URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [sin.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2011 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package math/*Floating-point sine and cosine.*/// The original C code, the long comment, and the constants// below were from http://netlib.sandia.gov/cephes/cmath/sin.c,// available from http://www.netlib.org/cephes/cmath.tgz.// The go code is a simplified version of the original C.//// sin.c//// Circular sine//// SYNOPSIS://// double x, y, sin();// y = sin( x );//// DESCRIPTION://// Range reduction is into intervals of pi/4. The reduction error is nearly// eliminated by contriving an extended precision modular arithmetic.//// Two polynomial approximating functions are employed.// Between 0 and pi/4 the sine is approximated by// x + x**3 P(x**2).// Between pi/4 and pi/2 the cosine is represented as// 1 - x**2 Q(x**2).//// ACCURACY://// Relative error:// arithmetic domain # trials peak rms// DEC 0, 10 150000 3.0e-17 7.8e-18// IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17//// Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss// is not gradual, but jumps suddenly to about 1 part in 10e7. Results may// be meaningless for x > 2**49 = 5.6e14.//// cos.c//// Circular cosine//// SYNOPSIS://// double x, y, cos();// y = cos( x );//// DESCRIPTION://// Range reduction is into intervals of pi/4. The reduction error is nearly// eliminated by contriving an extended precision modular arithmetic.//// Two polynomial approximating functions are employed.// Between 0 and pi/4 the cosine is approximated by// 1 - x**2 Q(x**2).// Between pi/4 and pi/2 the sine is represented as// x + x**3 P(x**2).//// ACCURACY://// Relative error:// arithmetic domain # trials peak rms// IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17// DEC 0,+1.07e9 17000 3.0e-17 7.2e-18//// Cephes Math Library Release 2.8: June, 2000// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier//// The readme file at http://netlib.sandia.gov/cephes/ says:// Some software in this archive may be from the book _Methods and// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster// International, 1989) or from the Cephes Mathematical Library, a// commercial product. In either event, it is copyrighted by the author.// What you see here may be used freely but it comes with no support or// guarantee.//// The two known misprints in the book are repaired here in the// source listings for the gamma function and the incomplete beta// integral.//// Stephen L. Moshier// moshier@na-net.ornl.gov// sin coefficientsvar _sin = [...]float64{1.58962301576546568060E-10, // 0x3de5d8fd1fd19ccd-2.50507477628578072866E-8, // 0xbe5ae5e5a9291f5d2.75573136213857245213E-6, // 0x3ec71de3567d48a1-1.98412698295895385996E-4, // 0xbf2a01a019bfdf038.33333333332211858878E-3, // 0x3f8111111110f7d0-1.66666666666666307295E-1, // 0xbfc5555555555548}// cos coefficientsvar _cos = [...]float64{-1.13585365213876817300E-11, // 0xbda8fa49a0861a9b2.08757008419747316778E-9, // 0x3e21ee9d7b4e3f05-2.75573141792967388112E-7, // 0xbe927e4f7eac4bc62.48015872888517045348E-5, // 0x3efa01a019c844f5-1.38888888888730564116E-3, // 0xbf56c16c16c14f914.16666666666665929218E-2, // 0x3fa555555555554b}// Cos returns the cosine of x.//// Special cases are:// Cos(±Inf) = NaN// Cos(NaN) = NaN//extern cosfunc libc_cos(float64) float64func Cos(x float64) float64 {return libc_cos(x)}func cos(x float64) float64 {const (PI4A = 7.85398125648498535156E-1 // 0x3fe921fb40000000, Pi/4 split into three partsPI4B = 3.77489470793079817668E-8 // 0x3e64442d00000000,PI4C = 2.69515142907905952645E-15 // 0x3ce8469898cc5170,M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi)// special casesswitch {case IsNaN(x) || IsInf(x, 0):return NaN()}// make argument positivesign := falseif x < 0 {x = -x}j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angley := float64(j) // integer part of x/(Pi/4), as float// map zeros to originif j&1 == 1 {j += 1y += 1}j &= 7 // octant modulo 2Pi radians (360 degrees)if j > 3 {j -= 4sign = !sign}if j > 1 {sign = !sign}z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmeticzz := z * zif j == 1 || j == 2 {y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])} else {y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])}if sign {y = -y}return y}// Sin returns the sine of x.//// Special cases are:// Sin(±0) = ±0// Sin(±Inf) = NaN// Sin(NaN) = NaN//extern sinfunc libc_sin(float64) float64func Sin(x float64) float64 {return libc_sin(x)}func sin(x float64) float64 {const (PI4A = 7.85398125648498535156E-1 // 0x3fe921fb40000000, Pi/4 split into three partsPI4B = 3.77489470793079817668E-8 // 0x3e64442d00000000,PI4C = 2.69515142907905952645E-15 // 0x3ce8469898cc5170,M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi)// special casesswitch {case x == 0 || IsNaN(x):return x // return ±0 || NaN()case IsInf(x, 0):return NaN()}// make argument positive but save the signsign := falseif x < 0 {x = -xsign = true}j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angley := float64(j) // integer part of x/(Pi/4), as float// map zeros to originif j&1 == 1 {j += 1y += 1}j &= 7 // octant modulo 2Pi radians (360 degrees)// reflect in x axisif j > 3 {sign = !signj -= 4}z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmeticzz := z * zif j == 1 || j == 2 {y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])} else {y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])}if sign {y = -y}return y}
