366239149e-01 // 3FD2492494229359Lp4 = 2.222219843214978396e-01 // 3FCC71C51D8E78AFLp5 = 1.818357216161805012e-01 // 3FC7466496CB03DELp6 = 1.531383769920937332e-01 // 3FC39A09D078C69FLp7 = 1.479819860511658591e-01 // 3FC2F112DF3E5244)// special casesswitch {case x < -1 || IsNaN(x): // includes -Infreturn NaN()case x == -1:return Inf(-1)case IsInf(x, 1):return Inf(1)}absx := xif absx < 0 {absx = -absx}var f float64var iu uint64k := 1if absx < Sqrt2M1 { // |x| < Sqrt(2)-1if absx < Small { // |x| < 2**-29if absx < Tiny { // |x| < 2**-54return x}return x - x*x*0.5}if x > Sqrt2HalfM1 { // Sqrt(2)/2-1 < x// (Sqrt(2)/2-1) < x < (Sqrt(2)-1)k = 0f = xiu = 1}}var c float64if k != 0 {var u float64if absx < Two53 { // 1<<53u = 1.0 + xiu = Float64bits(u)k = int((iu >> 52) - 1023)if k > 0 {c = 1.0 - (u - x)} else {c = x - (u - 1.0) // correction termc /= u}} else {u = xiu = Float64bits(u)k = int((iu >> 52) - 1023)c = 0}iu &= 0x000fffffffffffffif iu < 0x0006a09e667f3bcd { // mantissa of Sqrt(2)u = Float64frombits(iu | 0x3ff0000000000000) // normalize u} else {k += 1u = Float64frombits(iu | 0x3fe0000000000000) // normalize u/2iu = (0x0010000000000000 - iu) >> 2}f = u - 1.0 // Sqrt(2)/2 < u < Sqrt(2)}hfsq := 0.5 * f * fvar s, R, z float64if iu == 0 { // |f| < 2**-20if f == 0 {if k == 0 {return 0} else {c += float64(k) * Ln2Loreturn float64(k)*Ln2Hi + c}}R = hfsq * (1.0 - 0.66666666666666666*f) // avoid divisionif k == 0 {return f - R}return float64(k)*Ln2Hi - ((R - (float64(k)*Ln2Lo + c)) - f)}s = f / (2.0 + f)z = s * sR = z * (Lp1 + z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))))if k == 0 {return f - (hfsq - s*(hfsq+R))}return float64(k)*Ln2Hi - ((hfsq - (s*(hfsq+R) + (float64(k)*Ln2Lo + c))) - f)}
