URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [reflect/] [value.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package reflectimport ("math""runtime""strconv""unsafe")const bigEndian = false // can be smarter if we find a big-endian machineconst ptrSize = unsafe.Sizeof((*byte)(nil))const cannotSet = "cannot set value obtained from unexported struct field"// TODO: This will have to go away when// the new gc goes in.func memmove(adst, asrc unsafe.Pointer, n uintptr) {dst := uintptr(adst)src := uintptr(asrc)switch {case src < dst && src+n > dst:// byte copy backward// careful: i is unsignedfor i := n; i > 0; {i--*(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))}case (n|src|dst)&(ptrSize-1) != 0:// byte copy forwardfor i := uintptr(0); i < n; i++ {*(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))}default:// word copy forwardfor i := uintptr(0); i < n; i += ptrSize {*(*uintptr)(unsafe.Pointer(dst + i)) = *(*uintptr)(unsafe.Pointer(src + i))}}}// Value is the reflection interface to a Go value.//// Not all methods apply to all kinds of values. Restrictions,// if any, are noted in the documentation for each method.// Use the Kind method to find out the kind of value before// calling kind-specific methods. Calling a method// inappropriate to the kind of type causes a run time panic.//// The zero Value represents no value.// Its IsValid method returns false, its Kind method returns Invalid,// its String method returns "<invalid Value>", and all other methods panic.// Most functions and methods never return an invalid value.// If one does, its documentation states the conditions explicitly.type Value struct {// typ holds the type of the value represented by a Value.typ *commonType// val holds the 1-word representation of the value.// If flag's flagIndir bit is set, then val is a pointer to the data.// Otherwise val is a word holding the actual data.// When the data is smaller than a word, it begins at// the first byte (in the memory address sense) of val.// We use unsafe.Pointer so that the garbage collector// knows that val could be a pointer.val unsafe.Pointer// flag holds metadata about the value.// The lowest bits are flag bits:// - flagRO: obtained via unexported field, so read-only// - flagIndir: val holds a pointer to the data// - flagAddr: v.CanAddr is true (implies flagIndir)// - flagMethod: v is a method value.// The next five bits give the Kind of the value.// This repeats typ.Kind() except for method values.// The remaining 23+ bits give a method number for method values.// If flag.kind() != Func, code can assume that flagMethod is unset.// If typ.size > ptrSize, code can assume that flagIndir is set.flag// A method value represents a curried method invocation// like r.Read for some receiver r. The typ+val+flag bits describe// the receiver r, but the flag's Kind bits say Func (methods are// functions), and the top bits of the flag give the method number// in r's type's method table.}type flag uintptrconst (flagRO flag = 1 << iotaflagIndirflagAddrflagMethodflagKindShift = iotaflagKindWidth = 5 // there are 27 kindsflagKindMask flag = 1<<flagKindWidth - 1flagMethodShift = flagKindShift + flagKindWidth)func (f flag) kind() Kind {return Kind((f >> flagKindShift) & flagKindMask)}// A ValueError occurs when a Value method is invoked on// a Value that does not support it. Such cases are documented// in the description of each method.type ValueError struct {Method stringKind Kind}func (e *ValueError) Error() string {if e.Kind == 0 {return "reflect: call of " + e.Method + " on zero Value"}return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"}// methodName returns the name of the calling method,// assumed to be two stack frames above.func methodName() string {pc, _, _, _ := runtime.Caller(2)f := runtime.FuncForPC(pc)if f == nil {return "unknown method"}return f.Name()}// An iword is the word that would be stored in an// interface to represent a given value v. Specifically, if v is// bigger than a pointer, its word is a pointer to v's data.// Otherwise, its word holds the data stored// in its leading bytes (so is not a pointer).// Because the value sometimes holds a pointer, we use// unsafe.Pointer to represent it, so that if iword appears// in a struct, the garbage collector knows that might be// a pointer.type iword unsafe.Pointerfunc (v Value) iword() iword {if v.flag&flagIndir != 0 && (v.kind() == Ptr || v.kind() == UnsafePointer) {// Have indirect but want direct word.return loadIword(v.val, v.typ.size)}return iword(v.val)}// loadIword loads n bytes at p from memory into an iword.func loadIword(p unsafe.Pointer, n uintptr) iword {// Run the copy ourselves instead of calling memmove// to avoid moving w to the heap.var w iwordswitch n {default:panic("reflect: internal error: loadIword of " + strconv.Itoa(int(n)) + "-byte value")case 0:case 1:*(*uint8)(unsafe.Pointer(&w)) = *(*uint8)(p)case 2:*(*uint16)(unsafe.Pointer(&w)) = *(*uint16)(p)case 3:*(*[3]byte)(unsafe.Pointer(&w)) = *(*[3]byte)(p)case 4:*(*uint32)(unsafe.Pointer(&w)) = *(*uint32)(p)case 5:*(*[5]byte)(unsafe.Pointer(&w)) = *(*[5]byte)(p)case 6:*(*[6]byte)(unsafe.Pointer(&w)) = *(*[6]byte)(p)case 7:*(*[7]byte)(unsafe.Pointer(&w)) = *(*[7]byte)(p)case 8:*(*uint64)(unsafe.Pointer(&w)) = *(*uint64)(p)}return w}// storeIword stores n bytes from w into p.func storeIword(p unsafe.Pointer, w iword, n uintptr) {// Run the copy ourselves instead of calling memmove// to avoid moving w to the heap.switch n {default:panic("reflect: internal error: storeIword of " + strconv.Itoa(int(n)) + "-byte value")case 0:case 1:*(*uint8)(p) = *(*uint8)(unsafe.Pointer(&w))case 2:*(*uint16)(p) = *(*uint16)(unsafe.Pointer(&w))case 3:*(*[3]byte)(p) = *(*[3]byte)(unsafe.Pointer(&w))case 4:*(*uint32)(p) = *(*uint32)(unsafe.Pointer(&w))case 5:*(*[5]byte)(p) = *(*[5]byte)(unsafe.Pointer(&w))case 6:*(*[6]byte)(p) = *(*[6]byte)(unsafe.Pointer(&w))case 7:*(*[7]byte)(p) = *(*[7]byte)(unsafe.Pointer(&w))case 8:*(*uint64)(p) = *(*uint64)(unsafe.Pointer(&w))}}// emptyInterface is the header for an interface{} value.type emptyInterface struct {typ *runtime.Typeword iword}// nonEmptyInterface is the header for a interface value with methods.type nonEmptyInterface struct {// see ../runtime/iface.c:/Itabitab *struct {typ *runtime.Type // dynamic concrete typefun [100000]unsafe.Pointer // method table}word iword}// mustBe panics if f's kind is not expected.