URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [rand/] [rand_test.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package randimport ("errors""fmt""math""testing")const (numTestSamples = 10000)type statsResults struct {mean float64stddev float64closeEnough float64maxError float64}func max(a, b float64) float64 {if a > b {return a}return b}func nearEqual(a, b, closeEnough, maxError float64) bool {absDiff := math.Abs(a - b)if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero.return true}return absDiff/max(math.Abs(a), math.Abs(b)) < maxError}var testSeeds = []int64{1, 1754801282, 1698661970, 1550503961}// checkSimilarDistribution returns success if the mean and stddev of the// two statsResults are similar.func (this *statsResults) checkSimilarDistribution(expected *statsResults) error {if !nearEqual(this.mean, expected.mean, expected.closeEnough, expected.maxError) {s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", this.mean, expected.mean, expected.closeEnough, expected.maxError)fmt.Println(s)return errors.New(s)}if !nearEqual(this.stddev, expected.stddev, 0, expected.maxError) {s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", this.stddev, expected.stddev, expected.closeEnough, expected.maxError)fmt.Println(s)return errors.New(s)}return nil}func getStatsResults(samples []float64) *statsResults {res := new(statsResults)var sum float64for i := range samples {sum += samples[i]}res.mean = sum / float64(len(samples))var devsum float64for i := range samples {devsum += math.Pow(samples[i]-res.mean, 2)}res.stddev = math.Sqrt(devsum / float64(len(samples)))return res}func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) {actual := getStatsResults(samples)err := actual.checkSimilarDistribution(expected)if err != nil {t.Errorf(err.Error())}}func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) {chunk := len(samples) / nslicesfor i := 0; i < nslices; i++ {low := i * chunkvar high intif i == nslices-1 {high = len(samples) - 1} else {high = (i + 1) * chunk}checkSampleDistribution(t, samples[low:high], expected)}}//// Normal distribution tests//func generateNormalSamples(nsamples int, mean, stddev float64, seed int64) []float64 {r := New(NewSource(seed))samples := make([]float64, nsamples)for i := range samples {samples[i] = r.NormFloat64()*stddev + mean}return samples}func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed int64) {//fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed);samples := generateNormalSamples(nsamples, mean, stddev, seed)errorScale := max(1.0, stddev) // Error scales with stddevexpected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}// Make sure that the entire set matches the expected distribution.checkSampleDistribution(t, samples, expected)// Make sure that each half of the set matches the expected distribution.checkSampleSliceDistributions(t, samples, 2, expected)// Make sure that each 7th of the set matches the expected distribution.checkSampleSliceDistributions(t, samples, 7, expected)}// Actual testsfunc TestStandardNormalValues(t *testing.T) {for _, seed := range testSeeds {testNormalDistribution(t, numTestSamples, 0, 1, seed)}}func TestNonStandardNormalValues(t *testing.T) {sdmax := 1000.0mmax := 1000.0if testing.Short() {sdmax = 5mmax = 5}for sd := 0.5; sd < sdmax; sd *= 2 {for m := 0.5; m < mmax; m *= 2 {for _, seed := range testSeeds {testNormalDistribution(t, numTestSamples, m, sd, seed)}}}}//// Exponential distribution tests//func generateExponentialSamples(nsamples int, rate float64, seed int64) []float64 {r := New(NewSource(seed))samples := make([]float64, nsamples)for i := range samples {samples[i] = r.ExpFloat64() / rate}return samples}func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed int64) {//fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed);mean := 1 / ratestddev := meansamples := generateExponentialSamples(nsamples, rate, seed)errorScale := max(1.0, 1/rate) // Error scales with the inverse of the rateexpected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale}// Make