OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [rand/] [rand_test.go] - Rev 758

Go to most recent revision | Compare with Previous | Blame | View Log

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package rand

import (
        "errors"
        "fmt"
        "math"
        "testing"
)

const (
        numTestSamples = 10000
)

type statsResults struct {
        mean        float64
        stddev      float64
        closeEnough float64
        maxError    float64
}

func max(a, b float64) float64 {
        if a > b {
                return a
        }
        return b
}

func nearEqual(a, b, closeEnough, maxError float64) bool {
        absDiff := math.Abs(a - b)
        if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero.
                return true
        }
        return absDiff/max(math.Abs(a), math.Abs(b)) < maxError
}

var testSeeds = []int64{1, 1754801282, 1698661970, 1550503961}

// checkSimilarDistribution returns success if the mean and stddev of the
// two statsResults are similar.
func (this *statsResults) checkSimilarDistribution(expected *statsResults) error {
        if !nearEqual(this.mean, expected.mean, expected.closeEnough, expected.maxError) {
                s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", this.mean, expected.mean, expected.closeEnough, expected.maxError)
                fmt.Println(s)
                return errors.New(s)
        }
        if !nearEqual(this.stddev, expected.stddev, 0, expected.maxError) {
                s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", this.stddev, expected.stddev, expected.closeEnough, expected.maxError)
                fmt.Println(s)
                return errors.New(s)
        }
        return nil
}

func getStatsResults(samples []float64) *statsResults {
        res := new(statsResults)
        var sum float64
        for i := range samples {
                sum += samples[i]
        }
        res.mean = sum / float64(len(samples))
        var devsum float64
        for i := range samples {
                devsum += math.Pow(samples[i]-res.mean, 2)
        }
        res.stddev = math.Sqrt(devsum / float64(len(samples)))
        return res
}

func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) {
        actual := getStatsResults(samples)
        err := actual.checkSimilarDistribution(expected)
        if err != nil {
                t.Errorf(err.Error())
        }
}

func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) {
        chunk := len(samples) / nslices
        for i := 0; i < nslices; i++ {
                low := i * chunk
                var high int
                if i == nslices-1 {
                        high = len(samples) - 1
                } else {
                        high = (i + 1) * chunk
                }
                checkSampleDistribution(t, samples[low:high], expected)
        }
}

//
// Normal distribution tests
//

func generateNormalSamples(nsamples int, mean, stddev float64, seed int64) []float64 {
        r := New(NewSource(seed))
        samples := make([]float64, nsamples)
        for i := range samples {
                samples[i] = r.NormFloat64()*stddev + mean
        }
        return samples
}

func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed int64) {
        //fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed);

        samples := generateNormalSamples(nsamples, mean, stddev, seed)
        errorScale := max(1.0, stddev) // Error scales with stddev
        expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}

        // Make sure that the entire set matches the expected distribution.
        checkSampleDistribution(t, samples, expected)

        // Make sure that each half of the set matches the expected distribution.
        checkSampleSliceDistributions(t, samples, 2, expected)

        // Make sure that each 7th of the set matches the expected distribution.
        checkSampleSliceDistributions(t, samples, 7, expected)
}

// Actual tests

func TestStandardNormalValues(t *testing.T) {
        for _, seed := range testSeeds {
                testNormalDistribution(t, numTestSamples, 0, 1, seed)
        }
}

func TestNonStandardNormalValues(t *testing.T) {
        sdmax := 1000.0
        mmax := 1000.0
        if testing.Short() {
                sdmax = 5
                mmax = 5
        }
        for sd := 0.5; sd < sdmax; sd *= 2 {
                for m := 0.5; m < mmax; m *= 2 {
                        for _, seed := range testSeeds {
                                testNormalDistribution(t, numTestSamples, m, sd, seed)
                        }
                }
        }
}

//
// Exponential distribution tests
//

func generateExponentialSamples(nsamples int, rate float64, seed int64) []float64 {
        r := New(NewSource(seed))
        samples := make([]float64, nsamples)
        for i := range samples {
                samples[i] = r.ExpFloat64() / rate
        }
        return samples
}

func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed int64) {
        //fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed);

        mean := 1 / rate
        stddev := mean

        samples := generateExponentialSamples(nsamples, rate, seed)
        errorScale := max(1.0, 1/rate) // Error scales with the inverse of the rate
        expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale}

        // Make sure that the entire set matches the expected distribution.
        checkSampleDistribution(t, samples, expected)

        // Make sure that each half of the set matches the expected distribution.
        checkSampleSliceDistributions(t, samples, 2, expected)

        // Make sure that each 7th of the set matches the expected distribution.
        checkSampleSliceDistributions(t, samples, 7, expected)
}

// Actual tests

func TestStandardExponentialValues(t *testing.T) {
        for _, seed := range testSeeds {
                testExponentialDistribution(t, numTestSamples, 1, seed)
        }
}

func TestNonStandardExponentialValues(t *testing.T) {
        for rate := 0.05; rate < 10; rate *= 2 {
                for _, seed := range testSeeds {
                        testExponentialDistribution(t, numTestSamples, rate, seed)
                }
        }
}