// Making this a method on flag instead of on Value// (and embedding flag in Value) means that we can write// the very clear v.mustBe(Bool) and have it compile into// v.flag.mustBe(Bool), which will only bother to copy the// single important word for the receiver.func (f flag) mustBe(expected Kind) {k := f.kind()if k != expected {panic(&ValueError{methodName(), k})}}// mustBeExported panics if f records that the value was obtained using// an unexported field.func (f flag) mustBeExported() {if f == 0 {panic(&ValueError{methodName(), 0})}if f&flagRO != 0 {panic(methodName() + " using value obtained using unexported field")}}// mustBeAssignable panics if f records that the value is not assignable,// which is to say that either it was obtained using an unexported field// or it is not addressable.func (f flag) mustBeAssignable() {if f == 0 {panic(&ValueError{methodName(), Invalid})}// Assignable if addressable and not read-only.if f&flagRO != 0 {panic(methodName() + " using value obtained using unexported field")}if f&flagAddr == 0 {panic(methodName() + " using unaddressable value")}}// Addr returns a pointer value representing the address of v.// It panics if CanAddr() returns false.// Addr is typically used to obtain a pointer to a struct field// or slice element in order to call a method that requires a// pointer receiver.func (v Value) Addr() Value {if v.flag&flagAddr == 0 {panic("reflect.Value.Addr of unaddressable value")}return Value{v.typ.ptrTo(), v.val, (v.flag & flagRO) | flag(Ptr)<<flagKindShift}}// Bool returns v's underlying value.// It panics if v's kind is not Bool.func (v Value) Bool() bool {v.mustBe(Bool)if v.flag&flagIndir != 0 {return *(*bool)(v.val)}return *(*bool)(unsafe.Pointer(&v.val))}// Bytes returns v's underlying value.// It panics if v's underlying value is not a slice of bytes.func (v Value) Bytes() []byte {v.mustBe(Slice)if v.typ.Elem().Kind() != Uint8 {panic("reflect.Value.Bytes of non-byte slice")}// Slice is always bigger than a word; assume flagIndir.return *(*[]byte)(v.val)}// CanAddr returns true if the value's address can be obtained with Addr.// Such values are called addressable. A value is addressable if it is// an element of a slice, an element of an addressable array,// a field of an addressable struct, or the result of dereferencing a pointer.// If CanAddr returns false, calling Addr will panic.func (v Value) CanAddr() bool {return v.flag&flagAddr != 0}// CanSet returns true if the value of v can be changed.// A Value can be changed only if it is addressable and was not// obtained by the use of unexported struct fields.// If CanSet returns false, calling Set or any type-specific// setter (e.g., SetBool, SetInt64) will panic.func (v Value) CanSet() bool {return v.flag&(flagAddr|flagRO) == flagAddr}// Call calls the function v with the input arguments in.// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).// Call panics if v's Kind is not Func.// It returns the output results as Values.// As in Go, each input argument must be assignable to the// type of the function's corresponding input parameter.// If v is a variadic function, Call creates the variadic slice parameter// itself, copying in the corresponding values.func (v Value) Call(in []Value) []Value {v.mustBe(Func)v.mustBeExported()return v.call("Call", in)}// CallSlice calls the variadic function v with the input arguments in,// assigning the slice in[len(in)-1] to v's final variadic argument.// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]...).// Call panics if v's Kind is not Func or if v is not variadic.// It returns the output results as Values.// As in Go, each input argument must be assignable to the// type of the function's corresponding input parameter.func (v Value) CallSlice(in []Value) []Value {v.mustBe(Func)v.mustBeExported()return v.call("CallSlice", in)}func (v Value) call(method string, in []Value) []Value {// Get function pointer, type.t := v.typvar (fn unsafe.Pointerrcvr iword)if v.flag&flagMethod != 0 {i := int(v.flag) >> flagMethodShiftif v.typ.Kind() == Interface {tt := (*interfaceType)(unsafe.Pointer(v.typ))if i < 0 || i >= len(tt.methods) {panic("reflect: broken Value")}m := &tt.methods[i]if m.pkgPath != nil {panic(method + " of unexported method")}t = toCommonType(m.typ)iface := (*nonEmptyInterface)(v.val)if iface.itab == nil {panic(method + " of method on nil interface value")}fn = iface.itab.fun[i]rcvr = iface.word} else {ut := v.typ.uncommon()if ut == nil || i < 0 || i >= len(ut.methods) {panic("reflect: broken Value")}m := &ut.methods[i]if m.pkgPath != nil {panic(method + " of unexported method")}fn = m.tfnt = toCommonType(m.mtyp)rcvr = v.iword()}} else if v.flag&flagIndir != 0 {fn = *(*unsafe.Pointer)(v.val)} else {fn = v.val}if fn == nil {panic("reflect.Value.Call: call of nil function")}isSlice := method == "CallSlice"n := t.NumIn()if isSlice {if !t.IsVariadic() {panic("reflect: CallSlice of non-variadic function")}if len(in) < n {panic("reflect: CallSlice with too few input arguments")}if len(in) > n {panic("reflect: CallSlice with too many input arguments")}} else {if t.IsVariadic() {n--}if len(in) < n {panic("reflect: Call with too few