sure that the entire set matches the expected distribution.checkSampleDistribution(t, samples, expected)// Make sure that each half of the set matches the expected distribution.checkSampleSliceDistributions(t, samples, 2, expected)// Make sure that each 7th of the set matches the expected distribution.checkSampleSliceDistributions(t, samples, 7, expected)}// Actual testsfunc TestStandardExponentialValues(t *testing.T) {for _, seed := range testSeeds {testExponentialDistribution(t, numTestSamples, 1, seed)}}func TestNonStandardExponentialValues(t *testing.T) {for rate := 0.05; rate < 10; rate *= 2 {for _, seed := range testSeeds {testExponentialDistribution(t, numTestSamples, rate, seed)}}}//// Table generation tests//func initNorm() (testKn []uint32, testWn, testFn []float32) {const m1 = 1 << 31var (dn float64 = rntn = dnvn float64 = 9.91256303526217e-3)testKn = make([]uint32, 128)testWn = make([]float32, 128)testFn = make([]float32, 128)q := vn / math.Exp(-0.5*dn*dn)testKn[0] = uint32((dn / q) * m1)testKn[1] = 0testWn[0] = float32(q / m1)testWn[127] = float32(dn / m1)testFn[0] = 1.0testFn[127] = float32(math.Exp(-0.5 * dn * dn))for i := 126; i >= 1; i-- {dn = math.Sqrt(-2.0 * math.Log(vn/dn+math.Exp(-0.5*dn*dn)))testKn[i+1] = uint32((dn / tn) * m1)tn = dntestFn[i] = float32(math.Exp(-0.5 * dn * dn))testWn[i] = float32(dn / m1)}return}func initExp() (testKe []uint32, testWe, testFe []float32) {const m2 = 1 << 32var (de float64 = rete = deve float64 = 3.9496598225815571993e-3)testKe = make([]uint32, 256)testWe = make([]float32, 256)testFe = make([]float32, 256)q := ve / math.Exp(-de)testKe[0] = uint32((de / q) * m2)testKe[1] = 0testWe[0] = float32(q / m2)testWe[255] = float32(de / m2)testFe[0] = 1.0testFe[255] = float32(math.Exp(-de))for i := 254; i >= 1; i-- {de = -math.Log(ve/de + math.Exp(-de))testKe[i+1] = uint32((de / te) * m2)te = detestFe[i] = float32(math.Exp(-de))testWe[i] = float32(de / m2)}return}// compareUint32Slices returns the first index where the two slices// disagree, or <0 if the lengths are the same and all elements// are identical.func compareUint32Slices(s1, s2 []uint32) int {if len(s1) != len(s2) {if len(s1) > len(s2) {return len(s2) + 1}return len(s1) + 1}for i := range s1 {if s1[i] != s2[i] {return i}}return -1}// compareFloat32Slices returns the first index where the two slices// disagree, or <0 if the lengths are the same and all elements// are identical.func compareFloat32Slices(s1, s2 []float32) int {if len(s1) != len(s2) {if len(s1) > len(s2) {return len(s2) + 1}return len(s1) + 1}for i := range s1 {if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) {return i}}return -1}func TestNormTables(t *testing.T) {testKn, testWn, testFn := initNorm()if i := compareUint32Slices(kn[0:], testKn); i >= 0 {t.Errorf("kn disagrees at index %v; %v != %v", i, kn[i], testKn[i])}if i := compareFloat32Slices(wn[0:], testWn); i >= 0 {t.Errorf("wn disagrees at index %v; %v != %v", i, wn[i], testWn[i])}if i := compareFloat32Slices(fn[0:], testFn); i >= 0 {t.Errorf("fn disagrees at index %v; %v != %v", i, fn[i], testFn[i])}}func TestExpTables(t *testing.T) {testKe, testWe, testFe := initExp()if i := compareUint32Slices(ke[0:], testKe); i >= 0 {t.Errorf("ke disagrees at index %v; %v != %v", i, ke[i], testKe[i])}if i := compareFloat32Slices(we[0:], testWe); i >= 0 {t.Errorf("we disagrees at index %v; %v != %v", i, we[i], testWe[i])}if i := compareFloat32Slices(fe[0:], testFe); i >= 0 {t.Errorf("fe disagrees at index %v; %v != %v", i, fe[i], testFe[i])}}// Benchmarksfunc BenchmarkInt63Threadsafe(b *testing.B) {for n := b.N; n > 0; n-- {Int63()}}func BenchmarkInt63Unthreadsafe(b *testing.B) {r := New(NewSource(1))for n := b.N; n > 0; n-- {r.Int63()}}func BenchmarkIntn1000(b *testing.B) {r := New(NewSource(1))for n := b.N; n > 0; n-- {r.Intn(1000)}}func BenchmarkInt63n1000(b *testing.B) {r := New(NewSource(1))for n := b.N; n > 0; n-- {r.Int63n(1000)}}func BenchmarkInt31n1000(b *testing.B) {r := New(NewSource(1))for n := b.N; n > 0; n-- {r.Int31n(1000)}}
