OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [old/] [template/] [execute.go] - Rev 867

Go to most recent revision | Compare with Previous | Blame | View Log

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Code to execute a parsed template.

package template

import (
        "bytes"
        "io"
        "reflect"
        "strings"
)

// Internal state for executing a Template.  As we evaluate the struct,
// the data item descends into the fields associated with sections, etc.
// Parent is used to walk upwards to find variables higher in the tree.
type state struct {
        parent *state          // parent in hierarchy
        data   reflect.Value   // the driver data for this section etc.
        wr     io.Writer       // where to send output
        buf    [2]bytes.Buffer // alternating buffers used when chaining formatters
}

func (parent *state) clone(data reflect.Value) *state {
        return &state{parent: parent, data: data, wr: parent.wr}
}

// Evaluate interfaces and pointers looking for a value that can look up the name, via a
// struct field, method, or map key, and return the result of the lookup.
func (t *Template) lookup(st *state, v reflect.Value, name string) reflect.Value {
        for v.IsValid() {
                typ := v.Type()
                if n := v.Type().NumMethod(); n > 0 {
                        for i := 0; i < n; i++ {
                                m := typ.Method(i)
                                mtyp := m.Type
                                if m.Name == name && mtyp.NumIn() == 1 && mtyp.NumOut() == 1 {
                                        if !isExported(name) {
                                                t.execError(st, t.linenum, "name not exported: %s in type %s", name, st.data.Type())
                                        }
                                        return v.Method(i).Call(nil)[0]
                                }
                        }
                }
                switch av := v; av.Kind() {
                case reflect.Ptr:
                        v = av.Elem()
                case reflect.Interface:
                        v = av.Elem()
                case reflect.Struct:
                        if !isExported(name) {
                                t.execError(st, t.linenum, "name not exported: %s in type %s", name, st.data.Type())
                        }
                        return av.FieldByName(name)
                case reflect.Map:
                        if v := av.MapIndex(reflect.ValueOf(name)); v.IsValid() {
                                return v
                        }
                        return reflect.Zero(typ.Elem())
                default:
                        return reflect.Value{}
                }
        }
        return v
}

// indirectPtr returns the item numLevels levels of indirection below the value.
// It is forgiving: if the value is not a pointer, it returns it rather than giving
// an error.  If the pointer is nil, it is returned as is.
func indirectPtr(v reflect.Value, numLevels int) reflect.Value {
        for i := numLevels; v.IsValid() && i > 0; i++ {
                if p := v; p.Kind() == reflect.Ptr {
                        if p.IsNil() {
                                return v
                        }
                        v = p.Elem()
                } else {
                        break
                }
        }
        return v
}

// Walk v through pointers and interfaces, extracting the elements within.
func indirect(v reflect.Value) reflect.Value {
loop:
        for v.IsValid() {
                switch av := v; av.Kind() {
                case reflect.Ptr:
                        v = av.Elem()
                case reflect.Interface:
                        v = av.Elem()
                default:
                        break loop
                }
        }
        return v
}

// If the data for this template is a struct, find the named variable.
// Names of the form a.b.c are walked down the data tree.
// The special name "@" (the "cursor") denotes the current data.
// The value coming in (st.data) might need indirecting to reach
// a struct while the return value is not indirected - that is,
// it represents the actual named field. Leading stars indicate
// levels of indirection to be applied to the value.
func (t *Template) findVar(st *state, s string) reflect.Value {
        data := st.data
        flattenedName := strings.TrimLeft(s, "*")
        numStars := len(s) - len(flattenedName)
        s = flattenedName
        if s == "@" {
                return indirectPtr(data, numStars)
        }
        for _, elem := range strings.Split(s, ".") {
                // Look up field; data must be a struct or map.
                data = t.lookup(st, data, elem)
                if !data.IsValid() {
                        return reflect.Value{}
                }
        }
        return indirectPtr(data, numStars)
}

// Is there no data to look at?
func empty(v reflect.Value) bool {
        v = indirect(v)
        if !v.IsValid() {
                return true
        }
        switch v.Kind() {
        case reflect.Bool:
                return v.Bool() == false
        case reflect.String:
                return v.String() == ""
        case reflect.Struct:
                return false
        case reflect.Map:
                return false
        case reflect.Array:
                return v.Len() == 0
        case reflect.Slice:
                return v.Len() == 0
        }
        return false
}

// Look up a variable or method, up through the parent if necessary.
func (t *Template) varValue(name string, st *state) reflect.Value {
        field := t.findVar(st, name)
        if !field.IsValid() {
                if st.parent == nil {
                        t.execError(st, t.linenum, "name not found: %s in type %s", name, st.data.Type())
                }
                return t.varValue(name, st.parent)
        }
        return field
}

func (t *Template) format(wr io.Writer, fmt string, val []interface{}, v *variableElement, st *state) {
        fn := t.formatter(fmt)
        if fn == nil {
                t.execError(st, v.linenum, "missing formatter %s for variable", fmt)
        }
        fn(wr, fmt, val...)
}