input arguments")}if !t.IsVariadic() && len(in) > n {panic("reflect: Call with too many input arguments")}}for _, x := range in {if x.Kind() == Invalid {panic("reflect: " + method + " using zero Value argument")}}for i := 0; i < n; i++ {if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {panic("reflect: " + method + " using " + xt.String() + " as type " + targ.String())}}if !isSlice && t.IsVariadic() {// prepare slice for remaining valuesm := len(in) - nslice := MakeSlice(t.In(n), m, m)elem := t.In(n).Elem()for i := 0; i < m; i++ {x := in[n+i]if xt := x.Type(); !xt.AssignableTo(elem) {panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + method)}slice.Index(i).Set(x)}origIn := inin = make([]Value, n+1)copy(in[:n], origIn)in[n] = slice}nin := len(in)if nin != t.NumIn() {panic("reflect.Value.Call: wrong argument count")}nout := t.NumOut()if v.flag&flagMethod != 0 {nin++}params := make([]unsafe.Pointer, nin)off := 0if v.flag&flagMethod != 0 {// Hard-wired first argument.p := new(iword)*p = rcvrparams[0] = unsafe.Pointer(p)off = 1}first_pointer := falsefor i, pv := range in {pv.mustBeExported()targ := t.In(i).(*commonType)pv = pv.assignTo("reflect.Value.Call", targ, nil)if pv.flag&flagIndir == 0 {p := new(unsafe.Pointer)*p = pv.valparams[off] = unsafe.Pointer(p)} else {params[off] = pv.val}if i == 0 && Kind(targ.kind) != Ptr && v.flag&flagMethod == 0 && isMethod(v.typ) {p := new(unsafe.Pointer)*p = params[off]params[off] = unsafe.Pointer(p)first_pointer = true}off++}ret := make([]Value, nout)results := make([]unsafe.Pointer, nout)for i := 0; i < nout; i++ {v := New(t.Out(i))results[i] = unsafe.Pointer(v.Pointer())ret[i] = Indirect(v)}var pp *unsafe.Pointerif len(params) > 0 {pp = ¶ms[0]}var pr *unsafe.Pointerif len(results) > 0 {pr = &results[0]}call(t, fn, v.flag&flagMethod != 0, first_pointer, pp, pr)return ret}// gccgo specific test to see if typ is a method. We can tell by// looking at the string to see if there is a receiver. We need this// because for gccgo all methods take pointer receivers.func isMethod(t *commonType) bool {if Kind(t.kind) != Func {return false}s := *t.stringparens := 0params := 0sawRet := falsefor i, c := range s {if c == '(' {parens++params++} else if c == ')' {parens--} else if parens == 0 && c == ' ' && s[i+1] != '(' && !sawRet {params++sawRet = true}}return params > 2}// Cap returns v's capacity.// It panics if v's Kind is not Array, Chan, or Slice.func (v Value) Cap() int {k := v.kind()switch k {case Array:return v.typ.Len()case Chan:return int(chancap(*(*iword)(v.iword())))case Slice:// Slice is always bigger than a word; assume flagIndir.return (*SliceHeader)(v.val).Cap}panic(&ValueError{"reflect.Value.Cap", k})}// Close closes the channel v.// It panics if v's Kind is not Chan.func (v Value) Close() {v.mustBe(Chan)v.mustBeExported()chanclose(*(*iword)(v.iword()))}// Complex returns v's underlying value, as a complex128.// It panics if v's Kind is not Complex64 or Complex128func (v Value) Complex() complex128 {k := v.kind()switch k {case Complex64:if v.flag&flagIndir != 0 {return complex128(*(*complex64)(v.val))}return complex128(*(*complex64)(unsafe.Pointer(&v.val)))case Complex128:// complex128 is always bigger than a word; assume flagIndir.return *(*complex128)(v.val)}panic(&ValueError{"reflect.Value.Complex", k})}// Elem returns the value that the interface v contains// or that the pointer v points to.// It panics if v's Kind is not Interface or Ptr.// It returns the zero Value if v is nil.func (v Value) Elem() Value {k := v.kind()switch k {case Interface:var (typ *commonTypeval unsafe.Pointer)if v.typ.NumMethod() == 0 {eface := (*emptyInterface)(v.val)if eface.typ == nil {// nil interface valuereturn Value{}}typ = toCommonType(eface.typ)val = unsafe.Pointer(eface.word)} else {iface := (*nonEmptyInterface)(v.val)if iface.itab == nil {// nil interface valuereturn Value{}}typ = toCommonType(iface.itab.typ)val = unsafe.Pointer(iface.word)}fl := v.flag & flagROfl |= flag(typ.Kind()) << flagKindShiftif typ.Kind() != Ptr && typ.Kind() != UnsafePointer {fl |= flagIndir}return Value{typ, val, fl}case Ptr:val := v.valif v.flag&flagIndir != 0 {val = *(*unsafe.Pointer)(val)}// The returned value's address is v's value.if val == nil {return Value{}}tt := (*ptrType)(unsafe.Pointer(v.typ))typ := toCommonType(tt.elem)fl := v.flag&flagRO | flagIndir | flagAddrfl |= flag(typ.Kind() << flagKindShift)return Value{typ, val, fl}}panic(&ValueError{"reflect.Value.Elem", k})}// Field returns the i'th field of the struct v.// It panics if v's Kind is not Struct or i is out of range.func (v Value) Field(i int) Value {v.mustBe(Struct)tt := (*structType)(unsafe.Pointer(v.typ))if i < 0 || i >= len(tt.fields) {panic("reflect: Field index out of range")}field := &tt.fields[i]typ := toCommonType(field.typ)// Inherit permission bits from v.fl := v.flag & (flagRO | flagIndir | flagAddr)// Using an unexported field forces flagRO.if field.pkgPath != nil {fl |= flagRO}fl |= flag(typ.Kind()) << flagKindShiftvar val unsafe.Pointerswitch {case fl&flagIndir != 0:// Indirect. Just bump pointer.val = unsafe.Pointer(uintptr(v.val) + field.offset)case bigEndian:// Direct. Discard leading bytes.val = unsafe.Pointer(uintptr(v.val) << (field.offset * 8))default:// Direct. Discard leading bytes.val = unsafe.Pointer(uintptr(v.val) >> (field.offset * 8))}return Value{typ, val, fl}}// FieldByIndex returns the nested field corresponding to index.// It panics if v's Kind is not struct.func (v Value) FieldByIndex(index []int) Value {v.mustBe(Struct)for i, x := range index {if i > 0 {if v.Kind() == Ptr && v.Elem().Kind() == Struct {v = v.Elem()}}v = v.Field(x)}return v}// FieldByName returns the struct field with the given name.// It returns the zero Value if no field was found.