//
// Table generation tests
//

func initNorm() (testKn []uint32, testWn, testFn []float32) {
        const m1 = 1 << 31
        var (
                dn float64 = rn
                tn         = dn
                vn float64 = 9.91256303526217e-3
        )

        testKn = make([]uint32, 128)
        testWn = make([]float32, 128)
        testFn = make([]float32, 128)

        q := vn / math.Exp(-0.5*dn*dn)
        testKn[0] = uint32((dn / q) * m1)
        testKn[1] = 0
        testWn[0] = float32(q / m1)
        testWn[127] = float32(dn / m1)
        testFn[0] = 1.0
        testFn[127] = float32(math.Exp(-0.5 * dn * dn))
        for i := 126; i >= 1; i-- {
                dn = math.Sqrt(-2.0 * math.Log(vn/dn+math.Exp(-0.5*dn*dn)))
                testKn[i+1] = uint32((dn / tn) * m1)
                tn = dn
                testFn[i] = float32(math.Exp(-0.5 * dn * dn))
                testWn[i] = float32(dn / m1)
        }
        return
}

func initExp() (testKe []uint32, testWe, testFe []float32) {
        const m2 = 1 << 32
        var (
                de float64 = re
                te         = de
                ve float64 = 3.9496598225815571993e-3
        )

        testKe = make([]uint32, 256)
        testWe = make([]float32, 256)
        testFe = make([]float32, 256)

        q := ve / math.Exp(-de)
        testKe[0] = uint32((de / q) * m2)
        testKe[1] = 0
        testWe[0] = float32(q / m2)
        testWe[255] = float32(de / m2)
        testFe[0] = 1.0
        testFe[255] = float32(math.Exp(-de))
        for i := 254; i >= 1; i-- {
                de = -math.Log(ve/de + math.Exp(-de))
                testKe[i+1] = uint32((de / te) * m2)
                te = de
                testFe[i] = float32(math.Exp(-de))
                testWe[i] = float32(de / m2)
        }
        return
}

// compareUint32Slices returns the first index where the two slices
// disagree, or <0 if the lengths are the same and all elements
// are identical.
func compareUint32Slices(s1, s2 []uint32) int {
        if len(s1) != len(s2) {
                if len(s1) > len(s2) {
                        return len(s2) + 1
                }
                return len(s1) + 1
        }
        for i := range s1 {
                if s1[i] != s2[i] {
                        return i
                }
        }
        return -1
}

// compareFloat32Slices returns the first index where the two slices
// disagree, or <0 if the lengths are the same and all elements
// are identical.
func compareFloat32Slices(s1, s2 []float32) int {
        if len(s1) != len(s2) {
                if len(s1) > len(s2) {
                        return len(s2) + 1
                }
                return len(s1) + 1
        }
        for i := range s1 {
                if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) {
                        return i
                }
        }
        return -1
}

func TestNormTables(t *testing.T) {
        testKn, testWn, testFn := initNorm()
        if i := compareUint32Slices(kn[0:], testKn); i >= 0 {
                t.Errorf("kn disagrees at index %v; %v != %v", i, kn[i], testKn[i])
        }
        if i := compareFloat32Slices(wn[0:], testWn); i >= 0 {
                t.Errorf("wn disagrees at index %v; %v != %v", i, wn[i], testWn[i])
        }
        if i := compareFloat32Slices(fn[0:], testFn); i >= 0 {
                t.Errorf("fn disagrees at index %v; %v != %v", i, fn[i], testFn[i])
        }
}

func TestExpTables(t *testing.T) {
        testKe, testWe, testFe := initExp()
        if i := compareUint32Slices(ke[0:], testKe); i >= 0 {
                t.Errorf("ke disagrees at index %v; %v != %v", i, ke[i], testKe[i])
        }
        if i := compareFloat32Slices(we[0:], testWe); i >= 0 {
                t.Errorf("we disagrees at index %v; %v != %v", i, we[i], testWe[i])
        }
        if i := compareFloat32Slices(fe[0:], testFe); i >= 0 {
                t.Errorf("fe disagrees at index %v; %v != %v", i, fe[i], testFe[i])
        }
}

// Benchmarks

func BenchmarkInt63Threadsafe(b *testing.B) {
        for n := b.N; n > 0; n-- {
                Int63()
        }
}

func BenchmarkInt63Unthreadsafe(b *testing.B) {
        r := New(NewSource(1))
        for n := b.N; n > 0; n-- {
                r.Int63()
        }
}

func BenchmarkIntn1000(b *testing.B) {
        r := New(NewSource(1))
        for n := b.N; n > 0; n-- {
                r.Intn(1000)
        }
}

func BenchmarkInt63n1000(b *testing.B) {
        r := New(NewSource(1))
        for n := b.N; n > 0; n-- {
                r.Int63n(1000)
        }
}

func BenchmarkInt31n1000(b *testing.B) {
        r := New(NewSource(1))
        for n := b.N; n > 0; n-- {
                r.Int31n(1000)
        }
}

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.