// Evaluate a variable, looking up through the parent if necessary.
// If it has a formatter attached ({var|formatter}) run that too.
func (t *Template) writeVariable(v *variableElement, st *state) {
        // Resolve field names
        val := make([]interface{}, len(v.args))
        for i, arg := range v.args {
                if name, ok := arg.(fieldName); ok {
                        val[i] = t.varValue(string(name), st).Interface()
                } else {
                        val[i] = arg
                }
        }
        for i, fmt := range v.fmts[:len(v.fmts)-1] {
                b := &st.buf[i&1]
                b.Reset()
                t.format(b, fmt, val, v, st)
                val = val[0:1]
                val[0] = b.Bytes()
        }
        t.format(st.wr, v.fmts[len(v.fmts)-1], val, v, st)
}

// Execute element i.  Return next index to execute.
func (t *Template) executeElement(i int, st *state) int {
        switch elem := t.elems[i].(type) {
        case *textElement:
                st.wr.Write(elem.text)
                return i + 1
        case *literalElement:
                st.wr.Write(elem.text)
                return i + 1
        case *variableElement:
                t.writeVariable(elem, st)
                return i + 1
        case *sectionElement:
                t.executeSection(elem, st)
                return elem.end
        case *repeatedElement:
                t.executeRepeated(elem, st)
                return elem.end
        }
        e := t.elems[i]
        t.execError(st, 0, "internal error: bad directive in execute: %v %T\n", reflect.ValueOf(e).Interface(), e)
        return 0
}

// Execute the template.
func (t *Template) execute(start, end int, st *state) {
        for i := start; i < end; {
                i = t.executeElement(i, st)
        }
}

// Execute a .section
func (t *Template) executeSection(s *sectionElement, st *state) {
        // Find driver data for this section.  It must be in the current struct.
        field := t.varValue(s.field, st)
        if !field.IsValid() {
                t.execError(st, s.linenum, ".section: cannot find field %s in %s", s.field, st.data.Type())
        }
        st = st.clone(field)
        start, end := s.start, s.or
        if !empty(field) {
                // Execute the normal block.
                if end < 0 {
                        end = s.end
                }
        } else {
                // Execute the .or block.  If it's missing, do nothing.
                start, end = s.or, s.end
                if start < 0 {
                        return
                }
        }
        for i := start; i < end; {
                i = t.executeElement(i, st)
        }
}

// Return the result of calling the Iter method on v, or nil.
func iter(v reflect.Value) reflect.Value {
        for j := 0; j < v.Type().NumMethod(); j++ {
                mth := v.Type().Method(j)
                fv := v.Method(j)
                ft := fv.Type()
                // TODO(rsc): NumIn() should return 0 here, because ft is from a curried FuncValue.
                if mth.Name != "Iter" || ft.NumIn() != 1 || ft.NumOut() != 1 {
                        continue
                }
                ct := ft.Out(0)
                if ct.Kind() != reflect.Chan ||
                        ct.ChanDir()&reflect.RecvDir == 0 {
                        continue
                }
                return fv.Call(nil)[0]
        }
        return reflect.Value{}
}

// Execute a .repeated section
func (t *Template) executeRepeated(r *repeatedElement, st *state) {
        // Find driver data for this section.  It must be in the current struct.
        field := t.varValue(r.field, st)
        if !field.IsValid() {
                t.execError(st, r.linenum, ".repeated: cannot find field %s in %s", r.field, st.data.Type())
        }
        field = indirect(field)

        start, end := r.start, r.or
        if end < 0 {
                end = r.end
        }
        if r.altstart >= 0 {
                end = r.altstart
        }
        first := true

        // Code common to all the loops.
        loopBody := func(newst *state) {
                // .alternates between elements
                if !first && r.altstart >= 0 {
                        for i := r.altstart; i < r.altend; {
                                i = t.executeElement(i, newst)
                        }
                }
                first = false
                for i := start; i < end; {
                        i = t.executeElement(i, newst)
                }
        }

        if array := field; array.Kind() == reflect.Array || array.Kind() == reflect.Slice {
                for j := 0; j < array.Len(); j++ {
                        loopBody(st.clone(array.Index(j)))
                }
        } else if m := field; m.Kind() == reflect.Map {
                for _, key := range m.MapKeys() {
                        loopBody(st.clone(m.MapIndex(key)))
                }
        } else if ch := iter(field); ch.IsValid() {
                for {
                        e, ok := ch.Recv()
                        if !ok {
                                break
                        }
                        loopBody(st.clone(e))
                }
        } else {
                t.execError(st, r.linenum, ".repeated: cannot repeat %s (type %s)",
                        r.field, field.Type())
        }

        if first {
                // Empty. Execute the .or block, once.  If it's missing, do nothing.
                start, end := r.or, r.end
                if start >= 0 {
                        newst := st.clone(field)
                        for i := start; i < end; {
                                i = t.executeElement(i, newst)
                        }
                }
                return
        }
}

// A valid delimiter must contain no space and be non-empty.
func validDelim(d []byte) bool {
        if len(d) == 0 {
                return false
        }
        for _, c := range d {
                if isSpace(c) {
                        return false
                }
        }
        return true
}

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.