// It panics if v's Kind is not struct.func (v Value) FieldByName(name string) Value {v.mustBe(Struct)if f, ok := v.typ.FieldByName(name); ok {return v.FieldByIndex(f.Index)}return Value{}}// FieldByNameFunc returns the struct field with a name// that satisfies the match function.// It panics if v's Kind is not struct.// It returns the zero Value if no field was found.func (v Value) FieldByNameFunc(match func(string) bool) Value {v.mustBe(Struct)if f, ok := v.typ.FieldByNameFunc(match); ok {return v.FieldByIndex(f.Index)}return Value{}}// Float returns v's underlying value, as an float64.// It panics if v's Kind is not Float32 or Float64func (v Value) Float() float64 {k := v.kind()switch k {case Float32:if v.flag&flagIndir != 0 {return float64(*(*float32)(v.val))}return float64(*(*float32)(unsafe.Pointer(&v.val)))case Float64:if v.flag&flagIndir != 0 {return *(*float64)(v.val)}return *(*float64)(unsafe.Pointer(&v.val))}panic(&ValueError{"reflect.Value.Float", k})}// Index returns v's i'th element.// It panics if v's Kind is not Array or Slice or i is out of range.func (v Value) Index(i int) Value {k := v.kind()switch k {case Array:tt := (*arrayType)(unsafe.Pointer(v.typ))if i < 0 || i > int(tt.len) {panic("reflect: array index out of range")}typ := toCommonType(tt.elem)fl := v.flag & (flagRO | flagIndir | flagAddr) // bits same as overall arrayfl |= flag(typ.Kind()) << flagKindShiftoffset := uintptr(i) * typ.sizevar val unsafe.Pointerswitch {case fl&flagIndir != 0:// Indirect. Just bump pointer.val = unsafe.Pointer(uintptr(v.val) + offset)case bigEndian:// Direct. Discard leading bytes.val = unsafe.Pointer(uintptr(v.val) << (offset * 8))default:// Direct. Discard leading bytes.val = unsafe.Pointer(uintptr(v.val) >> (offset * 8))}return Value{typ, val, fl}case Slice:// Element flag same as Elem of Ptr.// Addressable, indirect, possibly read-only.fl := flagAddr | flagIndir | v.flag&flagROs := (*SliceHeader)(v.val)if i < 0 || i >= s.Len {panic("reflect: slice index out of range")}tt := (*sliceType)(unsafe.Pointer(v.typ))typ := toCommonType(tt.elem)fl |= flag(typ.Kind()) << flagKindShiftval := unsafe.Pointer(s.Data + uintptr(i)*typ.size)return Value{typ, val, fl}}panic(&ValueError{"reflect.Value.Index", k})}// Int returns v's underlying value, as an int64.// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.func (v Value) Int() int64 {k := v.kind()var p unsafe.Pointerif v.flag&flagIndir != 0 {p = v.val} else {// The escape analysis is good enough that &v.val// does not trigger a heap allocation.p = unsafe.Pointer(&v.val)}switch k {case Int:return int64(*(*int)(p))case Int8:return int64(*(*int8)(p))case Int16:return int64(*(*int16)(p))case Int32:return int64(*(*int32)(p))case Int64:return int64(*(*int64)(p))}panic(&ValueError{"reflect.Value.Int", k})}// CanInterface returns true if Interface can be used without panicking.func (v Value) CanInterface() bool {if v.flag == 0 {panic(&ValueError{"reflect.Value.CanInterface", Invalid})}return v.flag&(flagMethod|flagRO) == 0}// Interface returns v's value as an interface{}.// If v is a method obtained by invoking Value.Method// (as opposed to Type.Method), Interface cannot return an// interface value, so it panics.func (v Value) Interface() interface{} {return valueInterface(v, true)}func valueInterface(v Value, safe bool) interface{} {if v.flag == 0 {panic(&ValueError{"reflect.Value.Interface", 0})}if v.flag&flagMethod != 0 {panic("reflect.Value.Interface: cannot create interface value for method with bound receiver")}if safe && v.flag&flagRO != 0 {// Do not allow access to unexported values via Interface,// because they might be pointers that should not be// writable or methods or function that should not be callable.panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")}k := v.kind()if k == Interface {// Special case: return the element inside the interface.// Empty interface has one layout, all interfaces with// methods have a second layout.if v.NumMethod() == 0 {return *(*interface{})(v.val)}return *(*interface {M()})(v.val)}// Non-interface value.var eface emptyInterfaceeface.typ = v.typ.runtimeType()eface.word = v.iword()return *(*interface{})(unsafe.Pointer(&eface))}// InterfaceData returns the interface v's value as a uintptr pair.// It panics if v's Kind is not Interface.func (v Value) InterfaceData() [2]uintptr {v.mustBe(Interface)// We treat this as a read operation, so we allow// it even for unexported data, because the caller// has to import "unsafe" to turn it into something// that can be abused.// Interface value is always bigger than a word; assume flagIndir.return *(*[2]uintptr)(v.val)}// IsNil returns true if v is a nil value.// It panics if v's Kind is not Chan, Func, Interface, Map, Ptr, or Slice.func (v Value) IsNil() bool {k := v.kind()switch k {case Chan, Func, Map, Ptr:if v.flag&flagMethod != 0 {panic("reflect: IsNil of method Value")}ptr := v.valif v.flag&flagIndir != 0 {ptr = *(*unsafe.Pointer)(ptr)}return ptr == nilcase Interface, Slice:// Both interface and slice are nil if first word is 0.// Both are always bigger than a word; assume flagIndir.return *(*unsafe.Pointer)(v.val) == nil}panic(&ValueError{"reflect.Value.IsNil", k})}// IsValid returns true if v represents a value.// It returns false if v is the zero Value.// If IsValid returns false, all other methods except String panic.// Most functions and methods never return an invalid value.// If one does, its documentation states the conditions explicitly.func (v Value) IsValid() bool {return v.flag != 0}// Kind returns v's Kind.// If v is the zero Value (IsValid returns false), Kind returns Invalid.func (v Value) Kind() Kind {return v.kind()}// Len returns v's length.// It panics if v's Kind is not Array, Chan, Map, Slice, or String.func (v Value) Len() int {k := v.kind()switch k {case Array:tt := (*arrayType)(unsafe.Pointer(v.typ))return int(tt.len)case Chan:return int(chanlen(*(*iword)(v.iword())))case Map:return int(maplen(*(*iword)(v.iword())))case Slice:// Slice is bigger than a word; assume flagIndir.return (*SliceHeader)(v.val).Lencase String:// String is bigger than a word; assume flagIndir.return (*StringHeader)(v.val).Len}panic(&ValueError{"reflect.Value.Len", k})}// MapIndex returns the value associated with key in the map v.// It panics if v's Kind is not Map.// It returns the zero Value if key is not found in the map or if v represents a nil map.// As in Go, the key's value must be assignable to the map's key type.func (v Value) MapIndex(key Value) Value {v.mustBe(Map)tt := (*mapType)(unsafe.Pointer(v.typ))// Do not require key to be exported, so that DeepEqual// and other programs can use all the keys returned by// MapKeys as arguments to MapIndex. If either the map// or the key is unexported, though, the result will be// considered unexported. This is consistent with the// behavior for structs, which allow read but not write// of unexported fields.key = key.assignTo("reflect.Value.MapIndex", toCommonType(tt.key), nil)word, ok := mapaccess(v.typ.runtimeType(), *(*iword)(v.iword()), key.iword())if !ok {return Value{}}typ := toCommonType(tt.elem)fl := (v.flag | key.flag) & flagROif typ.Kind() != Ptr && typ.Kind() != UnsafePointer {fl |= flagIndir}fl |= flag(typ.Kind()) << flagKindShiftreturn Value{typ, unsafe.Pointer(word), fl}}// MapKeys returns a slice containing all the keys present in the map,// in unspecified order.// It panics if v's Kind is not Map.// It returns an empty slice if v represents a nil map.func (v Value) MapKeys() []Value {v.mustBe(Map)tt := (*mapType)(unsafe.Pointer(v.typ))keyType := toCommonType(tt.key)fl := v.flag & flagROfl |= flag(keyType.Kind()) << flagKindShiftif keyType.Kind() != Ptr && keyType.Kind() != UnsafePointer {fl |= flagIndir}m := *(*iword)(v.iword())mlen := int32(0)if m != nil {mlen = maplen(m)}it := mapiterinit(v.typ.runtimeType(), m)a := make([]Value, mlen)var i intfor i = 0; i < len(a); i++ {keyWord, ok := mapiterkey(it)if !ok {break}a[i] = Value{keyType, unsafe.Pointer(keyWord), fl}mapiternext(it)}return a[:i]}// Method returns a function value corresponding to v's i'th method.// The arguments to a Call on the returned function should not include// a receiver; the returned function will always use v as the receiver.// Method panics if i is out of range.func (v Value) Method(i int) Value {if v.typ == nil {panic(&ValueError{"reflect.Value.Method", Invalid})}if v.flag&flagMethod != 0 || i < 0 || i >= v.typ.NumMethod() {panic("reflect: Method index out of range")}fl := v.flag & (flagRO | flagAddr | flagIndir)fl |= flag(Func) << flagKindShiftfl |= flag(i)<<flagMethodShift | flagMethodreturn Value{v.typ, v.val, fl}}// NumMethod returns the number of methods in the value's method set.func (v Value) NumMethod() int {if v.typ == nil {panic(&ValueError{"reflect.Value.NumMethod", Invalid})}if v.flag&flagMethod != 0 {return 0}return v.typ.NumMethod()}// MethodByName returns a function value corresponding to the method// of v with the given name.// The arguments to a Call on the returned function should not include// a receiver; the returned function will always use v as the receiver.// It returns the zero Value if no method was found.func (v Value) MethodByName(name string) Value {if v.typ == nil {panic(&ValueError{"reflect.Value.MethodByName", Invalid})}if v.flag&flagMethod != 0 {return Value{}}m, ok := v.typ.MethodByName(name)if !ok {return Value{}}return v.Method(m.Index)}// NumField returns the number of fields in the struct v.// It panics if v's Kind is not Struct.func (v Value) NumField() int {v.mustBe(Struct)tt := (*structType)(unsafe.Pointer(v.typ))return len(tt.fields)}// OverflowComplex returns true if the complex128 x cannot be represented by v's type.// It panics if v's Kind is not Complex64 or Complex128.func (v Value) OverflowComplex(x complex128) bool {k := v.kind()switch k {case Complex64:return overflowFloat32(real(x)) || overflowFloat32(imag(x))case Complex128:return false}panic(&ValueError{"reflect.Value.OverflowComplex", k})}// OverflowFloat returns true if the float64 x cannot be represented by v's type.// It panics if v's Kind is not Float32 or Float64.func (v Value) OverflowFloat(x float64) bool {k := v.kind()switch k {case Float32:return overflowFloat32(x)case Float64:return false}panic(&ValueError{"reflect.Value.OverflowFloat", k})}func overflowFloat32(x float64) bool {if x < 0 {x = -x}return math.MaxFloat32 <= x && x <= math.MaxFloat64}// OverflowInt returns true if the int64 x cannot be represented by v's type.// It panics if v's Kind is not Int, Int8, int16, Int32, or Int64.func (v Value) OverflowInt(x int64) bool {k := v.kind()switch k {case Int, Int8, Int16, Int32, Int64:bitSize := v.typ.size * 8trunc := (x << (64 - bitSize)) >> (64 - bitSize)return x != trunc}panic(&ValueError{"reflect.Value.OverflowInt", k})}// OverflowUint returns true if the uint64 x cannot be represented by v's type.// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.func (v Value) OverflowUint(x uint64) bool {k := v.kind()switch k {case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:bitSize := v.typ.size * 8trunc := (x << (64 - bitSize)) >> (64 - bitSize)return x != trunc}panic(&ValueError{"reflect.Value.OverflowUint", k})}// Pointer returns v's value as a uintptr.// It returns uintptr instead of unsafe.Pointer so that// code using reflect cannot obtain unsafe.Pointers// without importing the unsafe package explicitly.// It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.func (v Value) Pointer() uintptr {k := v.kind()switch k {case Chan, Func, Map, Ptr, UnsafePointer:if k == Func && v.flag&flagMethod != 0 {panic("reflect.Value.Pointer of method Value")}p := v.valif v.flag&flagIndir != 0 {p = *(*unsafe.Pointer)(p)}return uintptr(p)case Slice:return (*SliceHeader)(v.val).Data}panic(&ValueError{"reflect.Value.Pointer", k})}// Recv receives and returns a value from the channel v.// It panics if v's Kind is not Chan.// The receive blocks until a value is ready.// The boolean value ok is true if the value x corresponds to a send// on the channel, false if it is a zero value received because the channel is closed.func (v Value) Recv() (x Value, ok bool) {v.mustBe(Chan)v.mustBeExported()return v.recv(false)}// internal recv, possibly non-blocking (nb).// v is known to be a channel.func (v Value) recv(nb bool) (val Value, ok bool) {tt := (*chanType)(unsafe.Pointer(v.typ))if ChanDir(tt.dir)&RecvDir == 0 {panic("recv on send-only channel")}word, selected, ok := chanrecv(v.typ.runtimeType(), *(*iword)(v.iword()), nb)if selected {typ := toCommonType(tt.elem)fl := flag(typ.Kind()) << flagKindShiftif typ.Kind() != Ptr && typ.Kind() != UnsafePointer {fl |= flagIndir}val = Value{typ, unsafe.Pointer(word), fl}}return}// Send sends x on the channel v.// It panics if v's kind is not Chan or if x's type is not the same type as v's element type.// As in Go, x's value must be assignable to the channel's element type.func (v Value) Send(x Value) {v.mustBe(Chan)v.mustBeExported()v.send(x, false)}// internal send, possibly non-blocking.// v is known to be a channel.func (v Value) send(x Value, nb bool) (selected bool) {tt := (*chanType)(unsafe.Pointer(v.typ))if ChanDir(tt.dir)&SendDir == 0 {panic("send on recv-only channel")}x.mustBeExported()x = x.assignTo("reflect.Value.Send", toCommonType(tt.elem), nil)return chansend(v.typ.runtimeType(), *(*iword)(v.iword()), x.iword(), nb)}// Set assigns x to the value v.// It panics if CanSet returns false.// As in Go, x's value must be assignable to v's type.func (v Value) Set(x Value) {v.mustBeAssignable()x.mustBeExported() // do not let unexported x leakvar target *interface{}if v.kind() == Interface {target = (*interface{})(v.val)}x = x.assignTo("reflect.Set", v.typ, target)if x.flag&flagIndir != 0 {memmove(v.val, x.val, v.typ.size)} else {storeIword(v.val, iword(x.val), v.typ.size)}}// SetBool sets v's underlying value.// It panics if v's Kind is not Bool or if CanSet() is false.func (v Value) SetBool(x bool) {v.mustBeAssignable()v.mustBe(Bool)*(*bool)(v.val) = x}// SetBytes sets v's underlying value.// It panics if v's underlying value is not a slice of bytes.func (v Value) SetBytes(x []byte) {v.mustBeAssignable()v.mustBe(Slice)if v.typ.Elem().Kind() != Uint8 {panic("reflect.Value.SetBytes of non-byte slice")}*(*[]byte)(v.val) = x}// SetComplex sets v's underlying value to x.// It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.func (v Value) SetComplex(x complex128) {v.mustBeAssignable()switch k := v.kind(); k {default:panic(&ValueError{"reflect.Value.SetComplex", k})case Complex64:*(*complex64)(v.val) = complex64(x)case Complex128:*(*complex128)(v.val) = x}}// SetFloat sets v's underlying value to x.// It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.func (v Value) SetFloat(x float64) {v.mustBeAssignable()switch k := v.kind(); k {default:panic(&ValueError{"reflect.Value.SetFloat", k})case Float32:*(*float32)(v.val) = float32(x)case Float64:*(*float64)(v.val) = x}}// SetInt sets v's underlying value to x.// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.func (v Value) SetInt(x int64) {v.mustBeAssignable()switch k := v.kind(); k {default:panic(&ValueError{"reflect.Value.SetInt", k})case Int:*(*int)(v.val) = int(x)case Int8:*(*int8)(v.val) = int8(x)case Int16:*(*int16)(v.val) = int16(x)case Int32:*(*int32)(v.val) = int32(x)case Int64:*(*int64)(v.val) = x}}// SetLen sets v's length to n.// It panics if v's Kind is not Slice.func (v Value) SetLen(n int) {v.mustBeAssignable()v.mustBe(Slice)s := (*SliceHeader)(v.val)if n < 0 || n > int(s.Cap) {panic("reflect: slice length out of range in SetLen")}s.Len = n}// SetMapIndex sets the value associated with key in the map v to val.// It panics if v's Kind is not Map.// If val is the zero Value, SetMapIndex deletes the key from the map.// As in Go, key's value must be assignable to the map's key type,// and val's value must be assignable to the map's value type.func (v Value) SetMapIndex(key, val Value) {v.mustBe(Map)v.mustBeExported()key.mustBeExported()tt := (*mapType)(unsafe.Pointer(v.typ))key = key.assignTo("reflect.Value.SetMapIndex", toCommonType(tt.key), nil)if val.typ != nil {val.mustBeExported()val = val.assignTo("reflect.Value.SetMapIndex", toCommonType(tt.elem), nil)}mapassign(v.typ.runtimeType(), *(*iword)(v.iword()), key.iword(), val.iword(), val.typ != nil)}// SetUint sets v's underlying value to x.// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.func (v Value) SetUint(x uint64) {v.mustBeAssignable()switch k := v.kind(); k {default:panic(&ValueError{"reflect.Value.SetUint", k})case Uint:*(*uint)(v.val) = uint(x)case Uint8:*(*uint8)(v.val) = uint8(x)case Uint16:*(*uint16)(v.val) = uint16(x)case Uint32:*(*uint32)(v.val) = uint32(x)case Uint64:*(*uint64)(v.val) = xcase Uintptr:*(*uintptr)(v.val) = uintptr(x)}}// SetPointer sets the unsafe.Pointer value v to x.// It panics if v's Kind is not UnsafePointer.func (v Value) SetPointer(x unsafe.Pointer) {v.mustBeAssignable()v.mustBe(UnsafePointer)*(*unsafe.Pointer)(v.val) = x}// SetString sets v's underlying value to x.// It panics if v's Kind is not String or if CanSet() is false.func (v Value) SetString(x string) {v.mustBeAssignable()v.mustBe(String)*(*string)(v.val) = x}// Slice returns a slice of v.// It panics if v's Kind is not Array or Slice.func (v Value) Slice(beg, end int) Value {var (cap inttyp *sliceTypebase unsafe.Pointer)switch k := v.kind(); k {default:panic(&ValueError{"reflect.Value.Slice", k})case Array:if v.flag&flagAddr == 0 {panic("reflect.Value.Slice: slice of unaddressable array")}tt := (*arrayType)(unsafe.Pointer(v.typ))cap = int(tt.len)typ = (*sliceType)(unsafe.Pointer(toCommonType(tt.slice)))base = v.valcase Slice:typ = (*sliceType)(unsafe.Pointer(v.typ))s := (*SliceHeader)(v.val)base = unsafe.Pointer(s.Data)cap = s.Cap}if beg < 0 || end < beg || end > cap {panic("reflect.Value.Slice: slice index out of bounds")}// Declare slice so that gc can see the base pointer in it.var x []byte// Reinterpret as *SliceHeader to edit.s := (*SliceHeader)(unsafe.Pointer(&x))s.Data = uintptr(base) + uintptr(beg)*toCommonType(typ.elem).Size()s.Len = end - begs.Cap = cap - begfl := v.flag&flagRO | flagIndir | flag(Slice)<<flagKindShiftreturn Value{typ.common(), unsafe.Pointer(&x), fl}}// String returns the string v's underlying value, as a string.// String is a special case because of Go's String method convention.// Unlike the other getters, it does not panic if v's Kind is not String.// Instead, it returns a string of the form "<T value>" where T is v's type.func (v Value) String() string {switch k := v.kind(); k {case Invalid:return "<invalid Value>"case String:return *(*string)(v.val)}// If you call String on a reflect.Value of other type, it's better to// print something than to panic. Useful in debugging.return "<" + v.typ.String() + " Value>"}// TryRecv attempts to receive a value from the channel v but will not block.// It panics if v's Kind is not Chan.// If the receive cannot finish without blocking, x is the zero Value.// The boolean ok is true if the value x corresponds to a send// on the channel, false if it is a zero value received because the channel is closed.func (v Value) TryRecv() (x Value, ok bool) {v.mustBe(Chan)v.mustBeExported()return v.recv(true)}// TrySend attempts to send x on the channel v but will not block.// It panics if v's Kind is not Chan.// It returns true if the value was sent, false otherwise.// As in Go, x's value must be assignable to the channel's element type.func (v Value) TrySend(x Value) bool {v.mustBe(Chan)v.mustBeExported()return v.send(x, true)}// Type returns v's type.func (v Value) Type() Type {f := v.flagif f == 0 {panic(&ValueError{"reflect.Value.Type", Invalid})}if f&flagMethod == 0 {// Easy casereturn v.typ.toType()}// Method value.// v.typ describes the receiver, not the method type.i := int(v.flag) >> flagMethodShiftif v.typ.Kind() == Interface {// Method on interface.tt := (*interfaceType)(unsafe.Pointer(v.typ))if i < 0 || i >= len(tt.methods) {panic("reflect: broken Value")}m := &tt.methods[i]return toCommonType(m.typ).toType()}// Method on concrete type.ut := v.typ.uncommon()if ut == nil || i < 0 || i >= len(ut.methods) {panic("reflect: broken Value")}m := &ut.methods[i]return toCommonType(m.mtyp).toType()}// Uint returns v's underlying value, as a uint64.// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.func (v Value) Uint() uint64 {k := v.kind()var p unsafe.Pointerif v.flag&flagIndir != 0 {p = v.val} else {// The escape analysis is good enough that &v.val// does not trigger a heap allocation.p = unsafe.Pointer(&v.val)}switch k {case Uint:return uint64(*(*uint)(p))case Uint8:return uint64(*(*uint8)(p))case Uint16:return uint64(*(*uint16)(p))case Uint32:return uint64(*(*uint32)(p))case Uint64:return uint64(*(*uint64)(p))case Uintptr:return uint64(*(*uintptr)(p))}panic(&ValueError{"reflect.Value.Uint", k})}// UnsafeAddr returns a pointer to v's data.// It is for advanced clients that also import the "unsafe" package.// It panics if v is not addressable.func (v Value) UnsafeAddr() uintptr {if v.typ == nil {panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})}if v.flag&flagAddr == 0 {panic("reflect.Value.UnsafeAddr of unaddressable value")}return uintptr(v.val)}// StringHeader is the runtime representation of a string.// It cannot be used safely or portably.type StringHeader struct {Data uintptrLen int}// SliceHeader is the runtime representation of a slice.// It cannot be used safely or portably.type SliceHeader struct {Data uintptrLen intCap int}func typesMustMatch(what string, t1, t2 Type) {if t1 != t2 {panic(what + ": " + t1.String() + " != " + t2.String())}}// grow grows the slice s so that it can hold extra more values, allocating// more capacity if needed. It also returns the old and new slice lengths.func grow(s Value, extra int) (Value, int, int) {i0 := s.Len()i1 := i0 + extraif i1 < i0 {panic("reflect.Append: slice overflow")}m := s.Cap()if i1 <= m {return s.Slice(0, i1), i0, i1}if m == 0 {m = extra} else {for m < i1 {if i0 < 1024 {m += m} else {m += m / 4}}}t := MakeSlice(s.Type(), i1, m)Copy(t, s)return t, i0, i1}// Append appends the values x to a slice s and returns the resulting slice.// As in Go, each x's value must be assignable to the slice's element type.func Append(s Value, x ...Value) Value {s.mustBe(Slice)s, i0, i1 := grow(s, len(x))for i, j := i0, 0; i < i1; i, j = i+1, j+1 {s.Index(i).Set(x[j])}return s}// AppendSlice appends a slice t to a slice s and returns the resulting slice.// The slices s and t must have the same element type.func AppendSlice(s, t Value) Value {s.mustBe(Slice)t.mustBe(Slice)typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())s, i0, i1 := grow(s, t.Len())Copy(s.Slice(i0, i1), t)return s}// Copy copies the contents of src into dst until either// dst has been filled or src has been exhausted.// It returns the number of elements copied.// Dst and src each must have kind Slice or Array, and// dst and src must have the same element type.func Copy(dst, src Value) int {dk := dst.kind()if dk != Array && dk != Slice {panic(&ValueError{"reflect.Copy", dk})}if dk == Array {dst.mustBeAssignable()}dst.mustBeExported()sk := src.kind()if sk != Array && sk != Slice {panic(&ValueError{"reflect.Copy", sk})}src.mustBeExported()de := dst.typ.Elem()se := src.typ.Elem()typesMustMatch("reflect.Copy", de, se)n := dst.Len()if sn := src.Len(); n > sn {n = sn}// If sk is an in-line array, cannot take its address.// Instead, copy element by element.if src.flag&flagIndir == 0 {for i := 0; i < n; i++ {dst.Index(i).Set(src.Index(i))}return n}// Copy via memmove.var da, sa unsafe.Pointerif dk == Array {da = dst.val} else {da = unsafe.Pointer((*SliceHeader)(dst.val).Data)}if sk == Array {sa = src.val} else {sa = unsafe.Pointer((*SliceHeader)(src.val).Data)}memmove(da, sa, uintptr(n)*de.Size())return n}/** constructors*/// MakeSlice creates a new zero-initialized slice value// for the specified slice type, length, and capacity.func MakeSlice(typ Type, len, cap int) Value {if typ.Kind() != Slice {panic("reflect.MakeSlice of non-slice type")}// Declare slice so that gc can see the base pointer in it.var x []byte// Reinterpret as *SliceHeader to edit.s := (*SliceHeader)(unsafe.Pointer(&x))s.Data = uintptr(unsafe.NewArray(typ.Elem(), cap))s.Len = lens.Cap = capreturn Value{typ.common(), unsafe.Pointer(&x), flagIndir | flag(Slice)<<flagKindShift}}// MakeChan creates a new channel with the specified type and buffer size.func MakeChan(typ Type, buffer int) Value {if typ.Kind() != Chan {panic("reflect.MakeChan of non-chan type")}if buffer < 0 {panic("reflect.MakeChan: negative buffer size")}if typ.ChanDir() != BothDir {panic("reflect.MakeChan: unidirectional channel type")}ch := makechan(typ.runtimeType(), uint32(buffer))return Value{typ.common(), unsafe.Pointer(ch), flagIndir | (flag(Chan) << flagKindShift)}}// MakeMap creates a new map of the specified type.func MakeMap(typ Type) Value {if typ.Kind() != Map {panic("reflect.MakeMap of non-map type")}m := makemap(typ.runtimeType())return Value{typ.common(), unsafe.Pointer(m), flagIndir | (flag(Map) << flagKindShift)}}// Indirect returns the value that v points to.// If v is a nil pointer, Indirect returns a nil Value.// If v is not a pointer, Indirect returns v.func Indirect(v Value) Value {if v.Kind() != Ptr {return v}return v.Elem()}// ValueOf returns a new Value initialized to the concrete value// stored in the interface i. ValueOf(nil) returns the zero Value.func ValueOf(i interface{}) Value {if i == nil {return Value{}}// TODO(rsc): Eliminate this terrible hack.// In the call to packValue, eface.typ doesn't escape,// and eface.word is an integer. So it looks like// i (= eface) doesn't escape. But really it does,// because eface.word is actually a pointer.escapes(i)// For an interface value with the noAddr bit set,// the representation is identical to an empty interface.eface := *(*emptyInterface)(unsafe.Pointer(&i))typ := toCommonType(eface.typ)fl := flag(typ.Kind()) << flagKindShiftif typ.Kind() != Ptr && typ.Kind() != UnsafePointer {fl |= flagIndir}return Value{typ, unsafe.Pointer(eface.word), fl}}// Zero returns a Value representing a zero value for the specified type.// The result is different from the zero value of the Value struct,// which represents no value at all.// For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.func Zero(typ Type) Value {if typ == nil {panic("reflect: Zero(nil)")}t := typ.common()fl := flag(t.Kind()) << flagKindShiftif t.Kind() == Ptr || t.Kind() == UnsafePointer {return Value{t, nil, fl}}return Value{t, unsafe.New(typ), fl | flagIndir}}// New returns a Value representing a pointer to a new zero value// for the specified type. That is, the returned Value's Type is PtrTo(t).func New(typ Type) Value {if typ == nil {panic("reflect: New(nil)")}ptr := unsafe.New(typ)fl := flag(Ptr) << flagKindShiftreturn Value{typ.common().ptrTo(), ptr, fl}}// assignTo returns a value v that can be assigned directly to typ.// It panics if v is not assignable to typ.// For a conversion to an interface type, target is a suggested scratch space to use.func (v Value) assignTo(context string, dst *commonType, target *interface{}) Value {if v.flag&flagMethod != 0 {panic(context + ": cannot assign method value to type " + dst.String())}switch {case directlyAssignable(dst, v.typ):// Overwrite type so that they match.// Same memory layout, so no harm done.v.typ = dstfl := v.flag & (flagRO | flagAddr | flagIndir)fl |= flag(dst.Kind()) << flagKindShiftreturn Value{dst, v.val, fl}case implements(dst, v.typ):if target == nil {target = new(interface{})}x := valueInterface(v, false)if dst.NumMethod() == 0 {*target = x} else {ifaceE2I(dst.runtimeType(), x, unsafe.Pointer(target))}return Value{dst, unsafe.Pointer(target), flagIndir | flag(Interface)<<flagKindShift}}// Failed.panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())}// implemented in ../pkg/runtimefunc chancap(ch iword) int32func chanclose(ch iword)func chanlen(ch iword) int32func chanrecv(t *runtime.Type, ch iword, nb bool) (val iword, selected, received bool)func chansend(t *runtime.Type, ch iword, val iword, nb bool) boolfunc makechan(typ *runtime.Type, size uint32) (ch iword)func makemap(t *runtime.Type) (m iword)func mapaccess(t *runtime.Type, m iword, key iword) (val iword, ok bool)func mapassign(t *runtime.Type, m iword, key, val iword, ok bool)func mapiterinit(t *runtime.Type, m iword) *bytefunc mapiterkey(it *byte) (key iword, ok bool)func mapiternext(it *byte)func maplen(m iword) int32func call(typ *commonType, fnaddr unsafe.Pointer, isInterface bool, isMethod bool, params *unsafe.Pointer, results *unsafe.Pointer)func ifaceE2I(t *runtime.Type, src interface{}, dst unsafe.Pointer)// Dummy annotation marking that the value x escapes,// for use in cases where the reflect code is so clever that// the compiler cannot follow.func escapes(x interface{}) {if dummy.b {dummy.x = x}}var dummy struct {b boolx interface{}}
